

-1-

Precisely Serializable Snapshot Isolation (PSSI)
Stephen Revilak, Patrick O'Neil, Elizabeth O'Neil

University of Massachusetts at Boston
Boston, MA 02125, USA

srevilak@cs.umb.edu. poneil@cs.umb.edu, eoneil@cs.umb.edu

Abstract— Many popular database management systems provide
snapshot isolation (SI) for concurrency control, either in addition
to or in place of full serializability based on locking. Snapshot
isolation was introduced in 1995 [2], with noted anomalies that
can lead to serializability violations. Full serializability was
provided in 2008 [4] and improved in 2009 [5] by aborting
transactions in dangerous structures, which had been shown in
2005 [9] to be precursors to potential SI anomalies. This
approach resulted in a runtime environment guaranteeing a
serializable form of snapshot isolation (which we call SSI [4] or
ESSI [5]) for arbitrary applications. But transactions in a
dangerous structure frequently do not cause true anomalies so,
as the authors point out, their method is conservative: it can
cause unnecessary aborts. In the current paper, we demonstrate
our PSSI algorithm to detect cycles in a snapshot isolation
dependency graph and abort transactions to break the cycle.
This algorithm provides a much more precise criterion to
perform aborts. We have implemented our algorithm in an open
source production database system (MySQL/InnoDB), and our
performance study shows that PSSI throughput improves on
ESSI, with significantly fewer aborts.

I. INTRODUCTION
Database serializability has been studied since the early 1970s
[6]. Jim Gray proselytized its value in his mid-70's lectures,
published later in [11]. "Serializable" is defined to mean
"equivalent to serial execution" in terms of data access
conflicts between concurrent transactions, so all constraints
maintained by program logic will continue to hold when
multiple transactions execute concurrently. Full serializability
(with phantom avoidance) has traditionally been supplied by
strict two-phase locking (S2PL), but this was often time-
consuming because of Waits-For chains, so commercial
products offered default lower isolation levels based on early
IBM Research [10]. The default isolation level for most S2PL
systems, including DB2 and Microsoft SQL Server, was Read
Committed (RC), in which a lost update by two transactions
reading and then writing the same data item concurrently is
common.

Snapshot Isolation (SI) was introduced in [2] in 1995. It
was shown there that none of the ANSI SQL Phenomena
named in [1] to illustrate weaknesses in isolation levels below
Serializable (SR) occur in SI transactions. This does not mean
that SI is equivalent to SR however, since less obvious SI
anomalies exist. Many commercial applications do not exhibit
anomalies when running under SI because the anomalies often
require conditions that experienced developers avoid, such as
querying important aggregate quantities from a number of
disparate elements, rather than materializing the aggregates
and updating them as the elements are updated. For example,
the TPC-C [17] application was shown in [9] to execute

serializably in SI. Because of this behavior and because data
reads are never delayed by Write locks in SI, many
commercial database products now offer SI to their customers,
including Oracle RDBMS, PostgreSQL, Microsoft SQL
Server, and Oracle Berkeley DB.

Nevertheless, SI anomalies have been found in some
applications developed in the software industry [15]. An early
approach to providing serializability in snapshot isolation [9]
showed how to detect anomalies that could arise in
applications, along with a number of techniques to modify
code to avoid these anomalies, and in [8], an approach was
introduced to automate the analysis of [9]. A more recent pair
of papers ([4][5]) provide Serializable Snapshot Isolation
(SSI), which avoids such anomalies at runtime without any
need to pre-examine the code, clearly a valuable advance.
However, this runtime technique relies on aborting
transactions that give rise to dangerous structures, and thus
can cause unnecessary aborts. In [4] and most of [5], the
algorithms eliminate all dangerous structures as soon as they
can be detected during reads and writes and commits. In [5],
an enhanced SSI system that we will call ESSI is described
and tested, a system that eliminates only the crucial subset of
dangerous structures to ensure serializability, at the cost of
additional bookkeeping. We have implemented our own
version of ESSI that does all testing at commit time, for
comparison with PSSI. Note that among systems providing
serializable executions, there is a strict progression in terms of
increasing precision: SSI, ESSI and PSSI.

A. Prior Work In Detail
Definition 1.1. Snapshot Isolation (SI). A transaction T1
executing under SI reads only data from a snapshot of
committed data as of the time T1 started, called its Start-
Timestamp: S(T1). The SI system can set S(T1) to any time not
greater than T1’s first data access. Snapshots are typically
implemented by maintaining distinct versions of all updates to
rows, along with time of update (including dead versions for
deleted rows and initial versions for inserted rows). Then T1,
when it reads a row r it did not itself update, will see the
version of r committed most recently prior to S(T1). T1's
writes (updates, inserts, and deletes) are also reflected in its
private snapshot, to be accessed again if T1 reads or updates
such data a second time.
When the SI transaction T1 is ready to commit, it gets a
Commit-Timestamp: C(T1), which is larger than any prior
assigned Timestamp. T1 will commit successfully only if no
committed transaction T2 whose commit came after S(T1)
wrote data that T1 is also trying to write. If that happened then
T1 will abort. This feature, called First-Committer-Wins

-2-

(FCW), prevents lost updates [5], where two transactions read
the same row version and write back different versions. A
variant approach, called First-Updater-Wins (FUW), is used
in Oracle and in our own PSSI-System. FUW tests for
conflicts as each row is updated: if T2 updates row r and T1
subsequently attempts to update r, then T1 will Wait until T2
either Commits (then T1 will abort) or T2 aborts (then T1 will
perform its update of r and continue). We will adopt FUW as
the default rule in what follows. Only after a transaction T1
successfully commits will its updates become visible, and then
only to transactions whose Start-Timestamps come after T1's
Commit-Timestamp. Note that C(Tk) can also be represented
as Ck. Note too that papers [4] and [5] also use the FUW rule,
but still refer to it as FCW.
Definition 1.2. Concurrent SI Transactions; Transactional
Lifetime. Two SI transactions T1 and T2 are said to be
concurrent when their transactional lifetimes, the intervals
[S(T1), C(T1)] and [S(T2), C(T2)] have a non-empty
intersection.
We note that a SI transaction T1 need never wait to perform a
read because of being blocked by a writer, since all row
versions that T1 reads are already committed; also, the set of
row versions read by T1 are always consistent, in a Read
Committed sense. Predicate reads are also expected to be
consistent with the version of data read, because index
retrieval results are also versioned.

SI does not exhibit any of the anomalous phenomena, P0
through P4, defined in Section 3 of [2], which are associated
with classical Isolation Levels of Strict Two-Phase Locking
(S2PL) systems. However, SI does have some anomalies of its
own.
Example 1.1. SI Write Skew. Suppose X and Y are data
items representing checking account balances of a married
couple. The bank permits either account to be overdrawn if
the sum of balances remains positive: X + Y > 0. The
versioned SI history H1 below begins with initial versions X0
= 70 and Y0 = 80, and an update to a data item X by a
transaction Tk results in a version named Xk. In H1 W1 creates
X1 and W2 creates Y2. Each update leaves a negative quantity
for X and Y since it has read a total that exceeds 0, but
concurrent changes leave both values negative.
H1: R1(X0,70) R2(X0,70) R1(Y0,80) R2(Y0,80) W1(X1,-30) C1
W2(Y2,-20) C2
This problem is not detected by the FUW rule because two
different data items are updated, each assuming that the other
remained stable. In [9] this anomaly is shown to be avoidable
by using select for update for any data item X a transaction
intends to remain stable, with FUW occurring if another
transaction updates X. Thus T1 could stabilize Y and T2
stabilize X to avoid the anomaly in H1.
Example 1.2. Predicate Write Skew. Given an employees
table with primary key eid and an assignments table with
columns (eid, workdate, hours, projid), employees are
assigned a number of hours of work on various projects on a
given workdate by placing a row in the assignments table. The
transactions doing this must maintain a constraint that no

employee can be assigned more than eight hours work on any
date. In the SI history H2, two different transactions
concurrently assign an employee a new assignment for the
same day. Predicate P says eid = 'e1234' and workdate =
'09/22/10', and the query Qk(P, result) has Tk retrieve the
current number of hours assigned that eid on that date; the
operation Ik(assignments,…) inserts defined rows into the
assignments table.
H2: Q1(P, empty) I1(assignments, eid='e1234', projid=2,
workdate='09/22/02', hours=5) Q2(P, empty) I2(assignments,
eid='e1234', projid=3, workdate='09/22/02', hours=5) C1 C2

Both T1 and T2 evaluate predicate P and find no work
assignment for the given eid and workdate. Each then inserts a
5-hour work assignment on that date. This results in 10 hours
of work assigned to the employee, breaking the constraint of
an eight-hour limit, although both transactions acted
consistently. This is a form of Write Skew, but the anomaly
cannot be avoided by using select for update on any set of
data items. We can avoid the anomaly by creating a
total_work_hours table with a unique row for each employee-
day pair, inserting or updating that row as we add each new
assignment. Given this, T1 or T2 would fail by FUW.

B. Our Contribution: PSSI
In papers [4][5], the first example given to demonstrate SI
anomalies is a predicate write skew, where doctors sign
themselves out from being on-duty when the count of doctors
found by a "select count of all on-duty rows", is at least two.
Of course if the last two doctors on duty sign out concurrently,
we can end up with none on-duty. A solution would be to
create a total-on-duty row, and update that row as each doctor
goes off duty, leading to FUW for a later update in concurrent
attempts. But such a solution, requiring changed application
code, is not very useful in large old applications, which are
difficult to modify. Papers [4][5] provide a runtime test that
aborts transactions involved in a dangerous structure and thus
guarantee serializable isolation for arbitrary applications using
SI, a valuable advance. But transactions involved in a
dangerous structure often do not cause anomalies, so the
authors point out their method is conservative in that it can
cause unnecessary aborts. We will define dangerous structures
and illustrate this fact in Section II.

In the current paper we propose a new concurrency control
algorithm, called Precisely Serializable Snapshot Isolation
(PSSI), with the following properties.

• PSSI ensures that every execution of a valid
transactional application is serializable.

• Write and Read operations never delay each other in
PSSI; Writes are delayed only due to FUW.

• The throughput of PSSI is superior our implementation
of (Enhanced) Serializable Snapshot Isolation (ESSI)
introduced in [5] in measures we performed.

• Unlike ESSI, PSSI required numerous modifications to
MySQL/InnoDB. We have prototyped and tested PSSI
and the prototype is available for testing by others.

-3-

• PSSI is Precise in that it only aborts transactions that
would otherwise cause a failure of serializability.
There is a caveat to this property, explained below.

The caveat to the point that PSSI is Precise is that PSSI avoids
phantom anomalies as InnoDB does, using a variant of IM
index locking [13][16], but this is valid only up to predicate
lock accuracy. If transaction T1 performs a query of the form:

[1.2.1] select count(*) from Tbl where col1 between 20 and 30;
and a concurrent T2 were to insert a row with col1 = 29, then
we would expect a RW dependency (conflict) to point from T1
to T2. If T1 were to repeat select statement [1.2.1], it would
retrieve the same count, but a cycle of dependencies can cause
non-serializable behavior, so each dependency is important.
Now if the relevant values of col1 are 15, 25, and 35, then
Query [1.2.1] under InnoDB IM locking would lock the row
value 25, and gaps between 15 and 25 and between 25 and 35.
This is because no form of IM locking has the ability to lock
ONLY the range 20 to 30, which is all that needs to be locked.
Thus if T2 were to instead try to insert a row with col1 = 33
(which does not actually conflict with Query [1.2.1]), a RW
dependency would still point from T1 to T2 because of the gap
lock between 25 and 35, and this could eventually lead to a
cycle of dependencies and an abort of T1 or T2. This is an
unnecessary abort, so PSSI is not perfectly precise. However
the fault lies with IM locking, and the same problem would
arise with any S2PL system as well, including DB2 and
Microsoft SQL Server. It might be possible to create a more
precise version of predicate locking by naming specific range
end-points, but this would require more heavyweight locks,
and may not be worth the precision gained.

The rest of this paper is structured as follows: in Section II
we explain SI Transaction Theory and describe PSSI design;
InnoDB Modifications for PSSI are outlined in Section III;
Section IV provides a PSSI Performance Analysis; Section V
provides a suggestion for Future Work.

II. SI TRANSACTION THEORY
Transactional dependencies in snapshot isolation are ordered
conflicts between transactions, catalogued by type. The type
specifies whether the conflict involves only data items (rows),
symbolized by -i-, or a predicate read and item write,
symbolized by -pr-. The dependency Tm--i-wr→Tn means that
Tm writes (inserts, updates, or deletes) a row version and Tn
then reads the new version (noting absence in the case of a
delete). Other item conflicts are Tm--i-ww→Tn and Tm--i-
rw→Tn, and in each case, the write by Tn updates the prior
version installed by the Tm or read by Tm. For predicate
conflicts, Tm--pr-wr→Tn and Tm--pr-rw→Tn, the pr symbol
involves a predicate read -r-, and the -w- symbol involves a
write of a row (update, insert or delete) that would modify the
predicate result. Note that the row write need not create a row
retrieved by the predicate to modify the result; if a predicate
retrieves the name of the horse in show (third) place in a race,
then scratching the winner (delete) will change what the
predicate retrieves, though the winner was never retrieved by
the query. We can refer to more generic dependencies, such as

Tm--wr→Tn (a wr dependency) for either Tm--i-wr→Tn or Tm--
pr-wr→Tn. Similarly, Tm--rw→Tn can represent either the -pr-
or -i- type, and Tm--ww→Tn is unambiguously of -i- type.
Note that all of these dependency arrows are oriented from
earlier to later in time as we see below in SI-RW Diagrams.
Definition 2.1. DSG(H). A directed graph DSG(H), the
Dependency Serialization Graph on the multi-version history
H3, has vertices representing transactions that commit, and
each distinctly labeled edge from Tm to Tn corresponding to a
Tm--wr→Tn, Tm--ww→Tn or Tm--rw→Tn dependency.
Example 2.1. Consider SI history H3: W1(X1) W1(Y1) W1(Z1)
C1 W3(X3) R2(X1) W2(Y2) C2 R3(Z1) C3
See DSG(H3) in Figure 2.1. In H3, versions X1, Y1, and Z1 are
written at time C1. Then version Y2 replaces Y1 as of C2, so
T1--ww→T2, and Y3 replaces Y1 as of C3, so T1—ww→T3.
The operation R2(X1) means T1--wr→T2. Note that R2(X1)
occurs after W3(X3), but there is no T3--wr→T2 because T2
cannot read versions written by T3. Indeed the reverse is true
since T2--rw→T3 because T2 reads an earlier version (X1) than
the X3 written later by T3. Operation R3(Z1) means T1--wr→T3.
Note the transactions in DSG(H3) are not in serial order since
T2 and T3 are concurrent; however an examination of Figure
2.1 shows that a topological sort provides an equivalent serial
order: T1, T2, T3.

Figure 2.1 DSG(H3)

Note that the edge from T2 to T3 in Figure 2.1a is drawn as a
"double line", a convention we use to represent a -rw-
dependency (an anti-dependency) between two concurrent
transactions. We see that in DSG(H3), it is not at all clear that
T2 and T3 are concurrent transactions but we will shortly
introduce a new diagram form that makes transaction duration
more obvious.
Remark 2.1. Both Tm--wr→Tn and Tm--ww→Tn depend-
encies have the property that Tm must commit before Tn starts;
in a -wr- case, Tn cannot read an item Tm has written unless
S(Tn) comes after Cm, and the same is true in a -ww- case,
since Tm and Tn cannot both write the same item if they are
concurrent (because of FUW). Thus a cycle cannot occur in a
history having only transactions with -wr- and -ww-
dependencies.
Remark 2.2. As we noted above, a Tm--rw→Tn dependency
can occur between concurrent transactions and is then known
as a concurrent anti-dependency, represented by a double line
in diagrams. By Remark 2.1 at least one such anti-dependency
must occur for a cycle to exist in the DSG, because all other
dependency types go from left to right across commits of the
earlier transaction.

T1 T2 T3

wr

wr

ww

rw
w
w

-4-

The following definition of dangerous structure originally
appeared in [9], and is used in [4][5]. The definition of
essential dangerous structure is new here, but the importance
of the concept figures in [5].
Definition 2.2 Dangerous Structures and Essential
Dangerous Structures. Suppose in the serialization graph
DSG(H) of some history H, there are three consecutive
transactions T1, T2, T3 (it might be possible that T1 and T3 are
the same transaction), where T1 and T2 are concurrent, with
T1--rw→T2 and T2 and T3 are concurrent with T2--rw→T3.
Then this triple of transactions is called a dangerous structure.
If the commit of T3 is first of these three to commit, we call
the structure an essential dangerous structure. See Figures 2.3
and 2.4 for illustrations or essential and non-essential
dangerous structures.
The following theorem appeared in [9] with somewhat
different wording, and we do not prove it here.
Theorem 2.1. Suppose H is a multi-version history arising in
Snapshot Isolation that is not serializable. This can happen if
and only if there is at least one cycle in the serialization graph
DSG(H), and we claim that in every cycle there are three
consecutive transactions, T1, T2, and T3, (where T1 and T3
might be the same transaction) that qualifies as a Dangerous
Structure. As part of the proof of this Theorem, it was shown
that the commit of T3 had to be first of the three transactions
T3, T2, and T1 for the cycle to exist, that is, the dangerous
structure ensured by the cycle is in fact an essential dangerous
structure.
In S2PL systems, two or more concurrent transactions can
perform multiple operations interleaved in time, causing quite
complex conflicts. But by Definition 1.1, a transaction Tk in
SI only performs operations at two points in time, reads at
S(Tk), and writes at C(Tk), and constructing a cycle for two or
more transactions using dependencies that point forward in
time seems nearly impossible. It is possible only because each
SI transaction Tk has start time S(Tk) and commit time C(Tk)
separated in time.

Recall from Example 1.1 the anomaly illustrated by SI
Write Skew, with the history:
H1: R1(X0,70) R2(X0,70) R1(Y0,80) R2(Y0,80) W1(X1,-30) C1 W2(Y2,-20) C2

We illustrate this history with what we call an SI-RW diagram
[9] for an SI based history: see Figure 2.2. In an SI-RW
diagram, all transaction Ti Reads are assumed to occur at an
instant of time at a vertex Ri, a pseudonym for S(Ti), and all
writes at an instant of time at a vertex Wi, a pseudonym for
C(Ti); vertex Ri appears to the left of vertex Wi (time
increases from left to right), with the two connected by a
horizontal dotted line segment, as we see in Figure 2.2. The
SI-RW diagram has two types of edges: Sibling edges and
Conflict edges; in our SI-RW diagrams, the sibling edges are
the dotted line segment connecting the Ri and Wi vertices in
any transaction Ti which has both Reads and Writes.

Note in Figure 2.2 that T1 reads X and T2 writes X (a -rw-
dependency from T1 to T2), while T2 reads Y and T1 writes Y
(another -rw- dependency from T2 to T1). The result is a
dependency cycle for Write Skew.

Transaction T1 is the upper dashed line in Figure 2.2, with
R1 on the left and W1 on the right, and T2 is the corresponding
lower dashed line. We see that the two -rw- dependencies do
indeed point forward in time. In terms of Theorem 2.1, T1 is
identified with T3 (the two are identical). Notice that T3 (i.e.,
T1) does commit before T2. We can now trace a cycle from R2
through R2--rw→W1, then backwards in time through the
duration of T1 to R1 and along R1--rw→W2, then complete the
loop by going backwards in time from W2 to R2. It is the delay
from R to W in T1 and T2 that allows these legs backward in
time.

. .
Figure 2.2. SI-RW Diagram of Write Skew History H1

Now if T1 and T3 are not identical as in Figure 2.2, then the
three transactions of Theorem 2.1 make up a Dangerous
Structure, with SI-RW Diagram pictured in Figure 2.3.

Figure 2.3. SI-RW Diagram of an (Essential) Dangerous Structure.

Note that in Figure 2.3, T2 is also known as Tpivot in the
terminology of [4][5], T3 is also called Tout since the -rw- edge
points out from Tpivot to T3, and T1 is also known as Tin since
the -rw- edge points in from T1 to Tpivot, and the order of
commit of the three transactions is T3, T2, T1, as required in
our statement of Theorem 2.1. There is no guarantee that a
Dangerous Structure results in a cycle: one might exist if there
is a dependency path from T3 to T1, such as from W3 to W1 but
such a path is by no means guaranteed. Thus a Dangerous
Structure is only a possible precursor of a dependency cycle,
which is why [4] and [5] said aborting transactions to break up
dangerous structures was conservative, since it caused
unneeded aborts. In Figure 2.4 we see a non-essential
dangerous structure where T3 commits later than T2, which
need not be aborted to avoid a cycle. In Figure 2.4, no path
from W3 to W1 could complete a cycle unless it contained its
own dangerous structure, since the two transactions are
concurrent. Any dependency edge leaving R3 to create a cycle
(clearly an -rw- edge, say to W4), would itself create another
dangerous structure, with T3 as the pivot, T2 as Tin, and T4 as
Tout, so T3 would be aborted.

Recall that the concurrency control algorithm in [4] that
aborts all dangerous structures is called SSI, and the algorithm
in [5], which aborts only essential dangerous structures, as

rw

R1 W1

W2

rw

R2

-5-

Enhanced SSI, or ESSI, a less conservative variant. Figure 2.4
is an example of a structure that would cause a transaction
abort in SSI but not ESSI.

Figure 2.4. SI-RW Diagram of a (Non-Essential) Dangerous Structure.

Our PSSI must detect cycles at commit time before aborting
transactions, making PSSI a Serial Graph Testing certifying
scheduler [3]. Our measurements lead us to believe that PSSI
is superior in terms of throughput to the ESSI of [5]. Certainly
PSSI is subject to many fewer serializability aborts than ESSI.
We later compare PSSI to our own implementation of ESSI,
which is not identical to the ESSI implementation from [5].

III. PSSI IMPLEMENTATION
Native InnoDB provides two choices of Isolation Level: (1)
strict two-phase locking (S2PL), using a variant of index-
specific IM locking [16][13] to guard against phantom
anomalies, and (2) Multi-version concurrency control
(MVCC), where each transaction sees only versions of data
created as of its start time [13]. MVCC is not SI because
MVCC does not support FCW or FUW. We have modified
InnoDB to provide SI, our own version of ESSI (based on
design in [5], but using our own InnoDB modifications), and
PSSI, a much more complex task.

A transaction Ti running at "traditional" SI does not set read
locks; it simply reads rows based on the snapshot defined by
its start time S(Ti). However SI transactions do take write
locks, to support FUW. If Tk attempts a write lock and must
wait behind Ti, which already holds a write lock, then it waits
until Ti's locks are released. When Ti commits, all transactions
waiting behind its write locks are aborted, but if Ti aborts, the
first waiting Tk waiting for each of Ti’s write locks leaves lock
wait and continues. (Others may still be waiting.) This is
comparable to the approach used in Oracle.

For each transaction Tn running in PSSI we note read locks
(similar to SIREAD locks of [4][5] in that read locks never
cause waits) and write locks in a lock table we modified from
InnoDB, as explained below in Section III.D. But only –ww-
conflicts are detected and acted on while Tn is active, since
these conflicts can cause FUW waits, and so must be detected
immediately. We wait for Tn's commit time to enter -rw-, -wr-,
and -ww- conflicts to our Cycle Testing Graph (CTG), which
we added to InnoDB to test for possible dependency cycles.
We defer this test until Cn in PSSI for efficiency reasons,
because that's the first time we will know all dependencies
from Tn to earlier committed transactions, and a full test for
cycles is simplified by the fact that we need only perform one
depth-first search from Tn to find if any path forms a cycle in

CTG. Thus in PSSI a committing transaction Tn can create
dependency cycles only with transactions Tm that have already
committed, so committed transactions must continue to exist
as zombie transactions in the lock table and the CTG, in order
to support tests for such cycles. See III.D for the test whereby
a committed transaction eventually ceases to be a zombie and
disappears from the lock table and CTG. Since the cycles we
find from a committing Tn will contain only zombie
transactions, the cycle can be broken only by aborting Tn. All
other transactions in the cycle will have already committed.
We provide details of the CTG in III.C.

A. Zombie Transactions
As each transaction starts, it is assigned a Transaction ID
(TID). The TID is an integer n and the transaction is
represented as Tn to symbolize this. As each active Tn
performs read and write operations, we track these reads and
writes in the lock table. On commit of Tn, we need to
determine all dependencies from Tn to previously committed
transactions Tm that might still be involved in a dependency
cycle with a newly committed Tn, i.e., zombie transactions.
We give some examples below of cycles between newly
committed transactions and previously committed transactions.
In order to determine what dependency edges exist between
such transactions, read and write locks previously taken by
zombie transactions must continue to exist in the lock table,
and directed edges between all such transactions must
continue in the CTG.

Figure 3.1 illustrates why a transaction cannot be ignored
even after it has committed. In Figure 3.1a, transaction T1 has

R1 W1

R2

Time right after
W1, no W2 yet.

Figure 3.1a. Potential Cycle

Figure 3.1b. SI-RW Diagram of Completed Cycle

committed, but transaction T2 is concurrent with it and still
active, so new dependency edges can still arise between T1
and T2, leading to a cycle. Note that after C1, T2 might read a
row that was written by T1 (causing the dependency edge T2--
rw→T1 of Figure 3.1b) and T2 might also update a new data
item that was read but not written by T1 (causing edge T1--
rw→T2 of Figure 3.1b). The cycle of Figure 3.1b is the same

rw

R1 W1

W2

rw

R2

-6-

skew-write cycle we illustrated in Figure 2.2. Since T1 had
already committed but could still form a cycle with
committing transaction T2. Thus T1 is a zombie transaction.

It is also possible for a transaction to be a zombie even if no
active transaction is concurrent with it. In Figure 3.2, T1 is a
zombie because a cycle from the active T4 can include a long-
committed T1. Note in Figure 3.2 that while T4 remains active
after T3 commits, it is possible for T4 to overwrite a row that
T1 read earlier, creating a dependency T1--rw→T4, and read a
row that the concurrent T3 wrote earlier, creating T4--rw→T3.
We can now go backward in time from T4 through T4--rw→T3
then back through the duration of T3, and through T3--rw→T2
and back through the duration of T2, then through T2--rw→T1
and complete the loop with T1--rw→T4. Note too that instead
of T4 writing a row that T1 read earlier, T4 could also write a
row that T1 wrote earlier -- thus a T1--ww→T4 (with T1 and T4
non-concurrent) could create a different cycle from T1 to T4
and back to T1.

Figure 3.2. "Lightning Bolt" and a Potential Cycle

We define a "lightning bolt" of length k to be a sequence of
transactions T1-T2-...-Tk, k ≥ 2, where consecutive Ti-1 and Ti
are concurrent and have an anti-dependency between them, Ti-
-rw→Ti-1 for each i, 1< i ≤ k. In Figure 3.2, the sequence of
transactions T1-T2-T3 forms a lightning bolt of length 3. If we
were to drop transaction T1 from this sequence and keep only
T2-T3, we would have a lightning bolt of length 2. Note the
reason there cannot be a lightning bolt of length 1 is that two
transactions are needed for an anti-dependency to exist.

Even if T1 is deleted from Figure 3.2, an active T4 can still
cause a cycle with T2-T3 by creating a -rw- dependency from
R4 to W3 and either a -rw- or -ww- dependency from T2 to W4.
On the other hand, if we kept the lightning bolt T1-T2-T3 and
simply had T4 create a -rw- dependency from R4 to W3, we
would end up with a lightning bolt of length 4.

We explain how lightning bolts are pruned in Section III.E,
after we have discussed the design of the Lock Table and
CTG component.

B. Lock Table
The Lock Table of Figure 3.3 is descended from the Lock
Manager diagram in Figure 8.8 of Gray and Reuter [12]. We
note in Figure 3.3 that the lock objects represented by boxes
Ri and Wi each sit on two doubly-linked lists. One list has a
header at the InnoDB transaction object Ti, and contains a
series of lock objects taken by that transaction. Our
implementation adds new read locks at the beginning of the
list and new write locks at the end of the list, a minor
optimization for later processing. The second list has a header
in the entries on the left reached by the hash value of a table
page containing one or more row locks. New locks are added

in temporal order from the header, read locks in order by Ti
and Write locks with notional time of infinity (except in one
unusual case of implicit lock conversion).

Note that although the lock headers on the left are for table
pages, we do not normally lock entire pages. Individual rows
and ranges of rows within a page are represented as bit maps
within InnoDB's lock objects. This provides a particularly
efficient representation for long ranges.

When a read lock is added to the lock table, no
dependencies are determined at that time so there is no effect
on the transaction performing the read or on other transactions
until commit time. When a write lock is added, the only aborts
and blocking that can occur are due to FUW. Thus reads and
writes succeed or fail just as in pure SI under FUW as detailed
above. In SSI and ESSI, reads and writes can fail due to
detection of dangerous structures, i.e., for isolation reasons. In
PSSI, a full cycle must occur to cause an abort, and we do not
attempt to detect cycles until commit time.

r103 w104

r104

r101 r102 w101 w102

T101 T104 T103 T102
InnoDB

Transaction

Manager

hash

of page

432

hash

of page

99

hash

of page

277

InnoDB

Lock

Table

Figure 3.3. PSSI Lock Manager

C. Cycle Testing Graph (CTG) Component
As discussed above, a committing transaction Tk must be
aborted if and only it creates a cycle of dependencies with
previously committed transactions. PSSI checks this condition
at commit time using the CTG, a graph with transactions as
nodes and dependencies as edges, comparable to the DSG of
Figure 2.1, except that if both -wr- and -ww- dependency
edges exist in the same direction between two transactions,
one of them is removed. These edges will end up without
types in the CTG. The CTG contains previously committed
transactions that can still figure in cycles (zombie transactions)
plus the one now committing, if any. At each transaction Tk
commits, the transaction is added to the CTG, and dependency
edges to and from existing zombie transactions are determined
from the Lock Table and added. The CTG is then cycle-tested
with a depth-first search from Tk, and the Tk is aborted if a
cycle is found. Finally, the CTG is “pruned” to remove
transactions that cannot be a part of any future cycle.

-7-

The CTG contains the committed zombie transactions that
are still represented in the lock manager by read locks and
write locks. The edges of the CTG are directed and unlabeled.
An edge exists from Ti to Tk if there is any type of
dependency (read-write, write-read, or write-write) involving
any data item, or multiple such dependencies. The edge link
information is materialized as an array of edges in the source
transaction object, along with a count of in-edges, to be used
in pruning. Both the set of out-edges and the count of in-edges
can change while a transaction resides in the CTG because
newly committed transactions add to the edges and pruning
removes edges as neighboring transactions are pruned away.

At commit time, it is straightforward to follow the chain of
locks for Tk in the lock manager, and for each of Tk’s locks,
follow the chain of locks for a certain data item locked by Tk,
to find all the locks held by Tm as well as Tk, and analyze
these situations to find which ones in fact give rise to
dependencies needed for the CTG. Each new dependency is
entered in the source transaction’s out-edge list and counted in
the destination transaction’s in-edge count.

D. Pruning Zombie Transactions
A zombie transaction Tk in the CTG can be pruned from the
CTG and from the Lock table if it satisfies two conditions:
(C1) Tk's in-edge count is equal to zero.
(C2) Tk committed before the oldest active transaction started.
Condition C1 guarantees that there are no dependency edges
leading into Tk from transactions still in the CTG, so no
"lightning bolts" exist which include Tk. However Condition
C1 allows Tk to be the first node in a lightning bolt. Condition
C2 guarantees that no currently active transaction Tm can
create a Tm--rw→Tk dependency edge, since that would
require that Rm preceded Wk, which would mean Tm started
before Tk committed, contradicting C2.

C1 and C2 are easy to check, and on finding such a
transaction, its removal from CTG will remove out-edges and
reduce the in-edge counts of other transactions, possibly
making them eligible for removal as well. Note that the out-
edges of the pruned transaction lead to the transactions with
newly reduced counts, so a recursive search efficiently covers
all possibilities. The algorithm for pruning zombie
transactions has two stages:

1. Identify a starting set S of transactions in CTG that
obey C1 and C2 and are therefore prunable.

2. Recursively prune the CTG starting from each
transaction in S and following its out-edges to prune
further as appropriate.

When the pruning algorithm completes, all transactions in the
CTG that committed before the oldest transaction started have
strictly positive in-edge count. At the next commit, the newly
added transaction may be prunable, or this commit may move
the start time of the oldest active transaction, so that a fresh
batch of transactions satisfies condition C1.

We found no circumstances where lightning bolts grew
arbitrarily long, but nevertheless implemented a method to

restrict their length to a chosen limit L (such as 20 or 100),
much as ESSI restricts their length to 2.

IV. PERFORMANCE
We define a benchmark in this section named SICYCLES,
intended for measuring performance in SI-like systems such
as SI, ESSI and PSSI. SICYCLES is designed to run multiple
identical concurrent transactions that read and update columns
of distinct rows with the potential to generate anomaly cycles.
The number of cycles measured may be expected to grow with
the number of concurrent transactions supported, called the
MultiProgramming Level, or MPL.

A. BENCH table for the SICYCLES benchmark
The SICYCLES benchmark runs transactions accessing a
HOTSPOT on a single table named BENCH, which contains
1,000,000 rows. Columns of BENCH are defined as integer,
not null, except for a kpad column of type char.
kpad has 1,000,000 distinct char values generated with
length 20 to give all rows a 100-byte length

The integer columns for the 1,000,000-row table BENCH
are described as follows.
kseq has values 1 to 1,000,000 in order on the rows stored
and is the primary key for the table.
krandseq has values 1 to 1,000,000 distributed randomly on
the rows and is unique on the table.
kval (the only column updated) has values between 10,000
and 99,999 distributed randomly.
A list of 17 different kn columns are defined below

Updates of kval in SICYCLES will add a small amount
based on the values of the kval columns read, as described
below; multiple updates of this kind will continue to leave
kval values approximately the same.

The kn columns are listed as follows:
k4, k8, k16, k32, k64, k128, k256, k512, k1024, k2500,
k5k, k10k, k25k, k50k, k100k, k250k, k500k.
Each kn column has n distinct values 1 to n randomly
assigned to the different rows. Thus we will be able to
generate predicates of the form "kn = m" with 1 ≤ m ≤ n to
contain about 1,000,000/n rows independent of one another.
All columns except kval (often modified) and kpad (never
accessed) are indexed.

It is intended that the BENCH table always remain
memory (buffer) resident for quick access.

If a HOTSPOT for queries and updates is chosen by a range
on kseq or krandseq, and then the same index is used to
select kval updates, there will be conflicts on the index page
for kval that greatly slow the benchmark threads. Therefore
we usually define a hotspot as a set of rows randomly chosen
on the table and then remember the krandseq values to
access those rows.

-8-

B. SICYCLES Transaction Definition
Recall that kval (the only column updated) has values
between 10,000 and 99,999 distributed randomly. Each
SICYCLES benchmark run has concurrent transactions with
MultiProgramming Level (MPL) M, profiled by an integer
pair (K, N), K ≥ 1, N ≥ 1. Each transaction in this run reads k
randomly chosen rows (x1, x2, …, xK) from a HOTSPOT of
the BENCH table to find the average kval value v, then
adds a small positive or negative fraction of the value v, c*v
or -c*v (c = 0.001, positive or negative values chosen at
random) to each of the kval values of rows (y1, y2, …, yN),
also in the HOTSPOT. No pair of rows from the union of xi
rows and yj rows are identical.

For K = N = 1, we say that a transaction Ti that reads kval
from the single row x and adds the positive or negative
fraction c of x to y "copies a fraction of x to y leaving x
unchanged", and that x is the source row and y is the sink row
of Tk. We refer to this by saying for short: "Tk acts on (x, y)".
Since the rows x and y are randomly chosen from a Hotspot
described below, if Tk acts on (x, y) and a concurrent
transaction Tm acts on (y, x), we end up with a skew write
cycle, as in Figure 2.2. We can get a cycle of length three if
the T1 acts on (x, y), T2 acts on (y, z), and T3 acts on (z, x).
Similarly we can create any larger length cycle by choosing x,
y, …, z and copying by pairs from successive rows in the
sequence to the next row, then copying from z to x at the end.
Similar cycles can occur in many ways when K >1 and N > 1.

We note that the SICYCLES benchmark has an interesting
property, that there is no reasonable set of aggregates to
materialize that could be updated along with the row values
themselves to avoid an anomaly, even in the case K = N = 1.
In Write Skew Example 1.1, we have a constraint that X + Y
> 0, and if we materialize a sum S = X + Y that must be
updated with every update of X or Y this would avoid the
write skew anomaly. But the only constraint that holds in
SICYCLES when T1 acts on (x, y) is that after running a
concurrent set of transactions, x remains unchanged and y
ends up somewhat larger. If there is any sequence x, y, …, z
where successive pairs are acted on by concurrent transactions
with no cycle, we still have y, …, z increasing in value and x
remaining the same. Only if there is a cycle will no row retain
its original value after running a concurrent set of transactions.
The only set of aggregates we can add that would detect a
cycle is the set of all row pairs (x, y) with a rule that at least
one of the rows must remain the same after a concurrent set of
transactions acts on them. A cycle will break this rule.

C. Performance Measurements
We implemented and tested the PSSI system, and our versions
of SI and ESSI, using MySQL 5.1.31 with its InnoDB engine.
Our tests used a two-machine client/server setup, the server
being an HP Z400 workstation with a Quad-core 2.66 GHz
Intel Xeon 3520 CPU, 4GB of RAM, running 64-bit
OpenSUSE 11.2 (Linux kernel version 2.6.31) with a 7200
RPM Seagate SATA disk. Our client machine was a Lenovo
ThinkPad with a 2.53 GHz Intel Core-2 Duo CPU, with 2GB

of RAM, and a 32-bit version of OpenSUSE 11.2 (also kernel
2.6.31). Our client program was written in Java, and run with
Sun's JVM version 1.6.0_18, and MySQL/ConnectorJ driver
version 5.1.1. To minimize network latency, the client and
server machines were connected via a dedicated physical LAN,
with a gigabit Ethernet switch.

Each of our data points was chosen as the median from
three 60-second measurement periods. Prior to each
measurement period, we (a) start the MySQL server process,
(b) run a series of select statements to bring needed pages into
buffer (all row accesses during tests are buffer resident), and
(c) execute a two-second warm-up, allowing the client to
reach full MPL. At the end of each measurement period we
bring down the MySQL server after a two-second cool down.

As noted in Section IV.B, we varied the number of reads, k,
and the number of writes, n, in our tests, and we will denote
this using the shorthand notation sKuN, k single-row selects,
and n single-row updates. For example, the notation "s3u1"
means "select three, update one".

Our test client inserts a randomized delay of 3ms ± 50%
after each single row select or update (with the exception of
the final statement before commit), and there is no think time
between transactions. The randomized delays prevent our test
system from being saturated prematurely, thereby allowing us
to report measurements with a greater range of results. The
lack of think time between transactions keeps the number M
(for MPL) of concurrently active transactions consistent
during the measurement period.

We found it rather simple to implement ESSI's criteria for
aborting transactions, but our implementation differs in a
number of ways from the one described in [5], so we cannot
be fully confident that a throughput comparison between PSSI
and our implementation of ESSI would be valid. That said, the
comparison of serializable aborts and FUW aborts per
transaction seems to indicate that the throughput differences
between ESSI and PSSI are approximately correct. We hope
to provide an apples-to-apples comparison between PSSI and
ESSI at some future time, where the two implementations
compete on the same hardware.

As a final point, we note that most of our measurements
were run with one log flush to disk each second, whereas the
ESSI measurements of [5] were run with a log flush following
each commit. We show one measurement with a disk flush
after each commit (Figure 4.9), but this approach slows
performance markedly, since the frequent disk access lowers
the effective MPL. However it is the more correct approach
since InnoDB does not offer Group Commit, which allows
multiple transactions to commit without acknowledging
success until all logs in the group of transactions are flushed
to disk. In this way transactions can run continuously, writing
logs to a second buffer while the first one is being written to
disk. All major DBMS systems provide Group Commit and
there are comments about implementing Group Commit in the
InnoDB source code. We decided to err on the side of better
performance available on major systems and hopefully in
InnoDB at some point in the future by performing infrequent
log flushes in most of our tests

-9-

1) Successful Commits and Serialization Aborts s5u1
Figures 4.1, 4.2 and 4.3 show graphs of transactions with 5
selects and one update (s5u1) that commit successfully (CTPS
for "Committed transactions per second"), which shows the
most favorable results for PSSI vs. ESSI performance. The
least favorable results occur when the number of selects and
updates are the same (s3u3 and s1u1), as we will see.

Figure 4.1 Committed Transactions Per Second, s5u1, 100 row hotspot

Figure 4.2 Committed Transactions Per Second, s5u1, 200 row hotspot

Figure 4.3 Committed Transactions Per Second, s5u1, 200 row hotspot

Note that the 100-row hotspot in Figure 4.1 seems too
restrictive, since SI shows just over 1600 CTPS compared to
just over 1900 CTPS in Figures 4.2 and over 2100 CTPS in
4.3, and S2PL shows a negative slope after 30 MPL. We will
confine ourselves to 200 and 400-row hotspots in what
follows. In Figures 4.2 and 4.3, SI has the most commits per
second, but of course SI has no serializability aborts so it can
commit anomalous transactions. PSSI, ESSI, and S2PL allow
only serializable executions, but ESSI aborts essential
dangerous structures while PSSI only aborts cycles. Thus
PSSI can be expected to have a smaller number of
serialization aborts than ESSI. And in fact we note that PSSI
has higher CTPS in all our tests.

Figure 4.4 Serialization Aborts, s5u1, 400 $ 200 row hotspots

Figure 4.5 Serialization Aborts, s5u1, 400 $ 200 row hotspots

In Figure 4.4 the number of serialization aborts per second in
the PSSI 200-row hotspot case at 50 MPL (using precise
measurements underlying the Figure) is 310, compared to 640
in ESSI, a difference of 330 aborts per second. On the other
hand, ESSI has 335 FUW aborts per second in the 200-row
hotspot case at 50 MPL, fewer than the 395 FUW aborts per
second for PSSI, a difference of 60 aborts per second. Thus
the CTPS advantage that PSSI seems to have over ESSI
Figure 4.2 at 50 MPL is 330 - 60 = 270 CTPS, but ESSI runs
slightly more tranactions per second, so the actual CTPS
advantage of PSSI over ESSI is 251. The reason for fewer

-10-

FUW aborts in ESSI is that a larger number of serialization
aborts prevents some FUW aborts that might otherwise occur.

2) CTPS Difference for s3u1, s1u1 and s3u3
We repeat below the s5u1 CTPS measures for the 200-row
hotspot, to compare it with successful commits per second for
s3u1 and s1u1 with the same hotspot size.

Figure 4.6 (=4.2) Committed Transactions Per Second, s5u1, 200 row hotspot

Figure 4.7 Committed Transactions Per Second, s3u1, 200 row hotspot

Figure 4.8 Committed Transactions Per Second, s1u1, 200 row hotspot

In Figure 4.6, the s5u1 case, the CTPS for PSSI at MPL 50 is
1680, while the CTPS for ESSI is 1429, a difference of 251
CTPS. In Figure 4.7, the s3u1 case, the CTPS for PSSI at
MPL 50 is 2967, while the CTPS for ESSI is 2577, a
difference of 390 CTPS. In Figure 4.8, the s1u1 case, the
CTPS for PSSI at MPL 50 is 7921 while the CTPS for ESSI is
7610, a difference of 311 CTPS.

We also note that at s1u1, Figure 4.8, the performance of
S2PL actually beats PSSI and ESSI at MPL 50. This occurs
because with updates making up half of the data operations,
PSSI and ESSI both have many more FUW aborts, but an
FUW situation will only cause a lock wait in S2PL and both
transactions might very well commit. We notice the same
effect in Figure 4.9 measuring s3u3. The hotspot in this case is
1800 rows because the writes per transaction compared to
s1u1 are tripled, meaning that the number of FUW aborts can
be expected to rise by a factor of nine. Thus an 1800 row
hotspot in this case corresponds to a 200-row hotspot in
Figure 4.8 measuring CPTS for s1u1. Once again we note that
S2PL beats PSSI (with SI overlaying it) and ESSI.

 If we consider the Figures 4.8, 4.7 and 4.6 in increasing
order by the number of reads per transaction, we note that
with more read operations, the transactions have a larger
number of inter-transactional dependencies with no increase
in FUW aborts, causing a preponderance of serialization
aborts where PSSI has a significant advantage over ESSI. The
reason S2PL does more poorly in this sequence of Figures is
that the number of read-write conflicts goes up with the larger
number of reads, and thus there are more Waits.

Figure 4.9 Committed Transactions Per Second, s3u3, 1800 row hotspot
We note that in the sibench benchmark of [5], S2PL was not
competitive with SSI (our ESSI), but this benchmark had just
two transactions, a read-only transaction that performed a full
table scan and an update transaction that updated a single row.
Thus there were no conflicts for ESSI, and in S2PL reads and
writes took turns accessing rows, so throughput was dismal.
ESSI throughput on the other hand was augmented by a
design decision not to determine read snapshots until after the
first data access of the transaction has occurred. This
guaranteed that no FUW abort could occur even if two
transactions performing only one update both updated the

-11-

same row. However we also note that in the TPC-C++
benchmark of [5], S2PL beat ESSI and SI as well, just as it
does in our Figures 4.8 and 4.9.

In Figure 4.10, we provide the graph of committed
transactions per second for s5u1 and a 200-row hotspot where
a flush is performed at every commit.

Figure 4.10 Commited Transactions per Second, s5u1, Flush on Commit
We note that the maximum CTPS measure for MPL 50 is a bit
over 500 compared to the range 1400 to 2000 in Figure 4.2
(and equivalently, 4.6) where flushes were performed once a
second instead of with every commit. We believe this
demonstrates the approximate difference between a flush at
every commit and a group commit where a flush occurs much
less frequently and transactions can execute continuously. We
also note that in this case S2PL runs slightly faster than SI and
PSSI at MPL 50 instead of slowest in Figure 4.2 (and 4.6).

V. FUTURE WORK
Financial companies such as banks require an auditable record
of account balances, i.e., a serial order derived from a
transaction history. When an error is found in the total bank
balance compared to total deposits and withdrawals at audit
time, a bank must determine where the error occurred in the
sequence of account changes. An error in a particular cash
drawer might indicate a more serious problem. In S2PL
schedulers, serializability guarantees that there is a strict serial
order to row modifications, which corresponds to the order of
commits by the transactions updating those rows.

Although we have shown that a serializable history is
guaranteed in PSSI, the equivalent serial order of row updates
often does not correspond to the transactional commit time.
(This is true of ESSI and SSI as well.) This is because when a
series of update transactions make up a lightning bolt in PSSI,
the order of transaction commits is reversed in the serializably
equivalent history once the lightning bolt becomes prunable.
(See III.D for how this happens.) We show how this occurs
with a lightning bolt of length 2 in Example 5.1.

Example 5.1. An obvious thought experiment that seems to
determine the order of row updates is to consider a series of
Read-Only transactions moving forward in time and reading
all row values after each update transaction commits. But this

approach fails because, as shown in [7], a Read-Only
transaction can form a cycle with the update transactions of a
lightning bolt of length two. Thus, the values shown by the
read-only transaction are inconsistent. The history example
given in [7], which we name H4 here, is this:

R2(X0) R2(Y0) R1(Y0) W1(Y1) C1

 R3(X0) R3(X0) R3(X0) R3(Y1) C3
 W2(X2) C2

Figure 5.1. History H4, example given in Reference [7]

The anomalous cycle occurring in H4 is explained as follows:
X and Y are data items in different rows representing a
checking account balance X and a savings account balance Y,
with X0 = 0 and Y0 = 0 initially. In what follows T1 deposits
20 to Y and commits, and concurrently T2 subtracts 10 from X,
under the rule that a withdrawal is covered as long as X+Y > 0,
but an overdraft with a penalty charge of 1 occurs if X+Y
goes negative. Then T3 is a read-only transaction that reads
values X and Y and prints them for the customer. In H4, T3
will show X = 0 and Y = 20, giving the impression that no
penalty will take place. However when T2 subtracts 10 from Y,
the incremented value of X will not be seen, since the two
transactions are concurrent, so we will end up with Y = 20 and
X = -11. It was clearly wrong to allow T to show X = 0 and Y
= 20, since the customer is misled. This is because of a cycle
shown below in the SI-RW Diagram of H4 shown in Figure 5.2.

Figure 5.2. History H4: SI-RW Cycle with Read-Only Transaction T3

The example given in [7] seems rather contrived, but it is
quite germane to considerations of the order in which updates
occur in an SI-like history. We see that moving a read-only
transaction to successive points in the history will not provide
the proper values read for any equivalent serial history. In fact,
the proper order of updates in Figures 5.1 and 5.2 is that
W2(X2) will occur first, setting X = -11, and then W1(Y1) will
occur, setting Y to 20. This becomes clear if we note that the
anti-dependency from R2(Y0) to W1(Y1) means that T2 must
come before T1 in an equivalent serial history. We believe we
will be able to demonstrate in a future paper a commercially
viable algorithm to provide an appropriate serial order for
ESSI or PSSI while a transactional system is executing any
challenging application.

REFERENCES
[1] ANSI X3.135-1992, American National Standard for Information

Systems — Database Language — SQL, November, 1992
[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil.

“A Critique of ANSI SQL Isolation Levels”. Proc. ACM SIGMOD
1995: pp. 1-10.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison Wesley, 1987.
(ACM SIGMOD Anthology, Volume 4 Issue 1, or DVD2.)

-12-

[4] M. Cahill, U. Röhm and A. Fekete. “Serializable Isolation for Snapshot
Databases”. Proc. ACM SIGMOD 2008: 729-738.

[5] M. Cahill, U. Röhm and A. Fekete. “Serializable Isolation for Snapshot
Databases”. ACM TODS 2009: 20:1- 41.

[6] K.P. Eswaran, J. Gray, R. Lorie, I. Traiger, “The Notions of
Consistency and Predicate Locks in a Database System” Res. Rep., RJ
1487, IBM Res. Lab., San Jose, Calif., 1974, later in CACM V19.11,
pp. 624-633, Nov. 1974

[7] A. Fekete, E.J. O'Neil and P. E. O'Neil. “A Read-Only Transaction
Anomaly Under Snapshot Isolation”, ACM SIGMOD Record, Vol. 33,
No. 3, Sept. 2004.

[8] A. Fekete, S. Goldrei, J. Asenjo, “Quantifying Isolation Anomalies”,
Proc. VLDB 2009.

[9] A. Fekete, D. Liarokapis, E. O'Neil, P. O'Neil, D. Shasha. “Making
Snapshot Isolation Serializable”. ACM TODS, 30(2), 492-528 (2005).

[10] J.N. Gray, R. A.Lorie, G.R. Putzolu and I.L. Traiger. “Granularity of
Locks and Degrees of Consistency in a Shared Data Base”. Presented
1975 in IFIP Working Conference. Accessible on
http://research.microsoft.com/~Gray/

[11] Jim Gray. “Notes on Database Operating Systems. an Advanced
Course,” Bayer et. al. eds., Lecture notes in Computer Science 60,

Springer-Verlag, 1978, pp. 393-481. Accessible on
http://research.microsoft.com/~Gray/

[12] J. N. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[13] “InnoDB Transaction Model and Locking.”
http://dev.mysql.com/doc/refman/5.1/en/innodb-transaction-
model.html Particular attention to 13.6.8.4. Record, Gap, and Next-Key
Locks, and 13.6.9.5 Avoiding the Phantom Problem Using Next-Key
Locking.

[14] K. Jacobs, with contributors: R. Bamford, G. Doherty, K. Haas, M.
Holt, F. Putzolu, B. Quigley. “Concurrency Control: Transaction
Isolation and Serializability in SQL92 and Oracle7”. Oracle White
Paper, Part No. A33745, July, 1995.

[15] S. Jorwekar, A. Fekete, K. Ramamritham and S. Sudarshan.
“Automating the Detection of Snapshot Isolation Anomalies”. Proc.
VLDB 2007: 1263–1274

[16] Mohan, C. 1995. “Concurrency control and recovery methods for B+-
tree indexes: ARIES/KVL and ARIES/IM”. In Performance of
Concurrency Control Mechanisms in Centralized Database Systems, V.
Kumar, Ed. Prentice-Hall, 248-306.

[17] TPC-C Benchmark Specification. Transaction Processing Performance
Council. http://www.tpc.org/tpcc, 2005.

