
The VLDB Journal (2000) 8: 199–221 The VLDB Journal
c© Springer-Verlag 2000

The LHAM log-structured history data access method

Peter Muth1, Patrick O’Neil 2, Achim Pick1, Gerhard Weikum1

1 Department of Computer Science, University of the Saarland, D-66041 Saarbrücken, Germany
e-mail: {muth, pick, weikum}@cs.uni-sb.de
2 Department of Mathematics and Computer Science, University of Massachusetts at Boston, Boston, MA 02125-3393, USA
e-mail: poneil@cs.umb.edu

Edited by O. Shmueli. Received March 4, 1999 / Accepted September 28, 1999

Abstract. Numerous applications such as stock market or
medical information systems require that both historical and
current data be logically integrated into a temporal database.
The underlying access method must support different forms
of “time-travel” queries, the migration of old record ver-
sions onto inexpensive archive media, and high insertion
and update rates. This paper presents an access method
for transaction-time temporal data, called the log-structured
history data access method (LHAM) that meets these de-
mands. The basic principle of LHAM is to partition the
data into successive components based on the timestamps
of the record versions. Components are assigned to different
levels of a storage hierarchy, and incoming data is contin-
uously migrated through the hierarchy. The paper discusses
the LHAM concepts, including concurrency control and re-
covery, our full-fledged LHAM implementation, and experi-
mental performance results based on this implementation. A
detailed comparison with the TSB-tree, both analytically and
based on experiments with real implementations, shows that
LHAM is highly superior in terms of insert performance,
while query performance is in almost all cases at least as
good as for the TSB-tree; in many cases it is much better.

Key words: Index structures – Storage systems – Perfor-
mance – Temporal databases – Data warehouses

1 Introduction

1.1 Problem setting

For many applications, maintaining only current information
is not sufficient; rather, historical data must be kept to answer
all relevant queries. Such applications include, for example,
stock market information systems, risk assessment in bank-
ing, medical information systems, and scientific database ap-
plications. Temporal database systems [Sno90, Tan93] aim to
support this kind of applications. In this paper, we consider
a special type of temporal databases, namely,transaction-
time databases, where multiple versions of a record are kept.
Updating a record is implemented by inserting a new record

version. Each record version is timestamped with the commit
time of the transaction that updated the record. The times-
tamp is considered to be the start time for a record version.
The end time is implicitly given by the start time of the
next version of the same record, if one exists. Records are
never physically deleted; a logical deletion is implemented
by creating a special record version that marks the end of
the record’s lifetime.

Indexing temporal databases is an important and chal-
lenging problem, mainly because of the huge amount of data
to be indexed and the various “time-travel” types of queries
that have to be supported. An equally important requirement
is an access method’s ability to sustain high insert/update
rates. This requirement arises, for example, in very large
data warehouses [CACM98], in scientific databases that are
fed by automatic instruments [MSS95], or in workflow man-
agement systems for keeping workflow histories [AGL98].
Also, many banking and stock market applications exhibit
such characteristics. For example, consider the management
of stock portfolios in a large bank. For each portfolio, all
buy and sell orders must be tracked. Based on this data,
in addition to querying the current contents of a portfolio,
queries asking for the history of a specific portfolio in a
given time interval as well as queries asking for statistical
data over certain portfolios can be supported. The results of
these queries are important for future decisions on buying
or selling stocks.

To simplify the explanation, assume that placing a sell
or buy order is tracked by inserting a record version in a
portfolio history table. Assuming 1000 orders per second,
we have 1000 inserts into the history table per second. Fur-
ther assume, we want to index the history table by using a
B+-tree on the customer ID, and we want to keep the his-
tory of the last 7 days online. Given 24 business hours for
worldwide orders per day and records of 48 bytes, we have
about 28 GB of index data. This translates into 3.5 million
blocks, 8 KB each, at the leaf level of the B+-tree. Assuming,
for simplicity, that orders are uniformly distributed among
portfolios, repeated references to the same block are on av-
erage 3,500 s≈ 1 hour apart. According to the 5-minute rule
[GP87], this does not justify main-memory residence. As a
consequence, it is highly unlikely that an insert operation



200 P. Muth et al.: The LHAM log-structured history data access method

finds the leaf node that it accesses in the buffer. Instead, in-
serting a new record causes two I/Os on the leaf level of the
B+-tree, one for writing some leaf node back to the database
in order to free buffer space, and one for bringing the leaf
node where the new record version is to be inserted into the
buffer. Given 1000 inserts per second, we have 2000 I/Os
per second, disregarding splits and the higher levels of the
tree. Optimistically assuming that a single disk can serve
100 I/Os per second, we need 20 disks to sustain the insert
rate of the application, but the data fits on two disks. Of
course, this scenario exaggerates to make its point as clear
as possible; in practice, applications often exhibit skewed
access patterns such that additional memory could be lever-
aged for caching frequently accessed leaf nodes. The point
is that even more realistic applications may need more than
a minimum number of disks to sustain the I/O throughput.

1.2 Contribution

The above arguments hold for all index structures that place
incoming data immediately at a final position on disk. The
log-structured history access method (LHAM), introduced in
this paper addresses this problem by initially storing all in-
coming data in a main-memory component. When the main-
memory component becomes full, the data is merged with
data already on disk and migrated to disk in a bulk fashion,
similar to the log-structured file system approach [RO92] –
hence the name of our method. At the same time, a new
index structure on disk, containing both the new and the old
records, is created. All I/O operations use fastmulti-block
I/O. So LHAM essentially leverages techniques for the bulk-
loading of index structures to continuously construct and
maintain an online index in a highly efficient manner.

In general,componentsmay exist on different levels of
a storage hierarchy. When a component becomes full, data
is migrated to the component on the next lower level. This
basic approach has been adopted from the LSM-tree method
[OCGO96], a conventional (i.e., non-temporal) single-key
access method. An analysis of LHAM as well as experi-
mental results gained from our implementation show that
LHAM saves a substantial amount of I/Os on inserts and
updates. For the above example, an LHAM structure with a
main-memory component of 144 MB and two disk compo-
nents with a total size of 30 GB is sufficient. This translates
into two disks for LHAM, in contrast to 20 disks if a B+-
tree-like access method were used.

Two-dimensional key-time queries are supported by
LHAM through partitioning the data of the various compo-
nents based on time intervals. For space efficiency, record
versions that are valid across the timespans of multiple com-
ponents are stored only in one component according to the
version’s creation time; that is, LHAM usually employs a
non-redundant partitioningscheme. The exception from this
rule are components that may reside on archive media such
as tapes or WORM units; these components are formed
based on a redundant partitioning scheme, where versions
are redundantly kept in allarchive componentsin which they
are valid. Within each component, record versions are orga-
nized in a B+-tree using the records’ key attribute and the
version timestamp as a logically concatenated search key.

Based on this storage organization, LHAM provides consis-
tently good performance for all types of range queries on
key, on time, and on the combination of both.

The basic idea of an earlier form of LHAM has been
sketched in [OW93], and a full-fledged implementation has
been described in [MOPW98]. The current paper is an ex-
tended version of [MOPW98]. In addition to the perfor-
mance experiments and the analysis of insertion costs al-
ready reported there, the current paper includes a mathemat-
ical average-case cost analysis for key-time (point) queries,
an extended discussion of concurrency control and recovery
issues, and an outline of various, promising extensions and
generalizations of the LHAM method. The paper’s major
contributions are the following.

– We give a detailed presentation of the LHAM concepts,
including a discussion of synchronization issues between
concurrent migration processes, calledrolling merges,
and transactional concurrency control and recovery. The
performance of insertions in terms of required block ac-
cesses is mathematically analyzed. We further present
analytical results on the average-case cost of key-time
point queries.

– We present a full-fledged LHAM implementation for
shared-memory multi-processors using the Solaris thread
library. The entire prototype comprises 24,000 lines of
C code (including monitoring tools) and has been stress-
tested over several months.

– To validate the analytic results on insertion and key-time
point-query performance, and to evaluate the full spec-
trum of query types, we have measured LHAM’s per-
formance against the TSB-tree, which is among the cur-
rently best known access methods for temporal data. We
present detailed experimental results in terms of required
block accesses and throughput for different insert/update
loads, different query types, and different LHAM con-
figurations. Our results provide valuable insight into the
typical performance of both access structures for real life
applications, as opposed to asymptotic worst case effi-
ciency.

– We discuss several promising extensions and general-
izations of LHAM, namely, supporting a tunable mix
of non-redundant and redundant partitionings between
components, the use of general multi-dimensional index
structures within a component, and more general forms
of the LHAM directory for more flexible partitioning
schemes.

1.3 Related work

As for “time-travel” queries, LHAM supports exact match
queries as well as range queries on key, time, and the com-
bination of key and time. Temporal index structures with
this scope include the TSB-tree [LS89, LS90], the MVBT
[Bec96], the two-level time index [EWK93], the R-tree
[Gut84], and the segment-R-tree[Kol93], a variant of the
R-tree specifically suited for temporal databases. Temporal
index structures like the Snapshot index [TK95], the Time
index [EWK93, EKW91] and the TP-index [SOL94] aim
only at supporting specific query types efficiently. Com-
paring them with other index structures is only meaningful



P. Muth et al.: The LHAM log-structured history data access method 201

based on a specific kind of application. Among the index
structures with a general aim, the TSB-tree has demonstrated
very good query performance [ST99]. Therefore, we have
chosen the TSB-tree as the yardstick against which LHAM
is compared. In terms of asymptotic worst case query per-
formance, the TSB-tree guarantees logarithmic efficiency for
all query types, whereas LHAM is susceptible to degrada-
tion under certain conditions. However, our experimental
studies indicate that such degradation occurs only in specifi-
cally constructed “adversary” scenarios and is rather unlikely
under more realistic loads. For almost all query types, the
average performance of LHAM is at least as good as for the
TSB-tree, for many cases, even substantially better because
of better data clustering, both within and across pages, and
potential for multi-block I/O.

Most proposals for index structures on temporal data are
not specifically targeted at high insertion rates, the only ex-
ceptions being [Jag97] and [BSW97]. Both approaches use
continuous on-line reorganizations of the data like LHAM
to improve the performance of insertions. Because of their
strong relationship to LHAM, we discuss both of these ap-
proaches in detail in Sect. 8, after having presented the
LHAM approach and its performance.

1.4 Outline of the paper

The paper is organized as follows. Section 2 presents the
principles of LHAM in terms of time-based partitioning of
the data, data migration, and query processing. Section 3 de-
velops analytic models for the amortized costs of insertions
and average-case costs of key-time point queries. In Sect. 4,
we discuss the implementation of LHAM, its internal ar-
chitecture, rolling-merge processes for data migration, and
the synchronization of these processes. Concurrency control
and recovery are discussed in Sect. 5. Section 6 briefly re-
views the TSB-tree as a major competitor to our approach.
Section 7 contains the results of our experimental perfor-
mance evaluation. We compare the experimental results for
our implementations of LHAM and the TSB-tree in detail.
Section 8 compares the LHAM method to similar, more re-
cently proposed approaches. Section 9 discusses extensions
and generalizations of LHAM. Section 10 concludes the pa-
per.

2 Principles of LHAM

LHAM is an index structure for transaction-time databases.
It indexes record versions in two dimensions; one dimension
is given by the conventional record key, the other by the
timestamp of the record version. A record version gets its
timestamp at the time of insertion as the transaction time of
the inserting transaction. The timestamp cannot be changed
afterwards. Updating a record is cast into inserting a new
version. Deleting a record is performed by inserting a new
record version indicating the deletion. As a consequence,
all insert, update, and delete operations are performed by
inserting record versions.

Unlike virtually all previously proposed index structures,
LHAM aims to support extremely high insert rates that lead

to a large number of newly created record versions per time
unit. Furthermore, while many other temporal index struc-
tures emphasize the efficiency of exact-match queries and
range queries for either key or time, LHAM aims to support
exact-match queries as well as all types of range queries
on key, on time, and on the combination of both. Note that
there is actually a tradeoff in the performance of time range
queries versus key range queries, as the first query type ben-
efits from clustering by time, whereas the latter benefits from
clustering by key. LHAM strives for a flexible compromise
with respect to this tradeoff.

2.1 Partitioning the time dimension

The basic idea of LHAM is to divide the entire time do-
main into successive intervals and to assign each interval
to a separate storagecomponent. The series of components,
denoted asC0, C1, . . . , Cn, constitutes a partitioning of the
history data based on the timestamp attribute of the record
versions. A componentCi contains all record versions with
timestamps that fall between a low-time boundary,lowi, and
a high-time boundary,highi, wherehighi is more recent
than lowi. For successive componentsCi, and Ci+1, com-
ponents with lower subscripts contain more recent data, so
lowi is equal tohighi+1. ComponentC0 is stored in main
memory and contains the most recent record versions from
the current moment (which we take to behigh0), back to
time low0. ComponentsC1 throughCk reside on disk, and
the rest of the componentsCk+1, . . . , Cn are stable archive
components that can be stored on write-once or slow media
(e.g., optical disks). Typically, the numberk of disk com-
ponents will be relatively small (between 1 and 3), whereas
the numbern − k of archive components may be large, but
archive components will probably consist of a month worth
of record change archives.

The overall organization of LHAM is depicted in the left
part of Fig. 1. In the example, the history of two records is
shown. The record with keya has been inserted at timet2,
and was updated at timest10 andt40. Its original version as
of time t2 has migrated to archive componentC3, the other
record versions are currently stored in disk componentC2.
The record with keyp has been inserted at timet203, which
now falls into the time interval covered by componentC1.
Recordp has a recent update at timet409, the corresponding
record version is still in main-memory componentC0.

Inside each component, record versions are organized by
a conventional index structure for query efficiency. In prin-
ciple, every index structure that supports the required query
types and efficiently allows the insertion of record versions
in batches can be used. Different index structures can be
used for different components. For the sake of simplicity, we
have chosen B+-trees for all components. An example B+-
tree is shown in the right part of Fig. 1, containing the record
versions of recorda at timest10 and t40 . The key of the
B+-tree is formed by concatenating the conventional record
key and the timestamp of a record version. Therefore, the
record versions are ordered according to their conventional
key first, followed by their timestamp. Using this ordering
is a drawback for time range queries, as record versions are
clustered primarily by key. However, this drawback is typi-



202 P. Muth et al.: The LHAM log-structured history data access method

Fig. 1. LHAM component organization and B+-tree inside component

cally compensated by partitioning data by time according to
the component time intervals. We will consider other index
structures inside of LHAM components in the future. A key
requirement is their ability to support bulk loading of data.

The purpose of the more recent disk components, and
especially the main-memory component, is to support high
insert rates. Inserting a new record version into the main-
memory component does not take any I/O (other than log-
ging for recovery purposes, which is necessary anyway, see
Sect. 5 for details). I/O is needed when a component be-
comes full. In this case, data is migrated to the next compo-
nent. Providing a highly efficient migration by moving data
in batches is the key to LHAM’s good performance.

In the “standard” variant of LHAM, there is no redun-
dancy among components. A record version is stored in the
component whose low and high time boundaries include the
version’s timestamp. However, some versions are valid be-
yond the high time boundary of the component, namely,
when the next more recent version for the same record key
is created after the component’s high time boundary. Espe-
cially for long-lived versions, it can be beneficial for query
performance to keep such a version redundantly in more
than one component. Redundancy is especially attractive for
the usually much slower archive components. LHAM sup-
ports both redundancy-free and redundant partitioning. The
redundancy option can even be limited to certain keys or key
ranges if, for example, the update rates are skewed across
the key domain.

2.2 Inserts and migration of data

Newly created record versions are always inserted into the
main-memory componentC0, consisting of a 2-3-tree or
similar memory-based key-lookup structure. They eventu-
ally migrate through disk componentsC1 ... Ck, consisting
of B+-tree-like structures, and eventually arrive on archive
media. There is no migration among archive components,
as these are often write-once or too slow for data reorga-
nizations. However, record versions reaching an age where
they are no longer of interest may occasionally be purged
from the on-line archive storage. This can be achieved easily
with LHAM, because of the time boundaries between com-
ponents, and the natural placement of components one after
another on archive media such as optical disk platters.

The data migration from more recent to older compo-
nents is accomplished by a process denotedrolling merge,

following the idea of the LSM-tree [OCGO96], a log-
structured access method for conventional, one-dimensional
key access. For each pair of successive componentsCi and
Ci+1, i < k, a rolling-merge process, denotedRMi/i+1, is in-
voked each time componentCi becomes full. Its invocation
frequency depends on how often the amount of data inCi

reaches a maximum triggering size. When the rolling-merge
process starts, a migration boundarymi, lowi ≤ mi ≤
highi, is chosen, that will become the new time boundary
betweenCi andCi+1 after the rolling merge is finished. The
appropriate value formi, relative tolowi andhighi, depends
on the growth rate ofCi and, thus, (by recursion) ultimately
on the insert rate of the database. The rolling-merge process
RMi/i+1 scans the leaf nodes of the tree in componentCi

in order of key and timestamp, and migrates all record ver-
sions ofCi that have a timestamp smaller (i.e., older) than
mi into componentCi+1, building a new tree there. It termi-
nates whenCi is completely scanned, and at this point,lowi

andhighi+1 are both set tomi. Figure 2 shows an example
of three successive rolling merges between componentsC0
andC1. Whenever componentC0 becomes full, i.e., its box
becomes filled with record versions (the white, grey, and
black rectangles), a new rolling merge is started as indicated
by the arrows. To maintain the record order in the tree ofC1,
whose collation order is by key and time, with key being the
primary criterion and time being secondary, records migrat-
ing from C0 to C1 are merged with records already stored
in C1. This is indicated by the differently shaded rectangles.

The rolling merge from the oldest disk componentCk

does not really merge data into componentCk+1. Rather, this
migration process builds up a complete, new archive com-
ponent. This new archive component is then calledCk+1,
and the previous archive componentsCk+1 throughCn are
renumbered intoCk+2 throughCn+1. As access to archive
components is typically very slow, we choose to use the
partitioning scheme with redundancy when deciding which
versions are moved into the component. So an archive com-
ponent contains all record versions whose validity interval
overlaps with the component’s time interval given by its
low and high time boundaries. Note that in this case a new
archive componentCk+1 may contain versions that already
exist inCk+2 and possibly older archive components, if these
versions are still valid after the low-time boundarylowk+1 of
the new archive component (which is equal to the oldlowk

value). This scheme makes the archive components “self-
contained” in that all queries with timestamps between the



P. Muth et al.: The LHAM log-structured history data access method 203

Fig. 2. Rolling merges betweenC0 andC1

component’s low and high boundary can be performed solely
on a single component. Also, when an archive component
is taken off-line, the redundancy ensures that all versions
that remain valid beyond the high time boundary of the off-
line component are still available in the appropriate on-line
component(s). As archive components are built by the rolling
merge from componentCk to componentCk+1, Ck has to
store all redundant record versions needed for creating the
next archive component. Redundant record versions inCk

need not be accessed byRMk−1,k, as redundant versions are
only created and accessed byRMk,k+1 when a new archive
component is built. Hence, only forRMk,k+1 additional I/O
is required to read and write the redundant versions inCk.
In the analysis of insert costs in the next section, we will
see that the overhead of redundancy in terms of additional
space and I/O is typically low.

Rolling merges avoid random disk accesses that would
arise with moving record versions one at a time. Rather, to
achieve good I/O efficiency in maintaining the internal com-
ponent index structure (i.e., B+-trees in our case), a rolling
merge reads both the source and the destination component
sequentially in large multi-block I/Os, and the data from
both components is merged to build a new index structure
in the destination component, again written sequentially in
large multi-block I/Os. With multi-block I/O, instead of read-
ing and writing single blocks, multiple contiguous blocks on
disk are read and written in a single I/O operation, which is
significantly faster than performing single random I/Os (see
Sect. 7). The total number of block accesses required for a
merge process is the same as for scanning both components
two times. Contrast this with the much higher number of
much slower random disk I/Os for migrating record versions
one at a time. In addition, our algorithm allows us to keep
the data perfectly clustered, both within and across pages,
all the time, with almost 100% node utilization, which in
turn benefits range queries and index scans.

2.3 Query processing

In general, query processing may require searching multiple
components. LHAM maintains a (small) global directory of
the low time and high time boundaries of all components,
and keeps track of the numbern of the last archive compo-
nent. The directory is used to determine the relevant com-
ponents that must be searched for queries.

For “time-travel” queries with a specified timepoint or
time range, LHAM needs to retrieve all record versions that
are valid at this point or within this time range, respec-
tively. A record version resides in the component whose
time range covers its creation timestamp, but the version
may also be valid in more recent components. Thus, LHAM
must possibly search components earlier in time than the

query specifies. Because of the size progression of compo-
nents and their placement in the storage hierarchy, the search
starts with the most recent component that could possibly
hold a query match and proceeds along the older compo-
nents until no more matches are possible (in a “time-travel”
query for a specified key value) or all components have been
searched (if none of the components uses redundancy). Fig-
ure 3 shows the algorithm for a key/time-range query for
the time interval fromtlow to thigh in pseudo-code notation.
The algorithm first determines the youngest component that
needs to be searched. Components are then searched from
younger to older components, until a component with one of
the following stopping conditions is reached. (1) The com-
ponent contains a matching record version with a timestamp
that is already outside the query’s time range; then this ver-
sion is the last record version that qualifies. (2) The compo-
nent stores records redundantly and older components do not
overlap the query’s time range. The search finishes with this
component. Within each affected component, the functions
SearchTree andNextFromTree are invoked to initiate a
standard range query on a B+-tree and collect the qualifying
records.

“Time-travel” queries for key ranges rather than individ-
ual keys proceed analogously. The only difference is that
this time-range/key-range query type requires maintaining a
list of the oldest version encountered so far for each key that
falls into the specified key range. This is necessary to de-
termine the oldest version of a key that matches the query’s
time-range condition. Assuming that keys are rather short
and key ranges are typically limited in width, LHAM sim-
ply keeps this list in memory.

For example, with the data of Fig. 1, the querySelect
... Where KEY = ’a’ As Of t 203 has to search the
disk componentsC1 and C2. Similar considerations hold
for range queries. The redundant partitioning option (see
Sect. 2.1) allows us to bound the set of components that
must be searched. In the concrete LHAM configuration con-
sidered here with the redundancy option used for the last
disk componentC2, queries with a time range not overlap-
ping the time interval of archive components need not access
archive components.

Having to search multiple components may appear as
a heavy penalty from a superficial viewpoint. In practice,
however, we would have only a small number of non-archive
components, say three or four, one of which is the main-
memory component. Our experiments show that the absolute
query performance of LHAM is very competitive even when
multiple components need to be searched (see Sect. 7.1.2).

For searching within a component, the component’s in-
ternal index structure is used. When using a B+-tree on the
concatenation of record key and version timestamp, exact-
match queries can be answered with logarithmic perfor-



204 P. Muth et al.: The LHAM log-structured history data access method

Fig. 3. Pseudocode for query with given key and time range

mance. Time-range queries for a given key are also effi-
ciently supported, as all versions of a record are clustered
by time both within a page and across leaf pages of the index.
On the other hand, key-range queries with a given timepoint
or a small time range are penalized with the chosen B+-tree
organization. However, even this query type does not per-
form too badly, since our approach of building the B+-trees
only by rolling merges provides relatively good clustering
by key also. If there are only a few record versions per key,
we may still be able to process the query with a few block
accesses or even less than a single block access per key. In
addition, the clustering across pages again allows us to use
multi-block I/O, which is not possible in most other index-
ing methods for temporal data as they do not accordingly
cluster the data across pages.

3 Analysis of insertion and query costs

3.1 Amortized costs of insertions

We derive a formula for the amortized cost of inserting new
record versions into LHAM in terms of the number of block
accesses required. The formula implies that for minimizing
the block accesses required, the space-capacity ratios should
be the same for all pairs of successive components. This
leads to a geometric progression between the smallest com-
ponentC0 and the largest disk componentCk. All archive
components are assumed to have the capacity ofCk, which
allows the migration of all record versions stored inCk to an
archive component in a single rolling merge. When record
versions are stored redundantly (see Sect. 2.1), the capacity
of Ck must be larger than defined by the geometric progres-
sion. In the worst case, one version of each record stored in
LHAM has to be kept inCk. However, with an average ofs
record versions per record residing in all non-archive compo-
nents together, the space overhead for storing one redundant

version per record inCk is 1/s times the total size of the
non-archive components. As a typical temporal database is
expected to store more than a few versions per record, this
is a small space overhead.

We derive the number of block accesses required to insert
a given amount of data into LHAM by counting the block
accesses needed to migrate the data through the components
of LHAM. This approach is similar to the one presented
for the LSM-tree [OCGO96]. However, in [OCGO96], the
authors idealistically assumed a perfect steady-state balance
in that the insertion rate in bytes per second matches the
migration rate between all LSM components at any time. As
a consequence, the actual filling degree of each component
is constant and close to 100% all the time.

This assumption is unrealistic in practice because of fluc-
tuations in the rate of incoming data. Also it is hard to keep
the migration rate of the rolling merges truly constant, as
the disk(s) typically have to serve additional, often bursty
load like concurrent queries. So in a realistic environment,
a rolling merge cannot be assumed to start again immedi-
ately after it finishes its previous invocation. Instead, rolling
merges should be considered as reorganization events with a
varying frequency of occurrence. This leads to actual com-
ponent sizes (i.e., filling degrees) that vary over time. Im-
mediately after a rolling merge has migrated data from a
componentCi to componentCi+1, Ci will be almost empty.
After sufficiently many rolling merges fromCi−1 to Ci,
componentCi will then become (close to) full again be-
fore the next rolling merge fromCi to Ci+1 is initiated. So,
if we merely assume that the timepoints of initiating the fill-
ing rolling merges fromCi−1 to Ci are uniformly distributed
over time, thenCi is on average half full. Thus, a “randomly
arriving” rolling merge fromCi−1 to Ci needs to merge the
Ci−1 data with a 50% fullCi component on average. This
consideration is fully confirmed by our experimental findings
in Sect. 7.



P. Muth et al.: The LHAM log-structured history data access method 205

As all data is inserted into main-memory component
C0 first, and as all rolling merges access data in terms of
complete disk blocks instead of single record versions, the
total number of block accesses depends only on the num-
ber of blocks required to store the data, not on the num-
ber of records stored in the database. As usual, we disre-
gard the non-leaf levels of the B+-trees here. Assume all
record versions fit onblocktot leaf nodes, including space-
fragmentation overhead. We assume a LHAM structure with
k components on disk, a component size ratio ofri between
componentsCi−1 and Ci, r0 being the size of component
C0 in blocks. Let li denote the number of rolling merges
taking place between componentsCi−1 andCi until all data
is inserted and finally migrated to archive componentCk+1,
and let 1/s be the space overhead for redundancy in com-
ponentCk with respect to the total size of all non-archive
componentsC0, . . . , Ck. We obtain for the total number of
accessed blocksblockaccesses:

blockaccesses = l1(r0 + r0r1) + l2(2r0r1 + r0r1r2) + . . .

+lk

(
2

k−1∏
i=0

ri +
k∏

i=0

ri

)
+ lk+1

(
2

k∏
i=0

ri

)

+lk+1


2

s

k∑
j=0

j∏
i=0

ri


 (1)

Note that for emptying componentC0, no I/O is required,
which leads to the term (r0 + r0r1) rather than (2r0 + r0r1).
Further note that, on average, all other components are 50%
full, so that the second summand of the above term is in-
deedr0r1 rather than 2r0r1. The same holds for the subse-
quent terms. For the final migration to archive media, the
data is only read from componentCk and written to the
archive component. The last term represents the block ac-
cesses needed to read and write the redundant record ver-
sions inCk. As discussed in Sect. 2.2, redundant records of
Ck are not accessed byRMk−1,k. The numberli of rolling
merges taking place between componentsCi−1 and Ci is
given by

li = blocktot/

i−1∏
j=0

rj . (2)

By substituting Eq. 2 into Eq. 1, we obtain

blockaccesses = blocktot

(
2k + 1 +

k∑
i=1

ri

)

+lk+1


2

s

k∑
j=0

j∏
i=0

ri


 . (3)

In order to tune the component capacity ratiosri, we
adopt the procedure of [OCGO96]. For the sake of sim-
plicity, we assume the redundancy overhead to be constant
instead of depending on the component size ratios, and as-
sume that the main memory available for componentC0 and
the size of the last disk componentCk are already fixed.
[OCGO96] shows that under these assumptions, the number
of blocks accessed is minimized if all component size ra-
tios ri are equal to a constant valuer. Substituting allri of
Eq. (3) byr, we obtain

blockaccesses = blocktot(k(2 + r) + 1)

+lk+1


2

s

k∑
j=0

rj+1


 . (4)

For a component size ratior of at least two, the number
of block accesses is bounded by

blockaccesses ≤ blocktot

(
k(2 + r) + 1 +

4
s

)
. (5)

As an example, consider again the stock portfolio sce-
nario presented in the introduction. We assume the insertion
of 604,800,000 record versions of 48 bytes each into LHAM,
representing a constant insertion rate of 1000 record versions
per second over a 7-day period, and a total size of 28 GB
of data. Assume that we use two disk components. Main-
memory componentC0 has a size of 144 MB,C1 has 2 GB
andC2 has 28 GB. This translates into a component size ra-
tio of 14. Assuming the placement of two orders for each
portfolio per day on average, we obtain an overhead ratio
for storing redundant data in componentCk of 1/(2 ∗ 7).
As we have about 31 GB of data online, this leads to an
additional space requirement of 2.2 GB for redundant data
on disk. With about 3,500,000 blocks of 8 KB size to in-
sert, according to Eq. (5), we need less than 115,900,000
block accesses for data migration, including 1,000,000 block
accesses for redundant data, which is obviously negligi-
ble. Note that these numbers represent the number of block
accesses needed to insert record versions into an already
fully populated database, i.e., containing the data of the past
days. Inserts into an empty database would cause even less
block accesses. With a TSB-tree, on the other hand, we esti-
mate 1,209,600,000 block accesses for inserting 604,800,000
record versions, 2 block accesses per insert. So the cost of
the TSB-tree is more than ten times higher than the cost
of LHAM, not even considering the additional gain from
LHAM’s multi-block I/O.

3.2 Average-case cost of key-timepoint queries

In this subsection, we derive a mathematical model for the
average-case performance of key/timepoint queries in terms
of their expected number of block accesses. Recall that the
worst-case performance of such queries can degrade because
of the non-redundant partitioning of the time dimension be-
tween disk components. A time-travel query for a given key
and timepoint would first be directed to the component into
which the query’s timepoint falls, but if the component does
not contain an older or exact-match version for this key, the
search will have to be extended into the older components
until a version is found or the oldest disk component has
been searched. However, we expect this worst case behav-
ior to be infrequent. Rather, we would usually expect that a
key/timepoint query needs to look up only one or, at worst,
two components. To verify these expectations, we have de-
veloped the following analytical average-case cost model,
and we have also addressed this issue in our experimental
studies reported in Sect. 7. Although the worst-case versus
average-case consideration is an issue also for queries with
key ranges or time ranges, we concentrate on point queries,



206 P. Muth et al.: The LHAM log-structured history data access method

as they already capture the essence of the problem. Our an-
alytical model could be extended to range queries, but this
is not elaborated here. For tractability of the analysis, we
assume that no rolling merge is in progress while the query
executes.

We concentrate on the main-memory componentC0 and
thek disk componentsC1 throughCk, assuming fixed com-
ponent sizesc0 throughck in terms of allocated blocks with
a geometric size ratior so thatck = c0 ∗ rk. For simplicity,
we assume that record versions are of fixed size, so that the
block sizes of components can be directly translated into the
numbers of record versions that can reside in a component,
v0 throughvk, by multiplying theci values with the num-
ber of record versions per block. The entire LHAM database
is assumed to containm different keys, and we further as-
sume that all operations are logical updates of existing keys,
i.e., insertions of new versions for already existing keys.
This simplifying restriction is justified by the observation
that most real-life applications (e.g., data warehouses) are
dominated by logical updates rather than logical insertions
of new keys. The update operations are assumed to be uni-
formly distributed across allm keys.

The final assumption that we make for tractability of
the cost analysis is that logical updates arrive according to a
Poisson process, a standard assumption in many performance
analyses that is justified whenever the operations are submit-
ted from a large number of independent sources (e.g., phone
calls). The arrival rate of this Poisson process is denoted
λ; thus, the interarrival time between two successive update
operations is exponentially distributed with mean value 1/λ.
Since Poisson processes that are split into several branches
are again Poisson processes, the uniform selection of keys
for updates leads to an exponentially distributed time be-
tween successive updates of the same key with mean value
m/λ.

From the given component sizesv0 throughvk and the
exponentially distributed interarrival times, we can now infer
the expected timespan that is covered by a component. The
timespan∆0 = high0 − low0 (with high0 = now) covered
by C0 is implicitly given by the constraint that the total
number of versions created in time∆0, which is given by
∆0∗λ, must fit into the capacityv0 of the component; hence,
∆0 ∗ λ = v0, or equivalently:∆0 = v0/λ. By the same token
we derive the general equation

∆i = highi − lowi = vi/λ = ri ∗ v0/λ . (6)

Thus, the total timespan covered by the non-archive com-
ponents of the LHAM database is

∆total = high0 − lowk =
k∑

i=0

∆i =
v0

λ

k∑
i=0

ri

=
v0

λ

1 − rk+1

1 − r
. (7)

Now consider a key-timepoint query for randomly chosen
key x and timepointt that falls into the timespan ofCi, i.e.,
lowi ≤ t ≤ highi. We are interested in the probability that
this point query finds a version for keyx that is no younger
thant and resides inCi itself, i.e., a version that must have
been created betweenlowi and t. Denote this relevant time
interval by ∆i,t = t − lowi. The number of versions for

key x that have been created within time∆i,t is Poisson
distributed with parameter∆i,t ∗ λ/m (i.e., the length of
the time interval multiplied by the update rate for keyx),
and the probability that at least one version forx has been
created within∆i,t is 1 minus the probability that no such
version exists. We abbreviate this probability aspi,t:

pi,t := P [most recent version of x preceding t

has been created after lowi]

= 1 − e− λ
m ∆i,t . (8)

This consideration can be generalized, leading us to the
probability that the most recent version ofx that precedes
time t resides in componentCj with k ≥ j > i:

pj,t := P [most recent version of x preceding t

has been created between lowj and highj ]

= P [at least one version for x in ∆j ]

∗ (
j−1∏

µ=i+1

P [no version for x in ∆µ]) ∗ (1 − pi,t)

= (1 − e− λ
m ∆j ) ∗ (

j−1∏
µ=i+1

e− λ
m ∆µ) ∗ e− λ

m ∆i,t . (9)

As the next step, we can now easily compute the proba-
bility that the query for timepointt needs to searchz com-
ponents, with 1≤ z ≤ k − i + 1, namely

P [query for time t between lowi and highi

needs to search z components]

= pi+z−1,t . (10)

Since we are not particularly interested in a specific time-
point t, we should now considert as a random variable that
varies across the total timespan∆total of all components.
We assume thatt is uniformly distributed within the time
interval under consideration. Thus, as long as we restrictt
to fall into the timespan ofCi, we obtain the probability
for having to searchz components, averaged over all such
queries, as

qi,z := P [a random query initially directed

to Ci needs to search z components]

=
∫ highi

lowi

1
highi − lowi

pi+z−1,t dt , (11)

where the first factor in the integral accounts for the uniform
distribution oft within the timespan ofCi. With t uniformly
varying across∆total, the geometric ratio of the component
sizes incurs a skew towards more queries directed to older
and larger components. This effect is taken into account by
the geometrically increasing factors∆i/∆total and corre-
sponding integration ranges in the following sum of inte-
grals:

qz := P [a random query needs

to search z components]

=
k∑

i=0

∆i

∆total
qi,z



P. Muth et al.: The LHAM log-structured history data access method 207

=
k∑

i=0

(
∆i

∆total

∫ highi

lowi

1
highi − lowi

pi+z−1,t dt) . (12)

Finally, the expectation value of the number of compo-
nents that need to be searched by a random key-timepoint
query is derived as

E [number of components to be searched

by a random query]

=
k+1∑
z=1

zqz . (13)

So, by simply substituting the various expressions into
the final formula above, we have derived a closed form
for the average-case number of components that need to be
searched. Within each componentCi, the number of neces-
sary block accesses can be estimated as 1, since all levels of
the component’s B+-tree except the leaf level are typically
cached in memory and we are considering point queries (i.e.,
need to access only a single leaf node). So formula 13 gives
also the expected number of block accesses for a random
point query.

An interesting special case of the considered class of
key-timepoint queries are those queries where the specified
timepoint is the current time“now” , i.e., queries that are
interested in the most recent version for a given key. The
expected number of components to be searched, and thus
the expected number of block accesses, can be derived from
our more general analysis in a straightforward manner. With
t = now we know that the component to which the search is
initially directed isC0, and the query’s timepoint is always
identical tohigh0. Then the average cost for such a query
is obtained by specializing formula 11 in that we consider
only q0,z and substitutet in formula 9 byhigh0. Then the
summation according to formula 12 becomes obsolete, and
we can directly substitute into formula 13, thus arriving at

E [number of components to be searched

by a query with random key and time = now]

=
k+1∑
z=1

zq0,z[t/high0] , (14)

whereq0,z[t/high0] denotesq0,z with t substituted byhigh0.
As an example, consider an LHAM configuration with

one memory componentC0, two disk componentsC1 andC2
(i.e.,k = 2) with record versions of length 300 bytes, a block
size of 8 KB and component sizesc0 = 8 MB, c1 = 32 MB,
c2 = 128 MB (i.e., a size ratio ofr = 4), which translate
into the following approximate number of record versions in
each of the three components:v0 = 25, 000, v1 = 100, 000,
v2 = 400, 000. We have chosen these particular figures as
they closely match those of our experiments in Sect. 7. The
LHAM database containsm = 50, 000 different keys, and
we assume that it has been populated with an update rate
of λ = 50 updates per second; so each key has received an
update every 1000 s on average. The timespans covered by
the three components then are∆0 = 500 s,∆1 = 2000 s, and
∆2 = 8000 s. With these figures, we can derive the expected
number of block accesses for a random key-timepoint query
whose time parameter lies in componentC0, C1, C2 as 1.89,

1.43, and 1, respectively, resulting in an overall expected
cost of 1.123 block accesses per query. For random queries
that are initially directed toC0, i.e., those that are most likely
to be penalized, the probabilities of having to search 1, 2,
3 components are 0.213, 0.524, 0.081, respectively. In other
words, the vast majority of queries has to search at most two
components, even under the rather unfavorable condition in
our scenario that theC0 size is fairly small in comparison to
the number of different keys. For queries to current versions,
i.e., queries whose time parameter is“now” , the expected
number of components to be searched is 1.69; asC0 does
not require any disk I/O, the expected number of disk block
accesses is even lower, namely, approximately 1.3. Overall,
these figures are much more favorable than the worst case of
having to search all three components. With more and larger
components, the expected cost for point queries would be
even lower.

4 Implementation of LHAM

4.1 System architecture

LHAM has been fully implemented in C on SUN Solaris. As
the rolling merges between different components can be ex-
ecuted in parallel, but need careful synchronization to guar-
antee consistency of data, we have decided to implement
them as Solaris threads. Threads communicate by shared
variables and are synchronized by semaphores of the thread
library. Figure 4 shows the overall LHAM architecture. Each
rolling merge is implemented by four threads, as indicated
by the small shaded boxes in Fig. 2 and explained in detail
in the next subsection. Queries are implemented by separate
threads for each component that is accessed. An additional
thread performs the insertion of new data into component
C0.

Data read from disk is cached by LHAM in two kinds of
buffers. Single-block buffers cache index nodes of B+-trees
and leaf nodes if read by single-block I/Os, i.e., by queries.
For leaf nodes of B+-trees accessed by rolling merges or by
range queries, multi-block buffers are read and written by
multi-block I/Os. The buffer replacement strategy for both
buffers is LRU.

4.2 Inserts and rolling merges

Figure 5 shows two componentsCi andCi+1, with a rolling
merge currently migrating data fromCi to Ci+1. During an
ongoing rolling merge, both the source and the destination
component consist of two B+-trees, anemptying treeand a
filling tree. The emptying trees of both components are the
B+-trees that exist at the time when the rolling merge starts.
The filling trees are created at that time.

To perform the migration from an emptying to a filling
tree, a separate thread is assigned to each tree. Acursor is
circulating in key followed by timestamp order through the
leaf level of the emptying and filling trees of componentsCi

and Ci+1, as depicted in Fig. 5. In each step of the rolling
merge, the record versions coming from the emptying trees
are inspected. If a record version of the emptying tree is



208 P. Muth et al.: The LHAM log-structured history data access method

Fig. 4. LHAM architecture

Fig. 5. Rolling merge in LHAM

younger than the migration timemi, it is moved to the filling
tree ofCi. The cursor of the emptying tree ofCi is advanced
to the next record version. If it is decided to migrate the
record version, the version is compared, based on its key
and timestamp, with the next record version of the emptying
tree ofCi+1. The smallest of both record versions is moved
to the filling tree ofCi+1 and the corresponding cursor is
advanced.

Each time the cursor advances past the last record ver-
sion of a multi-block, the next multi-block is read from disk
by performing a multi-block I/O. The emptied multi-block
is returned to free-space management. When a multi-block
buffer of a filling tree becomes full, a multi-block I/O is
issued to write it to disk. A new multi-block is requested
from free-space management. So free blocks are dynami-
cally transferred within and, if possible, also among com-
ponents. The entire rolling-merge process terminates when
both emptying trees become empty.

Using multi-block I/O significantly reduces operating-
system overhead, as less I/O operations are issued, and also
reduces disk overhead in terms of seeks and rotational de-
lays. Even with modern disks using track read-ahead and
caches for both reads and writes, the benefit of multi-block
I/O is significant. We have measured a speedup of 2 for
LHAM when using multi-block I/Os of four blocks per I/O
operation in our system (see Sect. 7).

Rolling merges have to be synchronized when they op-
erate on the same component in parallel. This is the most
complex situation in LHAM but very common, as empty-
ing a component usually takes a long time and it must be
possible to migrate data into it in parallel. Instead of creat-
ing different sets of emptying and filling trees, two rolling
merges share a tree in the jointly accessed component. The
tree chosen depends on which of the rolling merges was first
in accessing the shared component. Figure 6 shows both pos-

sible situations. In Fig. 6a, the rolling mergeRMi−1/i was
first, in Fig. 6b,RMi/i+1 was first and has later been joined
by RMi−1/i. The shared trees are indicated in the figure by
the larger boxes. They are used as both filling and emptying
trees.

A problem arises if the cursors of both rolling merges
point to the same record version. This means that the shared
tree became empty. In this case, the rolling merge that emp-
ties the shared tree has to wait for the other rolling merge
to fill the tree with some record versions again. Assume
RMi/i+1 waits for RMi−1/i. On average,RMi/i+1 has to
go throughr records inCi+1 before it consumes a record
in Ci. RMi−1/i is much faster in producing new records
for Ci, as Ci−1 is smaller thanCi, again by a factor of
r. Hence, the assumed blocking ofRMi/i+1 by RMi−1/i

rarely occurs. However, the opposite situation, i.e.,RMi−1/i

waits forRMi/i+1, is highly likely to occur. It is depicted in
Fig. 6b. Assume that the shared tree becomes empty. In order
not to blockRMi−1/i until RMi/i+1 produces new records,
we allow RMi−1/i to passRMi/i+1. The goal of passing
is to change trees betweenRMi−1/i andRMi/i+1 until we
have a situation as shown in Fig. 6a, allowing both rolling
merges to continue. Without passing, both rolling merges
would continue at the same speed, which is not acceptable
for RMi−1/i.

Passing is implemented by logically exchanging the trees
between rolling merges as shown in Fig. 7.

All trees in componentsCi−1 and Ci+1 remain unaf-
fected by passing. In the following, we discuss the passing
process on a conceptual level. One can view the emptying
and the filling trees inside a component as a single “con-
ceptual tree”, as the various trees cover adjacent intervals
of the record-version space ordered by key and time. The
rolling-merge cursors define these intervals, i.e., they define
the trees. We start in the upper left part of Fig. 7, with the



P. Muth et al.: The LHAM log-structured history data access method 209

Fig. 6. Joining of rolling merges.a RMi/i+1 joining RMi−1/i, b RMi−1/i joining RMi/i+1

Fig. 7. RMi−1/i passingRMi/i+1

cursors pointing to the same record version, i.e., the shared
tree being empty. This triggers passing. Next, the rolling-
merge cursor ofRMi−1/i advances into the emptying tree
of RMi/i+1 and the original emptying tree ofRMi−1/i is
virtually deleted as shown in the upper right part of Fig. 7.
If RMi−1/i is still faster thanRMi/i+1, the rolling-merge
cursor ofRMi−1/i passes the cursor ofRMi/i+1, they do
no longer point to the same record version, and a new tree
is virtually created (in the actual implementation, the empty
emptying tree is reused). This is shown in the lower part of
Fig. 7. We now have exactly the same situation as shown
in Fig. 6a.RMi−1/i can continue without waiting for new
records fromRMi/i+1.

4.3 Execution of queries

All queries are first split into subqueries according to the
components that need to be accessed. Each subquery is im-
plemented by a separate thread (see again Fig. 4). In princi-
ple, all subqueries can be executed in parallel. This scheme
would have the best response time, but may execute some
subqueries unnecessarily. Consider, for example, a query
which retrieves the most recent version of a record with
a given key. It is possible that this version has already been
migrated to the last (disk) component. In this case, all (disk)
components have to be accessed to find the most recent ver-
sion of the record. However, recent record versions will most
likely be found in recent components. So accessing only the
main-memory componentC0 could be sufficient in many
cases. Hence, for overall throughput it is best to execute the
subqueries sequentially and stop further execution of sub-
queries as soon as the query result is complete. The perfor-
mance results presented in Sect. 7 are obtained based on this
execution strategy.

A concurrent execution of inserts and queries may cause
rolling merges and queries to access a component at the
same time. Our approach to ensure good query performance
is to prioritize disk accesses of queries over disk accesses by
rolling merges. Rolling merges can be suspended whenever
they finish the processing of a multi-block of the emptying
tree of the destination component, providing a fine disk-
scheduling granule.

5 Concurrency control and recovery

Concurrency control and recovery issues in LHAM depend
on the type of component involved. The main-memory com-
ponentC0, the disk componentsC1 to Ck, and the archive
componentsCk+1 to Cn have different requirements. For
componentC0, inserts have to be made atomic and durable,
and inserts have to be synchronized with queries. For the
other components, we do not have to deal with insertions of
new data, but only with the migration of existing data, which
makes concurrency control and recovery easier. Except for
the first archive componentCk+1, all archive components
are static in terms of the records they store and in terms
of their time boundaries. For them, concurrency control and
recovery are not required.

5.1 Concurrency control

We assume transactional predicate locking on key ranges and
time ranges on top of LHAM. Conflict testing involves test-
ing two-dimensional intervals for disjointness, which is not
hard to implement and does not incur tremendous run-time
overhead either. As an optimization, it would nevertheless
be desirable to leverage advanced low-overhead implemen-
tation tricks along the lines of what [GR93, Moh96, Lom93,



210 P. Muth et al.: The LHAM log-structured history data access method

KMH97] have developed mostly for single-dimensional in-
dexes, but this would a subject of future research. Concur-
rency control inside LHAM only has to guarantee consistent
access to records (i.e., short-duration locking or latching).
This includes records under migration between components.
We discuss concurrency control issues for each type of com-
ponent separately.

1. Main-memory componentC0.
Because no I/O is taking place when accessingC0, there
is little need for sophisticated concurrency control pro-
tocols. So standard locking protocols for the index struc-
ture used inC0 can be employed, e.g., tree-locking pro-
tocols whenC0 is organized as a tree [GR93, Moh96,
Lom93].

2. Disk componentsC1 to Ck.
Synchronization issues among different rolling merges
that access a common disk component have already
been discussed in Sect. 4.2. The only problem left is
to synchronize queries with concurrent rolling merges.
Interleaved executions of rolling merges and queries are
mandatory for achieving short query response times. A
query may have to access between one and three index
structures (B+-trees in our case) inside a single compo-
nent. As discussed in Sect. 4.2, these index structures
are emptied and filled in a given order according to
the records’ keys and timestamps. This suggest the fol-
lowing order for accessing the index structures inside a
component: queries have to look up emptying trees be-
fore filling trees. Records under migration are not deleted
from emptying trees before they have been migrated into
the corresponding filling tree. This guarantees that no
records are missed by the query.
Short-term latches are sufficient to protect multi-blocks
that are currently filled by a rolling merge from access
by queries. Queries do not have to wait for these multi-
blocks to become available, they can safely skip them,
as they have already read the records stored there while
looking up the corresponding emptying tree. The only
drawback of this highly concurrent scheme is that a
record may be read twice by the same query, namely
in both the emptying and the filling tree. However, this
should occur very infrequently, and such duplicates can
easily be eliminated from the query result.
As discussed in Sect. 4.3, queries start with the most re-
cent component that could possibly hold a query match
and then continue accessing older components. During
query execution, time boundaries of components may
change as records migrate to older components. We have
to make sure that no query matches are missed because of
a concurrent change of boundaries (i.e., all components
containing possible matches are indeed looked up). A
change of the boundaries of the most recent component
accessed by a query may cause this component to not
intersect the query time-range anymore. This will not
affect the correctness of the query result, however. On
the other hand, a change of the boundaries of the oldest
component to be looked up (as determined at query start
time) may cause more components to intersect with the
query time range. Hence, the oldest component that the
query needs to access must be determined dynamically

during query execution. Short-term latches on the cor-
responding data structure in the global LHAM directory
are sufficient to correctly cope with these issues.

3. Archive componentsCk+1 to Cn.
Records are not migrated between archive components.
Instead, the archive grows by creating a new archive
component. In terms of concurrency control, an archive
component under creation is treated like a disk compo-
nent. All other archive components are static in terms of
their records as well as their time boundaries; so no con-
currency control is necessary here. Dropping an archive
component causes a change in the global LHAM direc-
tory, again protected by a short-term latch.

5.2 Recovery

Similar to the discussion of concurrency control above, we
distinguish between the main-memory component, the disk
components, and the archive components. We restrict our-
selves to crash recovery (i.e., system failures); media re-
covery is orthogonal to LHAM. In general, we need to log
all changes to the global LHAM directory that are made
whenever a component’s time boundaries are changed after
finishing a rolling merge. In addition, as we discuss below,
logging is necessary only for inserts into the main-memory
componentC0.

1. Main-memory componentC0.
All newly inserted records are subject to conventional
logging, as employed by virtually all database systems.
As records inC0 are never written to disk before they
are migrated to the first disk component,C0 has to be
completely reconstructed during recovery. AsC0 only
consists of the most recent records, they will be found
in successive order on the log file, resulting in small re-
construction times. If necessary (e.g., whenC0 is excep-
tionally large), the reconstruction time could be further
reduced by keeping a disk-resident backup file forC0,
and lazily writing C0 blocks to that file whenever the
disk is idle (i.e., using a standard write-behind demon).
Then standard bookkeeping techniques (based on LSNs
and a dirty page list) [GR93] can be used to truncate the
log and minimize theC0 recovery time.
After a record has been migrated to componentC1, it
must no longer be considered forC0 recovery. This is
achieved by looking up the most recent record in compo-
nentC1 before theC0 recovery is started. Only younger
records have to be considered for reconstructingC0.
Even if the system crashed while a rolling merge from
C0 to C1 was performed, this approach can be used. In
this case, the most recent record in the filling tree of
C1 is used to determine the oldest record that has to be
reinserted intoC0 during recovery. During normal oper-
ation, theC0 log file can be periodically truncated using
the same approach.

2. Disk componentsC1 to Ck.
No logging is necessary for migrating records during a
rolling merge. Only the creation of emptying and fill-
ing trees, the passing of rolling merges as discussed



P. Muth et al.: The LHAM log-structured history data access method 211

in Sect. 4.2, the deletion of trees, and changes to time
boundaries of components have to be logged.
In order to not lose records that were being migrated
at the time of a crash, records are not physically deleted
from emptying trees (i.e., their underlying blocks are not
released back to the free-space management) before they
have been migrated into the corresponding filling tree
and their newly allocated blocks are successfully writ-
ten to disk. So we use a careful replacement technique
here [GR93] that allows us to correctly recover without
having to make a migration step an atomic event. As
a consequence, reconstructing the filling and emptying
trees during warm start may create redundant records
that will then be present in an emptying and in a filling
tree. The number of such redundant records is limited
by the size of a multi-block and thus negligible, as only
records of a single multi-block per tree and rolling merge
have to be reconstructed. Hence, the duplicates can eas-
ily be deleted after the trees have been recovered. At the
same time, looking up the oldest records of the filling
trees and the youngest records of the emptying trees al-
lows reconstructing the rolling-merge cursors as shown
in Fig. 5, and restarting the rolling merges after the com-
ponent structures have been reestablished.

3. Archive componentsCk+1 to Cn.
Except for the first archive componentCk+1, archive
components are not subject to recovery. Analogously
to concurrency control, the first archive component is
treated like a disk component.

In summary, concurrency control and recovery in LHAM
are relatively straightforward and very efficient. We either
use conventional algorithms, e.g., for logging incoming data,
or very simple schemes, e.g., for synchronizing queries
and rolling merges. In particular, migrating data by rolling
merges does not require migrated data to be logged. Only
changes to the LHAM directory require additional logging.
This causes negligible overhead.

6 The TSB-tree

The TSB-tree is a B+-tree-like index structure for transaction-
time databases [LS89, LS90]. It indexes record versions in
two dimensions; one dimension is given by the conventional
record key, the other by the timestamp of the record version.
Its goal is to provide good worst case efficiency for exact
match queries as well as range queries in both time dimen-
sion and key dimension.

6.1 Nodes and node splits

Basically, each leaf node covers a two-dimensional interval,
i.e., a rectangle in the data space, whose upper bounds are
initially open (i.e., are interpreted as infinity) in both dimen-
sions. A node is represented by a pair of key and timestamp,
defining the lower left corner of the rectangle that it covers.
The area covered by a rectangle becomes bounded if there
exists another leaf node with a higher key or time value as
its lower left corner. A leaf node contains all record versions

that have a (key, timestamp) coordinate covered by its rect-
angle. Two types of nodes are distinguished: current nodes
and historical nodes. Current nodes store current data, i.e.,
data that is valid at the current time. All other nodes are
denoted historical.

As all data is inserted into current nodes, only current
nodes are subject to splits. Current nodes can be split either
by key or by time. A record version is moved to the newly
created node if its (key, timestamp) coordinates fall into
the corresponding new rectangle. The split dimension, i.e.,
whether a split is performed by key or time, is determined by
a split policy. We have used thetime-of-last-update (TLU)
policy for all our experiments, which does a split by time
unless there is no historical data in the node, and performs an
additional split by key if a node contains two thirds or more
of current data. The split time chosen for a split by time
is the time of the last update among all record versions in
the node. The TLU policy achieves a good tradeoff between
space consumption, i.e., the degree of redundancy of the
TSB-tree, and query performance. This is shown in [LS90]
and has been confirmed by our own experiments.

Figure 8 shows the rectangles representing the leaf nodes
of an example TSB-tree storing account values. The key
value min denotes the lower end of the key space. The
lower left leaf node is identified by (min, t0), i.e., it con-
tains record versions with key≥ min and timestamp≥ t0.
It is bounded in the key and time dimension by the adjacent
nodes (Chris, t0) and (min, t10), respectively, meaning that
it does not contain record versions with key≥ Chris or
with a timestamp≥ t10. Leaf nodes (Dave, t9), (Chris, t0)
and (min, t10) are current nodes, since they contain record
versions being valid at current time. All other nodes are
historical nodes. Note that the two dots at (Dave, t9) and
(Alex, t10) represent redundant entries due to splits of cur-
rent nodes. The entry (Dave, t9, 80) has to be copied to the
current node since it is valid at both times being covered by
historical node (Dave, t0) as well as current node (Dave, t9).
We will discuss details of splitting below.

A non-leaf index node stores a set of index terms. An
index term is a triple consisting of a key, a timestamp, and a
pointer to another index node or a leaf node. Like the open
rectangle defined for each leaf node, an index term also
covers an open rectangle, defined by key and timestamp as
the lower left corner. Other index terms with higher key or
timestamp bound this area. Index-node splitting is similar
to leaf-node splitting. We have again adopted the TLU split
policy. For the subtle differences concerning restrictions on
the split value for time splits, the reader is referred to [LS89].

Figure 9 shows the TSB-tree indexing the data of Fig. 8.
We assume the capacity of all nodes being three entries,
i.e., each index node and leaf node has at most three in-
dex terms or record versions, respectively. The root node
points to index nodes (min, t0) and (Dave, t0), which con-
tain entries for nodes that are covered by the corresponding
time and key range. Index node (min, t0) contains entries for
leaf nodes (min, t0), (min, t10) and (Chris, t0) since they
contain record versions with a key value≥ min and with
timestamp≥ t0. All other leaf nodes are referenced by index
node (Dave, t0) as the keys of all record versions stored in
the leaf nodes are greater than or equal toDave.



212 P. Muth et al.: The LHAM log-structured history data access method

Fig. 8. Rectangles representing leaf
nodes of a TSB-tree

Fig. 9. TSB-tree nodes and covered rectangles

6.2 Searching

Searching in TSB-trees can be viewed as an extension to
the search procedure for B+-trees. Assume we are searching
for a record version (k, t) with key k and timestampt. At
each level of the tree, the algorithm first discards all index
terms with a timestamp greater thant. Within the remaining
terms it follows the index term with the maximum key value
being smaller than or equal to keyk. This process recursively
descends in the tree and terminates when a leaf node is
found.

In the example of Fig. 9, looking for the balance of
Eva’s account as of timet6 is done as follows. Starting at
the root, node the two index terms (min, t0) and (Dave, t0)
have to be examined. AsDave is the maximum key value
less thanEva, the algorithm follows the pointer of index
term (Dave, t0). At the index node, the term (Dave, t9) is
discarded because its timestamp is greater thant6 and thus
it does not contain relevant data. So the algorithm follows
entry (Dave, t0) and finally returns (Eva, t2, 20), indicating
that the account ofEva was updated to 20 at timet2 and
was not changed untilt6.

A similar algorithm is used for range queries. Instead of
following a single index term while descending the tree, a
set of index terms to follow is determined.

Because of the redundancy employed in the TSB-tree,
the worst case performance of queries is logarithmic in the
number of record versions stored (including the redundant
ones). There is no guaranteed clustering across pages, how-
ever, neither in key nor in time dimension.

7 Performance measurements

In this section, we present experimental performance results
from our implementation of LHAM. The results are com-
pared with the analytical expectations for the insert costs.
In addition, we compare LHAM with our implementation of
the TSB-tree, considering both insert and query performance.
Note that all experimental results are obtained from complete
and fully functional implementations of both LHAM and the
TSB-tree, as opposed to simulation experiments. Therefore,
we are able to compare actual throughput numbers based on
real-time measurements.



P. Muth et al.: The LHAM log-structured history data access method 213

7.1 Experimental results

Our testbed consists of a load driver that generates syn-
thetic data and queries, and the actual implementations of
LHAM and the TSB-tree. All measurements were run on a
Sun Enterprise Server 4000 under Solaris 2.51. CPU utiliza-
tion was generally very low, indicating a low CPU overhead
of LHAM. LHAM did not nearly utilize the full capacity of
a single processor of the SMP machine. Thus, we restrict
ourselves to reporting I/O and throughput figures. Our ex-
periments consist of two parts. In the first part, we investigate
the insert performance by creating and populating databases
with different parameter settings. Migrations to archive com-
ponents were not considered. As discussed in the analysis of
LHAM’s insert costs, the effect of archive components on
the insert performance in terms of redundancy is expected
to be negligible. In the second part of our experiments, we
measure the performance of queries against the databases
created in the first part.

7.1.1 Performance of inserts

In all experiments, we have inserted 400,000 record ver-
sions. The size of record versions was uniformly distributed
between 100 bytes and 500 bytes. This results in 120 MB of
raw data. The size of a disk block was 8 KB in all exper-
iments, for LHAM and the TSB-tree. We used an LHAM
structure of three components with a capacity ratio of 4;
component capacities were 8 MB forC0, 32 MB for C1, and
128 MB for C2. Both disk components resided on the same
physical disk. We used a buffer of 1 MB for blocks read in
a multi-block I/O and a buffer of 1 MB for single blocks.
This results in a total of 10 MB main memory for LHAM.
For fair comparison, the TSB-tree measurements were per-
formed with the same total amount of main memory as a
node buffer. For LHAM, we have varied the number of disk
blocks written per multi-block I/O, in order to measure the
impact of multi-block I/O on the insert performance.

We are fully aware of the fact that this data volume
merely constitutes a “toy database”. Given the limitations of
an academic research lab, we wanted to ensure that all ex-
periments were run with dedicated resources in a controlled,
essentially reproducible manner. However, our experiments
allow us to draw conclusions on the average-case behavior
of both index structures investigated. From a practical point
of view, these results are more important than an analytic
worst case analysis, which is independent of the parameters
and limitations of actual experiments, but provides only lim-
ited insights into the performance of real-life applications.

The structure of the TSB-tree depends on the ratio be-
tween logical insert and update operations. All experiments
start with 50,000-record versions and a logical insert/update
ratio of 90% to initialize the database. For the remain-
ing 350,000-record versions, the logical insert/update ratio
is varied from 10% inserts up to 90% inserts. Keys were
uniformly distributed over a given interval. Logical dele-
tions were not considered. The load driver generated record
versions for insertion as fast as possible; so the measured
throughput was indeed limited only by the performance of
the index structure. The most important performance met-
rics reported below are the throughput in terms of inserted

record versions per second, and the average number of block
accesses per inserted record version.

Table 1 lists these values for both LHAM and the TSB-
tree, plus other detailed results. The table shows that LHAM
outperforms the TSB-tree in every respect. As the structure
of LHAM is independent of the logical insert/update ratio,
we do not distinguish different ratios for LHAM. Using eight
blocks per multi-block I/O, the throughput of LHAM was
always more than six times higher than the throughput of
the TSB-tree. The benefits of using even larger multi-blocks
were small. Additional experiments showed that this is due
to limitations in the operating system, which probably splits
larger I/Os into multiple requests.

The block accesses required by LHAM and the TSB-
tree match our analytical expectations very well. To store
120 MB of data, we need at least 15,000 blocks of 8 KB.
Using formula 5 and disregarding the terms for the migra-
tion to archive media, we expect LHAM to need 180,000
block accesses for inserting the data. In reality, LHAM needs
185,905 block accesses. To further confirm this behavior,
we have run additional experiments with a larger number of
smaller components, leading to more rolling merges. These
experiments have reconfirmed our findings and are omit-
ted for lack of space. The TSB-tree was expected to need
about 800,000 block accesses for inserting 400,000 record
versions if no node buffer were used. In reality, the experi-
ments show that with 10 MB of buffer for 120 MB of data,
we need about 600,000 block accesses, depending on the
ratio between logical inserts and updates.

LHAM consumed significantly less space than the TSB-
tree. The total capacity of the three LHAM components was
168 MB, but only 122 MB were actually used. This is the
benefit of the almost perfect space utilization by LHAM,
based on building the B+-trees inside the components in a
bulk manner without the need for splitting leaf nodes. The
TSB-tree, on the other hand, consumed between 275 MB and
313 MB, again depending on the logical insert/update ratio.
The space overhead of the TSB-tree is caused by redundant
record versions and by a lower node utilization due to node
splits, similar to conventional B+-trees. Note however that
keeping redundant record versions is an inherent property of
the TSB-tree, which is necessary for its good query perfor-
mance, particularly its logarithmic worst case efficiency.

7.1.2 Queries

We have investigated the performance of four different types
of queries:

1. < key, timepoint >,
2. < keyrange, timepoint >,
3. < key, timerange >, and
4. < keyrange, timerange >.

For < key, timepoint > queries we have further distin-
guished between queries with timepoint =now (i.e., the cur-
rent time) and queries with a randomly chosen timepoint. We
used the databases as described in the previous sections, i.e.,
400,000 record versions with different logical insert/update
ratios. In contrast to the insert performance, the query per-
formance of LHAM is affected by the logical insert/update



214 P. Muth et al.: The LHAM log-structured history data access method

Fig. 10.Performance of queries of type
<key, timepoint=now>

Fig. 11.Performance of queries of type
<key, timepoint=random>

ratio. We give results for the number of block accesses re-
quired per query and the (single-user) throughput in queries
per second.

Queries of type< key, timepoint >

Figure 10 shows in its upper chart the average number of
block accesses for a query that searches the current version
of a given key, plotted against the ratio of logical inserts
vs. updates during the creation of the database. Because the
TSB-tree can access a given version by reading a single leaf
node only, it requires one block access for a query of this
type. With the given buffer, index nodes can almost always
be found in the buffer. LHAM needs more block accesses
here, as no redundancy is used. If the current record version
is found in componentC0, no I/O is required. If it is found
in C1, a single block access is sufficient. If a record has not
been updated for a long time, it will be stored in component
C2. This requires a lookup ofC0, C1, andC2 and requires
two block accesses. For a high logical insert/update ratio, this
will often be the case. Note, however, that we expect a typi-
cal temporal database application to have a rather low logical
insert/update ratio, say 10–20%, resulting in relatively many
versions per record. The case with 10% insertions is clos-
est to the update-only setting that we have mathematically
analyzed in Sect. 3.2. There we predicted an expected num-

ber of approximately 1.3 block accesses for a random point
query with time parameternow. The actually measured fig-
ure for 10% insertions is 1.37; so our analytical prediction
is reasonable. Finally, note that the absolute performance is
good anyway; so this query type is not a major performance
concern. In its lower chart, Fig. 10 shows the (single-user)
throughput achieved by LHAM and the TSB-tree for this
type of query. The curve in this chart is similar to the upper
chart in Fig. 10, as LHAM cannot benefit from multi-block
I/O for this type of query.

The situation changes when we consider arbitrary time-
points instead of solely the current time. Figure 11 shows
again the block accesses required, and the throughput for
< key, timepoint > queries, but the timepoint is now uni-
formly distributed over the interval from the oldest record
version in the database tonow. LHAM now performs almost
as good as the TSB-tree, because for older data, LHAM often
needs to access only componentC2. This effect has been pre-
dicted with reasonable accuracy by our mathematical anal-
ysis in Sect. 3.2. There we derived an expected number of
1.123 block accesses for a random key-time point query,
whereas the actually measured number is 1.15 (for 10% in-
sertions).



P. Muth et al.: The LHAM log-structured history data access method 215

Table 1. Insert performance

LHAM TSB-tree TSB-tree TSB-tree
10% inserts 50% inserts 90% inserts

Throughput (Inserts/s) 1/4/8 block(s) per I/O: 54.4 49.1 45.3
146.8 / 304.9 / 348.4

Total number of I/Os 1/4/8 block(s) per I/O: 597802 632587 623770
185905 / 46983 / 23663

#Blocks Read/Written 84920 / 100985 282100 / 325702 296551 / 336036 292705 / 331065
#Blocks Accessed per Insert 0.46 1.49 1.58 1.56
Total Database Size (MB) 122 275 323 313
Component Sizes (MB) C0/C1/C2: 1/21/101 Current/Hist.DB: Current/Hist.DB: Current/Hist.DB:

64/211 148/175 192/121

Fig. 12. Performance of queries of type<key range 10%, timepoint=now>

Queries of type< keyrange, timepoint >

The performance of< keyrange, timepoint > queries with
a key range of 10% of all keys and a timepoint ofnow
is shown in Fig. 12. Varying the width of the key range
has shown similar results, and choosing a random timepoint
rather thannow has yielded even better results for LHAM.
For lack of space, we limit the presentation to one special
setting. The results of LHAM are independent of the logical
insert/update ratio. This is the case because LHAM has to
access all blocks with keys in the given range in all (non-
archive) components. Note that the required block accesses
by LHAM do not depend on the number of components,
but only on the total size of the (non-archive part of the)
database. LHAM benefits from multi-block I/O, as shown by
the different throughput rates for different numbers of blocks
per multi-block I/O in the lower chart of Fig. 12. The perfor-
mance of the TSB-tree highly depends on the database cho-
sen. When the logical insert/update ratio is low, the current
database is small and the number of required block accesses
is low. The higher the logical insert/update ratio, the larger
the current database and the more block accesses are needed.
Figure 12 shows that even with a small current database, the
throughput of the TSB-tree is lower than the throughput of
LHAM if multi-block I/O with 8 blocks per I/O is used.
Note again that the TSB-tree is inherently unable to exploit
multi-block I/O in the same manner due to the absence of
clustering across pages. When the current database is large,

LHAM outperforms the TSB-tree even without multi-block
I/O.

Queries of type< key, timerange >

Figure 13 shows the performance of< key, timerange >
queries with a time range of 50%. Varying the width of
the time range has led to similar results, which are omitted
here for lack of space. LHAM outperforms the TSB-tree in
terms of block accesses per query as well as throughput for
all database settings. As LHAM stores all record versions
with the same key in physical proximity, only one or two
block accesses are needed for each query. In general, LHAM
benefits from multi-block I/O for this type of query. How-
ever, with only one or two blocks read per query for the
databases in our experiments, using multi-block I/O would
waste some disk bandwidth. Keeping statistics about the data
would enable us to make appropriate run-time decisions on
single-block vs. multi-block I/Os.

Queries of type< keyrange, timerange >

Finally, we consider the performance of< keyrange, time-
range > queries. Figure 14 shows the results for a key range
of 10% and a time range of 10%. The results are similar to
< keyrange, timestamp > queries as shown in Fig. 12.



216 P. Muth et al.: The LHAM log-structured history data access method

Fig. 13. Performance of queries of type<key, time range 50%>

Fig. 14. Performance of queries of type<key range 10%, time range 10%>

Again, similar results have been obtained for other settings
of the range widths.

7.1.3 Multi-user performance

We have also performed experiments with queries and in-
serts (and rolling merges), running concurrently. By prior-
itizing queries over rolling merges, query performance re-
mained almost unaffected by concurrent rolling merges. The
insert throughput, on the other hand, is adversely affected
only when the system becomes overloaded. An overload oc-
curs if the data rate of incoming data becomes higher than
the data rate that can be sustained by the rolling merges
in the presence of concurrent queries. Thus, the expected
query load must be taken into account when configuring the
system. Insert costs as analyzed in Sect. 3 determine the I/O
bandwidth, i.e., the number of disks, necessary to sustain the
insert load. Additional disks are required for the the query
load.

In our current implementation, rolling merges are initi-
ated when the amount of data stored in a component reaches
a fixed threshold. In a multi-user environment, it would be
beneficial to invoke rolling merge multi-block I/Os when-
ever the disk would be idle, even if the threshold is not yet
reached.

7.2 Discussion

LHAM’s major strength, as evidenced by the presented ex-
periments, is its high throughput for insertions and record
updates. Even without multi-block I/O, LHAM outperforms
standard index trees like the TSB-tree by a factor of 3; with
multi-block I/O, the measured gain exceeded a factor of 6.
Note that it is LHAM’s specific approach of using rolling
merges, similar to bulk-loading techniques for index struc-
tures, that provides the opportunity for multi-block I/Os;
such opportunities are usually absent in conventional index
structures.



P. Muth et al.: The LHAM log-structured history data access method 217

As for queries, our experiments have shown that LHAM
is competitive to one of the best known index structures
for transaction-time temporal data, the TSB-tree. For exact-
match queries with a given key and timepoint, the TSB-
tree still has an advantage over LHAM, but the conceivably
worst case that LHAM needs to search all (non-archive)
components is atypical. Rather the experiments have shown
that LHAM is on average only 10–30% slower than the TSB-
tree, which nicely coincides with our analytical predictions
(see Sect. 3.2).

For time-range queries with a given key, i.e., so-called
“time-travel” queries, LHAM even outperforms the TSB-tree
by a significant margin, because its rolling merges provide
for better clustering of a key’s record versions across mul-
tiple blocks and LHAM can then intensively exploit multi-
block I/O for such queries. On the other hand, for key-range
queries with a given timepoint, LHAM loses this advantage
and is outperformed by the TSB-tree when the average num-
ber of versions per key becomes sufficiently high.

A similar tradeoff situation has been observed in the ex-
periments for the most general query type with both key
ranges and time ranges. Depending on the width of the
ranges and the average number of versions per key, LHAM
may still win but can also be outperformed by the TSB-tree
under certain circumstances. Especially, when the number
of keys that fall into the query’s key range becomes small,
the TSB-tree is the clear winner. In the extreme case when
all matches to a key-range query reside in a single block,
LHAM may have to pay the penalty of searching multiple
components, whereas the TSB-tree could almost always ac-
cess the qualifying versions in a single disk I/O.

Queries may be adversely affected by rolling merges. In
the worst case, a query may have to traverse three index trees
within a single component, namely, the filling tree fed from
the next higher storage level and an emptying and filling tree
for the rolling merge to the next lower level. However, this
extreme case can arise only when the query executes while
two rolling merges across three consecutive components are
in progress simultaneously. As LHAM generally aims to
trade a major improvement in insert/update performance for
a moderate potential degradation in query performance, this
effect is not surprising. In the measurements performed with
concurrent updates, the adverse effects from ongoing rolling
merges were rather small, however, so that this conceptual
penalty for queries appears acceptable.

All our measurements have focused on the non-archive
components. With archive components that are formed by re-
dundant partitioning, LHAM’s performance should remain
unaffected. However, its space overhead would drastically
increase, ultimately consuming considerably more space
than the TSB-tree. Note, however, that there is an inherent
space-time tradeoff in the indexing of versioned records and
multi-dimensional data in general. We do advocate redun-
dant partitioning for archive components in LHAM mainly
to make these components “self-contained” in the sense that
they completely cover a given time period. This way, LHAM
can easily purge all versions for an “expired” time period by
discarding the appropriate components and the underlying
WORM media or tapes. The same kind of “garbage collec-
tion” is not easily accomplished with a structure like the
TSB-tree. When this issue is considered less important, then

LHAM could be configured with non-redundant partitioning
for archive components as well.

8 Comparison to similar approaches

In this section, we discuss two approaches for the bulk
loading of index structures which use techniques similar to
LHAM.

8.1 Stepped merge

[Jag97] presents a method for efficient insertion of non-
temporal, single-dimensional data into B+-trees. Similarly
to LHAM, a continuous reorganization scheme is proposed,
based onm-way merging. Like LHAM, incoming data is
stored in a main-memory buffer first. When this buffer be-
comes full, it is written to disk, organized as a B+-tree (alter-
natively, a hash-based scheme is discussed in [Jag97], too).
This is repeatedm times, each time creating a new, inde-
pendent B+-tree. Figure 15 illustrates the further processing.
After m B+-trees have been created, they are merged by
an m-way merge into a new B+-tree. N levels, each con-
sisting of m B+-trees, are considered. Eachm-way merge
migrates the data to the next level. The final levelN con-
tains a single target B+-tree, denoted root B+-tree in [Jag97].
Wheneverm B+-trees have been created at levelN−1, these
m trees together with the root tree itself are merged by an
(m + 1)-way merge into a new root tree. For this merge, the
root B+-tree is both source and destination, as indicated by
the self-referencing arc in Fig. 15. The stepped-merge ap-
proach supports the efficient insertion of data, but penalizes
queries heavily, as each query may have to look up allN ∗m
component trees.

In terms of this approach, LHAM can be characterized as
performing a two-way merge (of the stepped merge’s level-
(N − 1)-to-level-N kind) whenever data is migrated to the
next component in the LHAM storage hierarchy. A rolling
merge from componentCi to componentCi+1 reads both
components and writes back a new componentCi+1. Similar
ro the root B+-tree of [Jag97], componentCi+1 is both source
and destination of the merge. At each level of the LHAM
component hierarchy, only a single B+-tree exists (unless a
rolling merge is in progress, which creates temporary trees).

In contrast to [Jag97], LHAM components implement a
partitioning of the search space (with respect to the time
dimension). In [Jag97], allN ∗ m B+-trees may have over-
lapping key ranges, whereas (memory and disk) components
in LHAM cover disjoint areas in key-time space. Depending
on its time range, a query in LHAM needs to access only
a few of the LHAM components, so that query execution
in LHAM is much more efficient. Furthermore, the stepped-
merge approach does not consider the time dimension at all,
and also disregards archiving issues.

8.2 Buffer-tree-based bulk loading

[BSW97] presents an approach for the bulk loading of multi-
dimensional index structures, e.g., R-trees. The basic idea



218 P. Muth et al.: The LHAM log-structured history data access method

Fig. 15. Illustration of LHAM
vs. stepped merge

Fig. 16. Illustration of a buffer tree

is to create unsorted sequences of records, where each se-
quence covers a (multi-dimensional) range of the data space
that is disjoint to the ranges covered by the other sequences.
A set of such record sequences is managed in a special
balanced tree, the buffer tree, where each tree node cor-
responds to a disk page but is extended with a multi-page
disk-resident buffer (hence the name of the tree). Such a
buffer tree is sketched in Fig. 16; this data structure has
originally been introduced for batched dynamic operations
in computational geometry by [Arge95]. Incoming records
are migrated through the buffer tree until they reach the leaf
level, which corresponds to the leaf level of the target index
structure to be built.

Similarly to LHAM and [Jag97], the efficient migration
of records is the key property. Incoming data is first inserted
into the buffer of the root node. When the buffer becomes
full, its data is partitioned according to the key ranges de-
fined by the index nodes on the next lower level of the tree.
This process is repeated until the leaf level is reached. A full
buffer is read sequentially from disk, and the partitions for
the next lower level of the tree are built in working areas in
main memory. Whenever a working area becomes full, it is
appended to the corresponding lower level node buffer by
a single disk write. This way, all data is read and written
only once at each level of the buffer tree, resembling the
component stages of LHAM.

After all data has been migrated to the leaf level of the
buffer tree, the leaves of the bulk loader’s target index are
completely built and the higher levels of the buffer tree are
discarded. Then, a new buffer tree for building the next
higher index level of the target index structure is created.
This process is repeated until the root of the target index
structure is built. As the approach of [BSW97] is intended
for bulk loading only, it disregards query performance until
the target index structure is completely built. The problem
with regard to queries against a buffer tree lies in the fact

that one would have to search the potentially large unsorted
sequences of records at the index levels of the buffer tree,
i.e., in the node buffers. While a query can easily navigate
through the buffer tree, the sequential search inside a node
buffer is expensive, as several disk blocks have to be read.
In contrast, LHAM provides substantially better query per-
formance.

9 Extensions and generalizations of LHAM

9.1 Tunable redundancy between disk components

In LHAM as presented in this paper, querying record ver-
sions that have not been updated for a long time may force
the query to access several components until the record ver-
sion is found. Both our analytical and experimental results
have shown that this is not a severe problem under usual
conditions where most records are updated frequently. How-
ever, in special applications with a high skew in the update
rates of different records, query performance would be sus-
ceptible to degradation. A solution is to store record ver-
sions redundantly, like the TSB-tree. A record version that
is under migration from componentCi to componentCi+1
can simply be kept redundantly in componentCi (unless its
timestamp happens to equal the new time boundary between
Ci andCi+1). During the next rolling merge, the redundant
record version is deleted fromCi if there is a newer version
of the same record under migration toCi+1. In this case, the
redundant record version is replaced by the new one. Other-
wise, it is kept in componentCi. So there is always at most
one redundant version per component for the same key.

The obvious caveat about this scheme is its increased
space consumption, as well as its increase in the number of
I/Os during the rolling merges. For almost all keys, a redun-
dant version is stored in each component, and this version



P. Muth et al.: The LHAM log-structured history data access method 219

has to be read and written during rolling merges just like the
non-redundant record versions. On the other hand, we could
now guarantee that each key-timepoint query would have to
access only a single component.

The overhead introduced by the redundancy can be re-
duced if we drop the requirement that querying a single
record version must access no more than a single compo-
nent. Limiting the number of visited components to a small
constant would already avoid the worst case situation that a
query has to access all componentsC0 to Ck, while at the
same time substantially reducing the redundancy overhead
in terms of space and I/Os.

Assume we want a key-timepoint query to access no
more than two components in the worst case. This can be
achieved by using the scheme of storing redundant records
as sketched above, with a single modification: a redundant
copy of a record version in componentCi is created during a
rolling merge only if there is no successor of this record ver-
sion left inCi after the rolling merge has finished. It is easy
to see that, with the modified redundancy scheme, no more
than two components have to be accessed by a key-timepoint
query. Suppose that the queried record version is neither
present in the first nor in the second component searched. In
this case, the second component does not contain any ver-
sion of the record, as such a version would match the query.
However, in this case, our redundancy scheme would have
created a redundant copy of the record version in the second
component.

In the case of uniform update rates across keys and rea-
sonably sized comonents that are able to store at least one
version for each key, the modified redundancy scheme would
not create any redundant versions at all. For records with low
update rates, however, the scheme improves query perfor-
mance by limiting the number of components that have to
be accessed.

The above-sketched form of selective redundancy can be
exploited also to improve the query performance for keys
that are frequently queried, but only infrequently updated.
It is possible to dynamically replicate versions of such keys
in higher level components, even if they had already been
migrated to lower components. So the partitioning invariant
given by thelowi andhighi boundaries of a componentCi

can be deliberately relaxed to keep older versions of “hot”
keys closer toC0 or even in the main-memory component
itself.

9.2 Choice of index structures within LHAM components

For key-range queries for a single timepoint, using a B+-tree
within each LHAM components is by far not an optimal so-
lution, as record versions are primarily clustered by key, so
that multiple versions for the same key lie in between suc-
cessive keys. In principle, we are free to use another index
structure within components; even different structures for
different components are conceivable. The problem, how-
ever, is that such alternative structures have to be efficiently
read, merged with a second structure of the same kind, and
rebuilt during each rolling merge. This requires the indexed
data to be readable and writable in a predefined order while
creating the merged data in the same order. In addition, the

data should be read and written using multi-block I/O, and
each block should be read and written only once during an
entire rolling merge.

Using a TSB-tree, for example, the above properties can
be satisfied only for current nodes. For historical nodes, there
is no scan order such that each node of the two source trees is
read only once during a rolling merge. Obviously, this prob-
lem can be addressed by buffering nodes during the rolling
merges. Unfortunately, there is no sufficiently small upper
bound for the number of necessary node buffers (where “suf-
ficiently small” would be logarithmic in the data volume).

We are currently investigating other index schemes,
where multi-dimensional space-filling curves such as the
Peano curve (also known as Z-order) or Hilbert curve can
be superimposed on the data [Fal96]. Such curves define
a linear order for multi-dimensional data. During a rolling
merge, record versions can then be read and written in the
order given by the space-filling curve. The same is true for
writing the merged structure back to disk, as record versions
are inserted in curve order. Based on this idea, it appears to
be feasible to employ an R-tree within each LHAM compo-
nent, with the additional benefit that LHAM’s rolling merges
would automatically provide good clustering, both within
and across pages, based on the Peano or Hilbert curve. The
systematic study of such approaches are a subject of future
research.

9.3 A two-dimensional LHAM directory

In the current LHAM version, the LHAM directory partitions
only the time axis. Therefore, each LHAM component cov-
ers the whole key space. This can be a potential drawback,
especially when the update rate of records in different key
ranges varies widely, i.e., if there are hot (i.e., frequently up-
dated) and cold (i.e., infrequently updated) regions of keys.
Partitioning the data also by key would allow LHAM to
use key-range-dependent values for the component’s time
boundaries. In cold key regions, the timespans covered by
components should be long, whereas they would be rather
short for hot key ranges. This would reduce the number of
components that queries have to access, or, if redundancy is
used, the number of redundant record versions.

To this end, a two-dimensional LHAM directory would
be needed. As the directory would still be a very small,
memory-resident data structure, the implementation of such
an extended directory does itself not pose any problems.
However, a two-dimensional directory would increase the
complexity of rolling merges. Unless all components in-
volved in a rolling-merge partition the key space in the same
way, rolling merges now require more than a single source
and a single key component. If the key partitioning is con-
structed by key splits of components like in the TSB-tree, we
obtain specific structural constraints for the directory layout
in the two-dimensional space. In particular, rolling merges
will then again have a single source component, but multiple
destination components. As a consequence, there will only
be a single time boundary betweeen the involved compo-
nents. This variant seems to be most promising.

Queries can strongly benefit from such a two-dimensional
LHAM directory, since the number of components they need



220 P. Muth et al.: The LHAM log-structured history data access method

to access could be reduced. In addition, the performance of
key-range queries with a component organized as a B+-tree
can be improved. When a component stores too many ver-
sions of the same key, it can simply be split into two compo-
nents with the same key range, without affecting other com-
ponents with the same timespan, but mostly holding records
with lower update rates.

With a two-dimensional LHAM directory along the
sketched lines, the number of components a record lives
in until it finally migrates to archival components depends
on its key. The number of I/Os required to perform a rolling
merge now depends on the sizes of all involved compo-
nents, and can no longer be determined by a single size
ratio. This would obviously call for a more advanced math-
ematical analysis.

10 Conclusions

Our experimental results based on a full-fledged implemen-
tation have demonstrated that LHAM is a highly efficient
index structure for transaction-time temporal data. LHAM
specifically aims to support high insertion rates beyond what
a B+-tree-like structure such as the TSB-tree can sustain,
while also being competitive in terms of query performance.
In contrast to the TSB-tree, LHAM does not have good
worst case efficiency bounds. However, our experiments
have shown that this is not an issue under “typical-case”
workloads. LHAM’s average-case performance is consis-
tently good.

Target applications for LHAM include very-large-data
data warehouses. In such settings, often the batch window
for periodically loading or refreshing the warehouse can
be a severe limitation, thus not being able to build (or
maintain) all otherwise desired indexes. LHAM’s excellent
insertion throughput would substantially shorten the time
for index maintenance, thus making tight batch windows
feasible. Some warehousing applications, especially in the
telecommunication industry, require continuous, near-real-
time maintenance of the data. Once the update rate and the
size of the warehouse exceed certain manageability thresh-
olds, such a warehouse may not afford any conventional
indexes at all. Again, LHAM is much better geared for cop-
ing with very high insertion/update rates against terabyte
warehouses.

References

[AGL98] Agrawal R, Gunopulos D, Leymann F (1998) Mining Process
Models from Workflow Logs. In: Schek HJ, Saltor F, Ramos I,
Alonso G (eds) Proc. Int. Conf. on Extending Database Tech-
nology (EDBT), 1998, Valencia, Spain. Springer, Berlin Hei-
delberg New York, pp 469–483

[Arge95] Arge L (1995) The Buffer Tree: A New Technique for Optimal
I/O Algorithms. In: Akl S, Dehne F, Sack JR, Santoro N (eds)
Proc. Int. Workshop on Algorithms and Data Structures, 1995,
Kingston, Ontario, Canada. Springer, Berlin Heidelberg New
York, pp 334–345

[Bec96] Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P (1996)
An Asymptotically Optimal Multiversion B-tree. VLDB J 5(4):
264–275

[BSW97] Bercken J van den, Seeger B, Widmayer P (1997) A Generic
Approach to Bulk-Loading Multidimensional Index Structures.
In: Jarke M, Carey MJ, Dittrich KR, Lochovsky FH, Loucopou-
los P, Jeusfeld MA (eds) Proc. VLDB Conf, 1997, Athens,
Greece. Morgan Kaufmann, San Mateo, California, pp 406–
415

[CACM98] Special Section on Industrial-Strength Data Warehousing.
Commun ACM 41(9):28–67

[EKW91] Elmasri R, Kim V, Wuu GTJ (1991) Effcient Implementation
for the Time Index. In: Proc. Data Engineering Conf, 1991,
Kobe, Japan, IEEE Computer Society, Los Alamitos, Californ,
pp 102–111

[EWK93] Elmasri R, Wuu GTJ, Kouramajian V (1993) The Time Index
and the Monotonic B+-tree. In: Tansel AU, Clifford J, Gadia
S, Jajodia S, Segev A, Snodgrass R (eds) Temporal Databases:
Theory, Design, and Implementation. Benjamin Cummings,
New York, pp 433–456

[Fal96] Faloutsos C (1996) Searching Multimedia Databases By Con-
tent. Kluwer Academic, Amsterdam

[GP87] Gray J, Putzolu F (1987) The Five-Minute Rule for Trading
Memory for Disc Accesses and the 10-Byte Rule for Trading
Memory for CPU Time. In: Dayal U, Traiger IL (eds) Proc.
SIGMOD Conf, 1987, San Francisco. California. ACM, New
York, pp 395–398

[GR93] Gray J, Reuter A (1993) Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, California

[Gut84] Guttman A (1984) R-trees: A Dynamic Index Structure for
Spatial Searching. In: Yormark B (eds) Proc. SIGMOD Conf,
1984, Boston, Massachusetts. ACM, New York, pp 47–57

[Jag97] Jagadish HV, Narayan PPS, Seshadri S, Sudarshan S, Kan-
neganti R (1997) Incremental Organization for Data Recording
and Warehousing. In: Jarke M, Carey MJ, Dittrich KR, Lo-
chovsky FH, Loucopoulos P, Jeusfeld MA (eds) Proc. VLDB
Conf, 1997, Athens, Greece. Morgan Kaufmann, San Mateo,
California, pp 16–25

[Kol93] Kolovson CP (1993) Indexing Techniques for Historical
Databases. In: Tansel AU, Clifford J, Gadia S, Jajodia S, Segev
A, Snodgrass R (eds) Temporal Databases: Theory, Design, and
Implementation. Benjamin Cummings, New York, pp 418–432

[KMH97] Kornacker M, Mohan C, Hellerstein JM (1997) Concurrency
and Recovery in Generalized Search Trees. In: Peckham J
(eds) Proc. SIGMOD Conf, 1997, Tucson, Arizona. ACM, New
York, pp 62–72

[Lom93] Lomet D (1993) Key Range-Locking Strategies for Improved
Concurrency. In: Agrawal R, Baker S, Bell DA (eds) Proc.
VLDB Conf, 1993, Dublin, Ireland. Morgan Kaufmann, San
Mateo, California, pp 655–664

[LS89] Lomet D, Salzberg B (1989) Access Methods for Multiversion
Data. In: Clifford J, Lindsay BG, Maier D (eds) Proc. SIGMOD
Conf, 1989, Portland, Oregon. ACM, New York, pp 315–324

[LS90] Lomet D, Salzberg B (1990) The Performance of a Multiver-
sion Access Method. In: Garcia-Molina H, Jagadish HV (eds)
Proc. SIGMOD Conf, 1990, Atlantic City, New Jersey. ACM,
New York, pp 353–363

[Moh96] Mohan C (1996) Concurrency Control and Recovery Meth-
ods for B+-Tree Indexes: ARIES/KVL and ARIES/IM. In: Ku-
mar V (ed) Performance of Concurrency Control Mechanisms
in Centralized Database Systems. Prentice Hall, Englewood
Cliffs, N.J., pp 248–306

[MOPW98] Muth P, O’Neil P, Pick A, Weikum G (1998) Design, Im-
plementation, and Performance of the LHAM Log-Structured
History Data Access Method. In: Gupta A, Shmueli O, Widom
J (eds) VLDB Conf, 1998, New York City, New York. Morgan
Kaufmann, San Mateo, California, pp 452–463

[MSS95] Proceedings of the 14th IEEE International Symposium on
Mass Storage Systems, 1995, Monterey, California. IEEE
Computer Society, Los Alamitos, California

[OCGO96] O’Neil P, Cheng E, Gawlick D, O’Neil E (1996) The Log-
Structured Merge-Tree (LSM-tree). Acta Informatica 33(4):
351–385

[OW93] O’Neil P, Weikum G (1993) A Log-Structured History Data



P. Muth et al.: The LHAM log-structured history data access method 221

Access Method. In: 5th Int. Workshop on High-Performance
Transaction Systems (HPTS), 1993, Asilomar, California

[RO92] Rosenblum M, Ousterhout JK (1992) The Design and Imple-
mentation of a Log Structured File System. ACM Trans Com-
put Syst 10(1): 26–52

[Sno90] Snodgrass R (1990) Temporal Databases: Status and Research
Directions. ACM SIGMOD Rec 19(4): 83–89

[SOL94] Shen H, Ooi BC, Lu H (1994) The TP-Index: A Dynamic
and Effcient Indexing Mechanism for Temporal Databases. In:
Proc. Data Engineering Conf., 1994, Houston, Texas. IEEE
Computer Society, Los Alamitos, California, pp 274–281

[ST99] Salzberg B, Tsotras VJ (1999) A Comparison of Access Meth-
ods for Temporal Data. ACM Comput Surv: in press

[Tan93] Tansel AU, Clifford J, Gadia S, Jajodia S, Segev A, Snodgrass
R (Eds) (1993) Temporal Databases: Theory, Design, and Im-
plementation. Benjamin Cummings, New York

[TK95] Tsotras VJ, Kangelaris N (1995) The Snapshot Index: An I/O-
Optimal Access Method for Timeslice Queries. Inf Syst 20(3):
237–260


