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ABSTRACT
The bit-sliced index (BSI) was originally defined in [ONQ97].

The current paper introduces the concept of BSI arithmetic. For

any two BSI’s X and Y on a table T, we show how to efficiently

generate new BSI’s Z, V, and W, such that Z = X + Y, V = X - Y,

and W = MIN(X, Y); this means that if a row r in T has a value x

represented in BSI X and a value y in BSI Y, the value for r in

BSI Z will be x + y, the value in V will be x - y and the value in

W will be MIN(x, y). Since a bitmap representing a set of rows

is the simplest bit-sliced index, BSI arithmetic is the most

straightforward way to determine multisets of rows (with

duplicates) resulting from the SQL clauses UNION ALL

(addition), EXCEPT ALL (subtraction), and INTERSECT ALL

(min) (see [OO00, DB2SQL] for definitions of these clauses).

Another contribution of the current paper is to generalize BSI

range restrictions from [ONQ97] to a new non-Boolean form:

to determine the top k BSI-valued rows, for any meaningful

value k between one and the total number of rows in T.

Together with bit-sliced addition, this permits us to solve a

common basic problem of text retrieval: given an object-

relational table T of rows representing documents, with a

collection type column K representing keyword terms, we dem-

onstrate an efficient algorithm to find k documents that share

the largest number of terms with some query list Q of terms.  A

great deal of published work on such problems exists in the

Information Retrieval (IR) field. The algorithm we introduce,

which we call Bit-Sliced Term-Matching, or BSTM, uses an

approach comparable in performance to the most efficient

known IR algorithm, a major improvement on current DBMS

text searching algorithms, with the advantage that it uses only

indexing we propose for native database operations.

1. INTRODUCTION
The bit-sliced index (BSI) was originally defined in [ONQ97],

where it was demonstrated how to use a BSI representing

column quantities to evaluate SQL aggregate queries

(specifically, SUM queries), and to impose range restrictions

in a SQL WHERE clause. In the current work, we introduce the

concept of BSI arithmetic: addition, subtraction, and min, and

show how such BSI operations provide a natural way to

determine results of SQL clauses UNION ALL, EXCEPT ALL,

and INTERSECT ALL (see [OO000, DB2SQL]), where row sets

resulting from subqueries can be combined into multisets

(also called bags) of rows: that is, sets with duplicates

permitted. For example, Query (1.1) below conforms to ANSI

Standard SQL-99 and executes in Microsoft SQL Server to pro-

vide a multiset result:

(1.1) SELECT COUNT(*) CT, PRID FROM

( SELECT PRID FROM T WHERE Col_1 = const_1

UNION ALL

SELECT PRID FROM T WHERE COL_2 = const_2

UNION ALL

.   .   .

SELECT PRID FROM T WHERE COL_M = const_M)

AS NEW_T

GROUP BY PRID;

Query (1.1) retrieves the various COUNT(*) multiplicities with

corresponding primary key identifiers PRID, from the UNION

ALL of the Equal Match predicates in the FROM Clause of the

outer Select. The GROUP BY PRID, would normally select only

one row in each group of T, but in this case it selects the appro-

priate multiplicities of individual rows arising from the

UNION ALL. No current database product keeps track of these

multiplicities using BSI addition, but we will show that BSI

addition is extremely efficient for this purpose.

We can also construct examples of queries where multiplicities

are subtracted, using EXCEPT ALL, and the minimum

multiplicity of two multisets is determined, using INTERSECT

ALL. Note that in the case of EXCEPT ALL and INTERSECT

ALL, any negative numbers in the result BSI must be replaced

with zeros, since rows do not appear with negative

multiplicities in SQL.

The current paper also generalizes BSI range restrictions to a

non-Boolean form: instead of finding all rows in a table T with

a BSI value greater than some constant C (however many rows

that might be), we show how to efficiently determine the top k

BSI-valued rows, 1 <= k <= |T|, where |T| is the cardinality of T.

We require this capability along with BSI addition for our term

matching algorithm, BSTM, which we now explain.

Given an object-relational table T of rows representing docu-

ments, with a collection type column K representing keyword

terms, we model two documents as being close if they contain

a large number of common terms. A (Maximum) Term

Matching algorithm (TM algorithm) under this metric finds

the k nearest documents from a given document in a

collection, i.e., the k documents with the largest number of

matching terms. If a query is modeled as a collection of terms,

a TM search finds the k documents with the largest number of

terms matching the query. Much published work on TM search
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algorithms exists in the Information Retrieval (IR) field (also

called the Text Retrieval field). The new algorithm we

introduce, called the Bit-Sliced Term-Matching or BSTM
algorithm, uses basically the same approach as the most

efficient IR algorithm, the Perry-Willet Term Matching

algorithm, PWTM [PW83], and has the advantage that i t

depends only on what we propose as native operations for a

DBMS. Some TM algorithms in IR use more complex distance

metrics than ours (see [KZS99]), for example by weighting

term matches higher for terms that are relatively infrequent. In

our concluding section we explain how BSTM can be

generalized to more complex metrics. Searching documents for

terms in this way is of great interest, of course, as evidenced by

Database Vendor products such as the Oracle Cartridge named

ConText, and the DB2 Extender product named Text Extender

[BYTE97, PCW97].

To illustrate how SQL can provide a statement to retrieve the

top k documents in terms of a count of valid equal match

restrictions, we modify Query (1.1) to another form, Query

(1.2), valid in  Microsoft SQL Server, but not in SQL-99:

(1.2) SELECT TOP 10 COUNT(*) CT, PRID FROM

( SELECT PRID FROM T WHERE COL_1 = const_1

UNION ALL

SELECT PRID FROM T WHERE COL_2 = const_2

UNION ALL

.   .   .

SELECT PRID FROM T WHERE COL_M = const_M)

AS NEW_T

GROUP BY PRID

ORDER BY CT DESC;

Note that the final clause, "ORDER BY CT DESC," guarantees

that the top 10 documents with maximum counts of matches

on the set of restrictions will be retrieved.

We note in passing that classic SQL queries with Boolean

syntax were unable to find rows with the largest number of

matching terms from a given set; Gerard Salton [SALT89]

pointed out this shortcoming in SQL some years ago. The

problem is that there is no Boolean condition that can deal

with a count of matches on subsets of conditions. If a query Q

provides a list of M keyword terms, and we wish to find k rows

with the largest number of matches using classical SQL, we

would need to perform a query to look for rows with matches

on all M keywords, then multiple queries to look for rows with

matches on any subset of M-1 of the keywords, and so on

down to subsets of cardinality M-j, with j possibly ranging up

to a large fraction F of M, before we find k rows with the

maximum number of keyword matches. The number of distinct

queries on subsets that would be required is thus:

M

M j
j

F

−




=

∑
1

For F = M/2, the number of distinct queries required is about

2
M-1

. Of course with the addition of the newer UNION ALL and

TOP k clauses, Query (1.2) provides the appropriate syntax to

perform maximal term matching.  The TOP k clause is not in

the SQL-99 Foundation Document, but it is implemented in a

number of database products.

The plan of the remainder of this paper is as follows. In Section

2 we present previously published fundamental concepts of

bitmaps and bit-sliced indexes. In Section 3 we present our

new algorithms for bit-sliced arithmetic and show how these

apply to SQL clauses UNION ALL, EXCEPT ALL, and

INTERSECT ALL. Section 4 introduces our new BSMT

algorithm to retrieve k rows with the largest set of matching

terms to a list of terms given by a query Q. In Section 5, we

explain the optimal PWTM algorithm used in IR, and discuss

aspects of comparative performance to our BSTM algorithm.

Section 6 provides experimental results comparing the two

algorithms, both of which we have implemented in prototype.

Finally, Section 7 presents our conclusions and suggestions

for future work, including a description of how our BSTM

algorithm can be generalized to handle weighted terms.

2. FUNDAMENTAL CONCEPTS
We review a number of previously published concepts below,

before presenting new material.

Bitmap Index Definition. [ON87, ONQ97] To create a bitmap

index, all N rows of the underlying table T must be assigned

ordinal numbers: 1, 2, . . . , N, called Ordinal row-positions, or

simply Ordinal positions. Then for any index value Xi of an

index X on T, a list of rows in T that have the value Xi can be

represented by an Ordinal-position-list such as: 4, 7, 11, 15,

17, . . ., or equivalently by a verbatim bitmap,

00010010001000101 . . .. Note that sparse verbatim bitmaps

(having a small number of 1’s relative to 0’s) will be

compressed, to save disk and memory space. ♦           

Variations on this bitmap index definition were studied in

[CHI98, CHI99, WUB98, WU99]. Ordinal row-positions 1, . . . ,

N can be assigned to table pages in fixed size blocks of size J ,

1 through J on the first page, J+1 through 2J on the second

page, etc., where J is the maximum number of rows of T that

will fit on a page (i.e., the maximum occurs for the shortest

rows). This makes it possible to determine the zero-based page

number pn for a row with Ordinal position n by the formula pn

= (N-1)/J. A known page number can then be accessed very

quickly when long extents of the table are mapped to

contiguous physical disk addresses. Since variable-length

rows might lead to fewer rows on a page, some pages might

have no rows for the larger Ordinal numbers assigned; for this

reason, an Existence Bitmap (EBM) is maintained for the table,

containing 1 bits in Ordinal positions where rows exist, and 0

bits otherwise. The EBM can also be useful if rows are deleted,

making it possible to defer index updates.

It is a common misunderstanding that every row-list in a

bitmap index must be carried in verbatim bitmap form. In

reality, some form of compression is always used for sparse

bitmaps (although verbatim bitmaps are preferred down to a

relatively sparse ratio of 1’s to 0’s such as 1/50, because many

operations on verbatim bitmaps are more CPU efficient than on

compressed forms). In the architecture implemented for this

paper, which we call the BITSLICE architecture, bitmap

compression simply involves converting sparse bitmap pages

into ordered lists of Segment-Relative Ordinal positions

called ORDRIDs (defined below). We first describe Segmenta-

tion, which was introduced in [ON87, ONQ97] and is used in

the BITSLICE architecture.

Segments and Segment Relative Addressing. We break the

rows of table T into equal-size blocks so that the bitmap
fragment for the set of rows in each block will fit on a single

disk page. These blocks of rows are called Segments, following

the MODEL 204 nomenclature of [ON87]. Our BITSLICE
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architecture uses 4KByte disk pages, so Segments contain S =

8*4000 = 32,000 rows. (We use S = 32,000 as a rough

estimate; the true number is larger, but not quite 2
15

 = 32,768,

because we leave space on the bitmap page for a count of 1-bits

to tell us when compression is needed.)

A B-tree index entry for an index value Xi in the BITSLICE

architecture has the format shown in Figure 1. (The Seginfo

layout is defined below in Figure 2.)

Xi Seginfo Seginfo . . . Seginfo

  Figure 1. Bitmap Index Entry in BITSLICE

The entry in Figure 1 can grow to the length available on the

B-tree leaf page where it resides, and another entry with the

same index value Xi can follow on a successive leaf page if

more Segments make it necessary. Each Seginfo block in

Figure 1, is shown in Figure 2 to contain a Segment number

(Seg_no) for the Segment of rows it represents, and the disk

position pointer (DKPTR) to the Segment-Relative ORDRID-list
or Bitmap. See the next paragraph for a description of an

ORDRID-list.  The Seginfo blocks for an index entry are held

in order by Seg_no, and if a Segment contains no row for index

value Xi, then the Seginfo block for that Segment will be

missing in Figure 1. (This fact can be used at an early

execution point in a query involving conjunctions to exclude

Segments from consideration that have no Seginfo block in

one of the index entries.)

Seg_no DKPTR

  Figure 2. Seginfo Layout

ORDRIDs and ORDRID-lists. Since the S bits of a Segment

bitmap must fit on a 4 KByte page, S < 2
15

, and a Segment-

relative ORDRID will fit in two bytes (in what follows we will

refer to a Segment-Relative ORDRID simply as an ORDRID).

This short length provides a significant advantage in disk

space and I/O speed during a range search.  An ORDRID value k

in Segment m can be translated into a Table-Relative Ordinal

position t by the formula t = m * S + k. An ORDRID-list for a

Segment of an index entry (pointed to by DKPTR in Figure 2)

contains ORDRIDs in ordered sequence. ORDRID lists are also

stored in order on disk, and usually many ORDRID-lists will

fit on a page. If the dividing line between sparse bitmap and

ORDRID-list occurs at a bit density 1/50, then the longest

ORDRID-list will take up at most 16/50 of a disk page, and

contiguous lists can be stored in a disk-resident B-tree with at

least three entries per leaf page. ORDRID-lists use a separate

continuum of pages (not intermixed with Index B-tree pages or

Bitmaps) for fastest disk access, and are ordered by index-

value and Segment number, that is: Xi || Seg_no. The DKPTR

used to address ORDRID-lists has the same format used in row

addressing, consisting of (Disk Page #, Slot #), where Slot #

addresses an offset directory entry that locates the ORDRID-

list on the page.

Note that when we refer to a Bitmap index, this is a generic

name meaning that Bitmaps are a possible form of

representation, and does not mean that every row represen-

tation for every index value Xi is a Bitmap: it may be a Bitmap

or an ORDRID-list, or a segment-by-segment combination of

the two forms, whichever is most appropriate based on the

density of rows for that value in the given segment. Similarly,

when we speak of a Bitmap in a Bitmap index, an ORDRID-list

might be the actual representation; we will differentiate

between bitmap and ORDRID-list when the difference i s

important to our discussion.

Operations on Bitmaps. Pseudo-code for logical operations

AND, OR, NOT, and COUNT on bitmaps were provided in

[OQ97], so we limit ourselves here to short descriptions. Given

two verbatim bitmaps B1 and B2, we can create the bitmap B3

= B1 AND B2 by treating memory-resident Segment fragments

of these bitmaps as arrays of long ints in C, and looping

through the fragments, setting B3[I] = B1[I] & B2[I]. The logic

can stream through successive Segment fragments from disk

(for B1 and B2) and to disk (B3), until the operation i s

complete. The bitmap B3 = B1 OR B2 is computed in the same

way, and B3 = NOT B1 is computed by setting B3[I] = ~B1[I] &

EBM[I] in the loop. Note that the efficiency of bitmap

operations arises from a type of parallelism in Boolean

operations in CPU registers, specifically SIMD (Single-

Instruction-Multiple-Data), where many bits (32, or 64 in some

machines) are dealt with in a single AND, OR, or NOT operation

occurring in the simplest possible loop. To find the number of

rows represented in a bitmap B1, COUNT(B1), another SIMD

trick is used: the bitmap fragment to be counted is overlaid

with a short int array, and then the loop through the fragment

uses the short ints as indexes into another array containing the

number of 1 bits in each short int, aggregating these into a

count variable.

We perform logical operations AND and OR on two Segment

ORDRID-lists B1 and B2 by looping through the two lists in

order to perform a merge-intersect or merge-union into an

ORDRID-list B3; in the case of OR, the resulting ORDRID-list

might grow large enough to require conversion to a verbatim

bitmap, an easy case to recognize, and easily done by

initializing a zero Bitmap for this Segment and turning on bits

found in the union. The NOT operation on a Segment ORDRID-

list B1 is performed by copying the EBM Segment and turning

off bits in the list corresponding to ORDRIDs found in B1. To

perform AND and OR with a verbatim bitmap B1 in one index

Segment and an ORDRID-list B2 in another, the ORDRID-list

is assumed to have fewer elements and  efficiently drives the

loop to access individual bits in the bitmap and perform the

Boolean test, in the case of AND, filling in a new ORDRID-list

B3, and in the case of OR, initializing the verbatim bitmap B3

to B1 and turning on bits from the ORDRID-list B2.

Bit-Sliced Index Definition. A bit-sliced index B [OQ97],

often referred to as a BSI, is an ordered list of bitmaps (either

verbatim bitmaps or ORDRID-lists), B
S
, B

S-1
, . . . , B

1
, B

0
; the list

of bitmaps is used to represent values (normally non-negative

integers) of some column C (although the column C might be a

calculated value associated with rows of T, and have no

physical existence). The bitmaps B
S
, B

S-1
, . . . , B

1
, B

0
 are called

the bit-slices, and provide binary representations of C values

for all the rows: B
0
 holds the 1’s bits, B

1
 holds the 2’s bits, B

2

holds the 4’s bits, etc. More precisely, if we represent the C

value of row j (Ordinal position j) by C[j], and the bit for row j

in bit-slice B
i
 by B

i
[j], then the values for B

i
[j] are chosen so

that C[j] = B ji i

i

S

[ ]•
=
∑ 2

0

. Note that we determine S in advance so

that the highest-order bit-slice B
S
 is non-empty, i.e., i t

contains an ORDRID for at least one row in some segment. ♦

In [OQ97], a bit-sliced index was also defined to contain a Bit-

map B
nn

 representing the set of rows with non-null values in
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column C, and a Bitmap B
n
 representing the set of rows with

null values (the redundancy, B
nn

 = NOT(B
n
) AND EBM, simply

provided extra efficiency).  We will not be using these bitmaps

in BSI’s of the current paper, however, since we will only be

dealing with calculated values for rows in T  (that is, for all

rows included in the EBM for T) with no null values.

3. BIT-SLICED INDEX ARITHMETIC
In this section we demonstrate how we can perform arithmetic

on bit-sliced indexes, using SIMD operations on each of the

bit-slices. Of course such techniques have been used for years

in multi-bit computer operations; see [MANO95].

Consider Figure 3, where each of the bitmaps B1, B2, and B3

represent the found sets of three subqueries that are then

combined with UNION ALL clauses in a SQL Query. How are we

to calculate and then represent the multiset of rows that

results? If we could somehow ADD the bitmaps in the first

three rows to  generate the SUM of the bottom row, we would

solve this problem.

B1 001000010000110000100...
B2 010010010010010010001...
B3 000010100001010000100...
SUM 011020120011130010201...

Figure 3. A Conceptual Addition of Bitmaps

Of course the SUM on the bottom row of Figure 3 cannot be

represented as a bitmap, since it has values other than 0 and 1.

It can, however, be represented as a bit-sliced index! We need

to ask ourselves how we might be able to add three bitmaps to

arrive at the BSI SUM of Figure 3. A few observations set this

problem in perspective. First, it is easy to add two bitmaps to

arrive at a BSI sum. Second, a bitmap is just a BSI with a single

bit-slice. This leads us to ask if we can find an efficient

algorithm to add any two BSI’s, and indeed this turns out to be

a simple matter.

First, consider adding the two bitmaps B1 and B2 of Figure 3 to

arrive at a BSI named BS. Clearly BS must have two bit-slices,

BS
0
 and BS

1
, since we need to represent values 0, 1, and 2. We

point out that BS can be generated quite simply with two

Boolean operations:  BS
1
 = B1 AND B2; BS

0
 = B1 XOR B2. This

calculation, along with a row representing the SUM of B1 and

B2 for comparison, is illustrated in Figure 4.

B1 001000010000110000100...
B2 010010010010010010001...
SUM 011010020010120010101...
BS1 000000010000010000000...
BS0 011010000010100010101...

Figure 4. Two Bitmaps Added to form BS

We note in Figure 4 that interpreting the two BS bit-slices

gives the values represented in SUM. The reason is perfectly

clear. The operation BS
1
 = B1 AND B2 sets BS

1
 to 1 in precisely

those bit positions of B1 and B2 where both contain 1, and thus

where SUM = 2. BS
0
 = B1 XOR B2 sets BS

0
 to 1 in precisely

those bit positions of B1 and B2 where one or the other

contains 1, but not both, and thus where SUM = 1. All other

positions in BS are 0. To generalize from adding bitmaps to

adding BSI’s, we merely need to interpret the idea of "carrying"

in bit-valued addition to the SIMD situation of Boolean

bitmap operations. We illustrate this in Algorithm 3.1.

A "Carry" bit-slice C can arise in Algorithm 3.1 whenever two

or three bit-slices are added to form S
i
, and a non-zero C must

then be added into the next bit-slice S
i+1

. Note that if C is zero

(no bits on), Boolean operations give the expected results, but

a flag for zero C can speed up the operation. Once the bit-slices

in either A or B run out, calculations of C are likely to result in

zero soon after, and C will never become non-zero again.

Negative Numbers in a BSI. We provide an algorithm for

subtracting one BSI from another, but first we discuss how to

represent negative numbers in a BSI by two’s complement

Algorithm 3.1 Addition of BSI’s. Given two BSI’s, A = A
S
 A

S-1
 . . . A

1
 A

0
  and B = B

P
 B

P-1
 . . . B

1
 B

0
 , we

construct a new sum  BSI, S = A + B, using the following pseudo-code. We must allow the highest-

order slice of S to be  S
MAX(S, P)+1

, so that a carry from the highest bit-slice in A or B will have a place.

S
0
 = A

0
 XOR B

0
-- bit on in S

0
 iff exactly one bit on in A

0
 or B

0

C = A
0
 AND B

0
   -- C is "Carry" bit-slice; bit on iff bits on in A

0
 and B

0

for (i = 1; i <= MIN(S, P); i++) { -- While there are further bit-slices in both A and B

S
i 
= (A

i 
XOR B

i 
XOR C) -- one bit on (or three bits on) gives bit on in S

i

C = (A
i 
AND B

i
) OR (A

i 
AND C) OR (C AND B

i
)  -- two (or more) bits on gives bit on in C

}

if (S > P) -- if A has more bit-slices than B

for (i = P+1; i <= S; i++) { -- continue loop until last bit-slice

S
i 
= (A

i 
XOR C) -- one bit on gives bit on in S

i
 ; note C might be zero!

C = (A
i
 AND C) -- two bits on gives bit on in C; zero if prior C was zero!

}

else -- P >= S and B has at least as many bit-slices as A

for (i = S+1; i <= P; i++) { -- continue loop until last bit-slice

S
i 
= (B

i 
XOR C) -- one bit on gives bit on in S

i;
 note that C might be zero!

C = (B
i 
AND C) -- two bits on gives bit on in C; zero if prior C was zero!

}

if (C is non-zero) -- if still non-zero Carry after A and B Bit-slices end

S
MAX(S, P)+1 

= C -- Put Carry into final bit-slice of S, S
MAX(S, P)+1

 ♦
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arithmetic. If we’re working with a collection of BSI’s

containing only non-negative numbers (the only kind we’ve

discussed up to now), and the largest positive number that can

be represented  is 7, then only three bit-slices will be required

to represent the largest binary number: 111. However, negative

numbers can still arise during subtraction and must be

distinguished in two’s complement arithmetic by a leading 1

compared to a leading 0 for any positive number. This means

that four bit-slices are needed to represent the binary number:

0111. The bit representation for -7 is determined by flipping

the bits of  7 (1000) and adding 1: thus -7 is 1001. Now to

perform the subtraction -7 -(+7)," we will require yet another

high-level bit-slice (5 bit-slices, in all); so we get: -7 -(+7)"  =

11001 - 00111 (note we have sign-extended both quantities as

we added new high-order bits); then we flip the bits of the

right-hand term and add 1 to get 11001 + 11001, then add the

two negative numbers by Algorithm 3.1 to get: 10010, or -14.

Whenever two different BSI’s are to be subtracted, any BSI

representing only positive numbers must have a high-order

bit-slice of all zeros adjoined. (This bit-slice will afterward be

used in sign-extension.). Then a high-order bit-slice must be

adjoined to the BSI with the maximum number of bit-slices to

handle overflow during subtraction. Following this, the BSI

with the minimum number of bit-slices must be brought up to

the maximum number by adjoining new high-order bit-slices.

All BSI’s must be sign-extended as new high-order bit-slices

are adjoined: this is done by copying the most significant bit-

slice in adjoining new high-order bit-slices.

We provide Algorithm 3.2 to subtract one BSI from another.

Algorithm 3.3 shows how to find the MIN of two BSI’s.

We explained in the introduction how algorithms to add bit-

sliced indexes can be used in current native SQL to determine

row multiplicities arising from UNION ALL clauses. Similarly,

we can create queries where multiplicities are subtracted, using

EXCEPT ALL, and the minimum multiplicity of two multisets

are determined, using INTERSECT ALL. Note that in EXCEPT

ALL, any negative numbers in the result BSI D will be replaced

with zeros, since rows do not appear with negative

multiplicities in SQL; the algorithm to do this will simply

find all rows with high-order bits on in D, and mask this found

set out of all bit-slices. Similarly, INTERSECT ALL will not

need to be concerned with rows that have negative

multiplicity.

Algorithm 3.3  Min of BSI’s. Given two BSI’s, A = A
S
 A

S-1
 . . . A

1
 A

0
  and B = B

P
 B

P-1
 . . . B

1
 B

0
, create new "min" BSI M = MIN(A, B).

The following pseudo-code handles only non-negative values. To handle both positive and negative numbers, we would sign

extend A or B with any needed high-order bit-slices, and start by differentiating negative and positive values in the highest bit-

slice. Then we’d use the pseudo-code below to find MIN(A, B) for the bitmap set of non-negative values, and analogous pseudo-

code to find MAX(A, B) for the bitmap set of negative numbers. Considering for now only the special case of non-negative

values, the highest-order slice of M will be M
MIN(S, P)

, since the minimum of two numbers x and w represented in row r of the BSI’s

A and B cannot have more binary digits than MIN(S, P). We assume in the loop below that S >= P (if not we reverse A and B).

K = empty set -- bitmap K of rows for which we know min

KA =  empty set -- bitmap of rows for which A has lesser value

KB =  empty set -- bitmap of rows for which B has lesser value

for (i = S; i > P; i--) -- recall that S >= P; loop is empty if S == P

KB = KB OR A
i

-- min must be in B since values not this large

K = KB -- all rows for which min is determined so far

for (i = P; i > 0; i--) { -- loop down to zero

X = (A
i
 XOR B

i
) AND NOT(K) -- rows that differ for the first time in A

i
 and B

i

KB = KB OR (A
i
 AND X) -- if A

i
 has 1-bit, new min must be in B

KA = KA OR (B
i
 AND X) -- else B

i
 has 1-bit & new min must be in A

K = K OR X -- new min rows found in this pass

} -- any rows not still in K are equal in A and B

KB = KB OR (EBM AND NOT(K)) -- choose row in B as min

for (i = 0; i <= P; i++) { -- loop to set BSI M using known KA and KB

M
i
 = A

i
 AND KA -- A

i
 values for rows with bits in KA

M
i
 = M

i
 OR B

i
 AND KB -- B

i
 values for rows with (disjoint) bits in KB

}  ♦

Algorithm 3.2  Subtraction of BSI’s. Given two BSI’s, A = A
S
 A

S-1
 . . . A

1
 A

0
  and B = B

P
 B

P-1
 . . . B

1
 B

0
, we will create

a new difference  BSI D = A - B, by taking the two s complement of B and adding it to A using Algorithm 3.1.

We adjoin bit-slices as specified in the paragraph above, and for simplicity we assume that A, B, and D end up

with highest-order bit-slices all the same: MAX(S, P)+2.

Add needed bit-slices to A and B, -- for 2’s complement subtraction . . .

sign-extending A and B if necessary -- . . . allow for MAX(S, P)+2 bit-slices in D

for (i = 0; i <= MAX(S, P); i++) { -- loop through all existing bit-slices of B

B
i
 = NOT(B

i
) AND EBM -- one’s complement of bit-slice B

i

} -- one’s complement complete

D = A + (B + (all 1’s bitmap)) -- use Algorithm 3.1;  B + all 1’s bitmap is 2’s complement    ♦
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4. THE BSTM ALGORITHM
We now introduce the BSTM (Bit-Sliced Term-Matching)

Algorithm. We are given a query Q with a list of keyword

values, Q = <keyword-1, keyword-2, . . ., keyword-|Q|>, which

are expected to appear in a multi-valued keyword column K of

an object-relational table T.  We wish to find the set of k rows

that have the largest number of matching keywords with the

query list Q. Denote the bitmap representing rows of table T

that contains keyword-i in its column K by Bi; these bitmaps

will occur as terms of an index KX. It is our task to find the

Ordinal positions which have the largest number of matching

1’s among all bitmaps B1, B2, . . ., Bm. We use Algorithm 3.1 to

ADD these bitmaps resulting in a BSI SUM. All that remains i s

to find Ordinal positions where the BSI SUM has maximum

values. We recall that an algorithm was provided in Section 4

of [ONQ97] by which the set of rows in T with C >= c1, C a

value column having a BSI, can be found quite efficiently. In

Algorithm 4.1 below we provide a variation of this algorithm

to find k rows that have the maximum C values in T.

Finding the rows with the k largest values in a BSI. Given a

BSI, S = S
P
 S

P-1
 . . . S

1
 S

0
 over a table T and a positive integer k

<= |T|, we wish to find the bitmap F (for "found set") of rows r

with the k largest S-values, S(r), in T. Algorithm 4.1 accom-

plishes this in a rather subtle way, explained in the proof of

the algorithm, below.

Proof of Algorithm 4.1. We wish to find F, the bitmap of rows

with the k largest S-values in T. Denote by m the minimum S-

value of any row that lies in F, and assume m has binary repre-

sentation: mPmP-1 . . . m1m0, This implies that m is equal to the

k
th

 largest S-value S(r) of all rows r in T (with possible ties, m

might also be the k+1
st
 largest, etc.). We do not know m in

advance, but we determine successive bits mi of the binary

representation as we progress through passes of the loop in

Algorithm 4.1 with successively smaller values i.

Variables used in Algorithm 4.1 that exist from one loop pass

to the next are the bitmaps G and E; the bitmap X and positive

integer n are only temporary, used to hold results within a

loop pass for efficiency, and could be dropped from the code.

We wish to demonstrate the defining properties of G (G

contains rows r with S(r)      G     reater than m) and E (E contains

rows r with S(r)     E    qual to m in a specific initial sequence of

bits), so we provide an induction hypothesis specifying

contents of Gi and Ei, which we define as the values of G and E

on entry to pass i. We then prove that the induction

hypothesis remains true from pass i to successor pass i-1, and

conclude from this the final contents of F.

Induction Hypothesis. Assume for an arbitrary row r in T that

the binary representation of S(r) is rPrP-1 . . . r1r0. Our induction

hypothesis defines Ei and Gi as follows. (1) A row r in T will be

in Ei if and only if S(r) does not differ in its early bit

representation rPrP-1 . . . ri+1 from mPmP-1 . . . mi+1. (2) A row r in T

will be in Gi if and only if the early bit representation rPrP-1 . . .

ri+1 is greater than mPmP-1 . . . mi+1; this is equivalent to saying

that for some bit position j in the range i+1 <= j <= P, bit rj i s

on with bit mj off, and bits rPrP-1 . . . rj+1 are all equal to bits

mPmP-1 . . . mj+1.

We now perform induction. The initial test of Algorithm 4.1

guarantees that k <= COUNT(EBM), and since m is the k
th

largest S-value of any row in T, it guarantees that such a row r

with S(r) = m exists. We enter the first pass of the loop with i =

P; Gi is initialized to the empty set and obeys the induction

hypothesis, since i+1 > P and thus there is no value j with i+1

<= j <= P to use in the defining property (2) above, so no rows

are in Gi; Ei is initialized to EBM and obeys the induction

hypothesis, since there are no bits above position i = P that

can differ from bits in m, as required in defining property (1).

Now assume the induction hypothesis holds at the beginning

of the loop pass for value i: Ei consists of all the rows r in EBM

that have early binary representation rPrP-1 . . . ri+1 equal to

mPmP-1 . . . mi+1. Clearly the row r with S(r) = m must lie in Ei. Gi

consists of all the rows r’ in EBM where there is some bit posi-

tion j in the range i+1 <= j <= P such that bit r’j is on with bit

mj off, and bits r’Pr’P-1 . . . r’j+1 are all equal to bits mPmP-1 . . . mj+1.

(Gi can contain no rows until a zero bit shows up in mPmP-1 . . .

mi+1.) Begin by noting that every row in Gi (if there are any) has

S-value larger than all the rows in Ei, since each of the rows r’

Algorithm 4.1. Find k rows with largest values in a BSI.

if (k > COUNT(EBM) or k < 0) -- test if parameter k is valid

Error ("k is invalid") -- if not, exit; otherwise, kth largest S-value exists

G = empty set; E = EBM; -- G starts with no rows; E with all rows

for (i = P; i >= 0; i--)  { -- i is a descending loop index for bit-slice number

X = G OR (E AND S
i
)    -- X is trial set: G OR {rows in E with 1-bit in position i}

if ((n = COUNT(X) ) > k) -- if n = COUNT(X) has more than k rows

E = E AND S
i

-- E in next pass contains only rows r with bit i on in S(r)

else if (n < k) { -- if n = COUNT(X) has less than k rows

G = X -- G in next pass gets all rows in X

E = E AND (NOT S
i
) -- E in next pass contains no rows r with bit i on in S(r)

}

else { -- n = k; might never happen

E = E AND S
i

-- all rows r with bit i on in S(r) will be in E

break; -- done looping

}

} -- we know at this point that COUNT(G) <= k

F = G OR E -- might be too many rows in F; check below

if ((n = (COUNT(F) - k) > 0) -- if n too many rows in F

{turn off n bits from E in F}; -- throw out some ties to return exactly k rows  ♦
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in Gi have an early 1-bit r’j matched by a 0-bit rj in all the rows

r of E (i.e., with rj 
= mj), and all bits prior to j in r’ matching bits

in r (i.e., the same as in m). Furthermore, since this stated

characterization (for some j) holds for any r’-r pair with S(r’) >

S(r), and since Gi contains all rows r’ that obey this

characterization, Gi must contain all the rows with S-values

larger than all rows in Ei.

At the beginning of the loop in Algorithm 4.1, we set X = G OR

(E AND S
i
), which we will rewrite as Xi = Gi OR (Ei AND S

i
). Now

we claim that rows in Xi have the largest S-values of any rows

in T. To demonstrate this, consider the following. We know

that Gi contains all rows in T with S-values larger than any S-

values in Ei. Furthermore, rows r in (Ei AND S
i
) have larger S-

values than any of the other rows in Ei, that is rows r’ in (Ei

AND NOT(S
i
)), since they have identical bit positions up to ri-1

and bit ri on where bit r’i is off. Finally, any row r not in Gi or in

Ei, since its S-value representation rPrP-1 . . . ri+1 cannot be

greater than or equal to mPmP-1 . . . mi+1, must have some bit

position rj off that is on in mj, i+1 <= j <= P, with r’Pr’P-1 . . . r’j+1

all equal to bits mPmP-1 . . . mj+1, and thus must have an S-value

smaller than any row in Ei. Thus rows in Xi = Gi OR (Ei AND S
i
)

are either in Gi, and therefore have S-values larger than any row

in Ei, or in (Ei AND S
i
) and have S-values larger than any other

rows in Ei. The rows outside Xi are either in (Ei and NOT(S
i
)) or

have S-values smaller than any row in Ei, so clearly Xi consists

of the rows with the largest S-values in T. With these

preliminaries, we are ready to consider cases.

Now if n = COUNT(Xi) > k, this will imply that mi is on, since

there were less than k rows in Gi (m is the kth largest S-value

and G contains only rows with S-values larger than m) and

more than k when rows in (Ei AND S
i
) were added. Thus the kth

largest S-valued row in T, must be in (E AND S
i
), and mi will be

on. Because n > k, we set Ei-1 = Ei AND S
i in the next line of the

algorithm. The new bitmap, Ei-1, now has rows with ri = 1 = mi,

and thus contains the appropriate set of rows for pass i-1 by

induction hypothesis (1), since rows in Ei-1 match all bits in m

down to mi. The new bitmap Gi-1 is unchanged from Gi, and this

is valid for the induction hypothesis (2), since i was not an

appropriate value for j in the definition to add new rows to G

with bit mj off and bit rj on.

If n = COUNT(Xi) < k, we see that Xi, the set of n rows with the

largest S-values in T, does not include the kth largest. But if

bit mi were on, that would not be true, since by construction Ei

contains all rows r with rPrP-1 . . . ri+1 equal to bits mPmP-1 . . .

mi+1, and (E AND S
i
) would thus include m. Since bit mi is off,

our induction hypothesis (2) requires us to add new rows r to

Gi-1 with S-values that have ri on and bits rPrP-1 . . . ri+1 all equal

to bits mPmP-1 . . . mi+1; in other words we set Gi-1 = Xi (= Gi OR

(Ei AND S
i
)). This new set Gi-1 satisfies induction hypothesis

(2) with j = i. Next we set Ei-1 = Ei AND (NOT S
i
) restricting Ei-1

to rows in Ei with ri = 0 = mi; since all rows r in Ei already have

bit representation rPrP-1 . . . ri+1 equal to mPmP-1 . . . mi+1, it is clear

that Ei-1 satisfies induction hypothesis (1) for i - 1.

Finally, if n = k, then Xi consists of k rows with the largest S-

value in T, exactly what we’ve been seeking. We set Ei-1 = Ei

AND S
i
, and break from the loop; on exit we set F = G OR E (the

former Xi), and we will find that COUNT(F) - k = 0. In this case,

we don’t need to continue the loop until i = -1.

If we never encounter the case where n = k, we continue to loop

through i = 0, and on exit from the loop (with i = -1), we set F =

G-1 OR E-1, with COUNT(G-1 OR E-1) > k. But all the S-values of

rows in E-1 are now the same (since they all have the same bit

representation as m) and as always we know that COUNT(G-1) <

k. Thus we simply need to remove some rows of E from F until

COUNT(F) = k, to find the desired set F. ♦ 

Putting Algorithms 3.1 and 4.1 together, we have:

Algorithm 4.2. The BSTM algorithm. We are given an Object-

Relational table T with a multi-valued keyword column K

having a Bitmap index KX. Given a query list Q of keyword

values from K and the task of finding the k rows with the

largest number of keyword values in Q, we proceed as follows.

Find all the bitmaps for Q’s keyword values in KX, and add

those bitmaps together using Algorithm 3.1, to create a single

bit-sliced index KS. Then apply Algorithm 4.1 to find the set

of k rows with the k largest values in the KS index. ♦           

5. THE PWTM ALGORITHM
Fionn Murtagh published a term-matching algorithm in

[MURT82] that was cited as best in [SALT89], but in

[MURT99], Murtagh cites the Perry-Willet Algorithm [PW83]

as an improvement on earlier term-matching algorithms used

in IR, including his own. The algorithm in [PW83] i s

straightforward, and we modify its description slightly to use

more modern nomenclature from [MZ96, KZS99]. In the Perry-

Willet algorithm, an index I is understood to exist on the

keyword terms of all documents. For each keyword term t in I,

there is a sequence of document identifiers: (d1,...,dn).

Often these document identifiers have associated weights for

the term in the referenced document. (In our nomenclature, the

documents are rows in an object-relational table, the index I i s

an index on the set-oriented keyword column K, and the

document identifiers are ORDRIDs. We will ignore weights for

now, assuming below that each term match counts as 1.) The

Perry-Willet algorithm uses an Accumulator variable Ad to

accrue weighted matches for each term value found in the

document d. A good deal of discussion appears in [MZ96,

KZS99] on how Accumulators are to be assigned, whether

dynamically as new documents have their first term match, or

existing in advance as an array. We assume the pre-declared

array form used in Algorithm 5.1.
1

Algorithm 5.1. The Perry-Willet Algorithm. Q is a list of terms

to match, I is the index, the array A represents the

Accumulators: A[d] is the accumulator for document d, with a

total of N documents.

int A[N] -- Array with N cells
set all N cells of A[ ] to zero
for each term t in Q {
   find in I the list of doc ID's (d1,...,dn)

for each d in (d1, d2,...,dn) {

A[d] = A[d] + 1
}

}
Find k largest A[d] values (using
  heapsort), and return values of d ♦

                                                                        

1
 [KZS99] studies an approach where only the early, heavily

weighted, Accumulators are dynamically materialized, only

enough for about 2% of the documents. There is some small

time savings, and small loss in Recall (about 15%).
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It should be clear that Algorithm 5.1 is close to being optimal

for the given task. All needed index information is read from

disk exactly once and accumulated efficiently. If the number of

terms in Q is |Q|, then assuming that the index I is normally

not cached in memory but disk resident, we will need to

perform at least |Q| disk reads (some of them possibly long

ones) to retrieve all document lists of the various terms. It i s

possible that more than one I/O per term document list will be

required, depending on the size of the list, and this mitigates

in favor of long disk reads; the value of multi-page disk reads

is understood in the IR field, and we will assume this

consideration gives no advantage to database system access.

Data compression is also discussed at length in [KZS99], and

we assume that data compression gives no advantage either to

database system access or to IR.

As successive index lists (d1,...,dn) are accessed, the

augmentation of the Accumulators A[d] becomes an important

performance consideration. Is it possible to keep the set of

accumulators so densely packed that memory cache hits affect

performance?  Or at the opposite end of the spectrum, will there

be so many accumulators that there is difficulty holding all of

them in memory at once, so that some accumulators might

need to reside on disk part of the time? We obviously need to

know something about size assumptions for document

collections of this kind to evaluate these questions.

In [MZ96] the document collection database used for

performance tests was the TREC database for large text

collections from [HARM92]. The articles in this text collection

vary from around 100 bytes to 2MB, and the authors broke the

larger documents into pages of around 1000 bytes to help user

comprehension. This resulted in 1,743,848 records totaling

2054.5 MB, an average of 191.4 words per record, and 538,244

distinct keyword terms after translating to lowercase and

removing variant endings, a process called stemming. Note that

all document words other than a short list of stop words are

indexed as keyword terms in IR. The index I comprised

195,935,531 stored pairs of doc ID and weight (in the general

case)  appearing in term lists. This means that I was over 1GB

in size and was not memory-resident, especially for the low-

powered machines considered typical by [MZ96]. To give a

second example, in [KZS99] about 530,000 documents from

TREC-5 [VH96] were used in testing, and these documents

were broken into smaller documents of 50-500 bytes each to

give a collection of 7.7 million small documents.

From these two examples, we see that CPU cache hits will not

be an important performance consideration in accesses to

Accumulators in Algorithm 5.1. On the other hand, it i s

reasonable to assume that the array of Accumulators will fit in

memory for most document collections. In [KZS99], the

hardware used for experiments was a Sparc20 with 385MB of

memory, which easily contained the Accumulator array for the

7.7 million small documents. The point was also made that

memory was sufficient to materialize each term-list of

document ID’s in full. Since Segmentation is not used, this can

be an important simplifying factor to avoid special-case code

to perform pipelining through memory.

5.1 Comparison to BSTM Algorithm
We rewrite our BSTM Algorithm 4.2 in the form of Algorithm

5.1 for better comparison.

Algorithm 5.2, BSTM Algorithm (restating 4.2). As in the

Perry-Willet Algorithm, Q is a list of terms to match, I is the

index (of terms appearing in column K), and the BSI A

represents the Accumulators for the documents.

initialize BSI A
for all Segments 1 through M {
for each term t in Q {

  find  ORDRID-list B or Bitmap B in I
Add B into A (Algorithm 3.1)

}
}

Find k largest values in A (Algorithm  4.1) ♦

Given a query Q with |Q| terms in its list, we can calculate the

maximum number of bit-slice bitmaps, bcount, that are needed

in the BSI A, specifically: bcount = CEIL(log2 |Q|). We

initialize a BSI by creating structures known as "Segment

Anchors" for each of the bitmaps that might be accessed. The

Segment Anchors look like the index entries of Figure 1,

except that the index value Xi is not needed and the Seginfo

structures of Figure 2 are not created in advance.

The outer loop on Segments 1 through M in Algorithm 5.2 i s

standard, and the loop on all terms within a Segment deals

with all bitmap or ORDRID-list additions implied by the query

Q before the outer loop passes on to the next Segment.

As outlined in Algorithm 3.1, each addition of B into A will

consist of an XOR operation into bit-slice A0 and a sequence of

AND operations to generate Carries that will then be XOR’ed

into upper-level bit-slices Ai. Whether the operations involve

ORDRID-lists or bitmaps is material only for performance

considerations. Operating on two ORDRID-lists may gain from

memory cache hits over the PWTM Algorithm 5.1, since the

representations are relatively compact. ORDRID-list vs. bitmap

operations are in fact identical to the type of operation used in

Algorithm 5.1, a lookup in an array, except that individual bits

are acted on through AND’s and XOR’s, and Carries might

result. Bitmap vs. bitmap operations, on the other hand, are

likely to be more efficient than corresponding steps in

Algorithm 5.1, at least on a per bit-slice basis, since the SIMD

efficiency of ANDing and XORing multiple bits at once is an

advantage. On the other hand, the possibility of Carries from

these operations mitigates against the efficiency of Algorithm

5.2 in comparison to Algorithm 5.1, where all carries are

handled in one CPU operation. As the number of terms in Q

rises and the probability of Carries to higher bit-slices

increases in Algorithm 5.2 for later terms, we would expect the

efficiency of Algorithm 5.2 to drop off compared to Algorithm

5.1. Thus our discussion seems to show that Algorithm 5.2

will probably have an advantage in performance over

Algorithm 5.1 for a small number of terms in Q, but be at a

disadvantage for a large number of terms in Q. The final step of

this restatement of Algorithm 5.2 is to find the k largest A

value rows, a relatively quick task in BSTM using Algorithm

4.1 and in PWTM using a heapsort to extract k terms from the

final Accumulator array.

In the next section, we present our experimental results

comparing Algorithms 5.1 and 5.2. One other consideration i s

worth mentioning, however. Algorithm 5.1 is a special-

purpose program that has been implemented by IR

practitioners in prototype and is available to interested parties

[BMWZ95, WMB94]. However, such a program cannot be
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expected to perform well as an application on a database, given

that massive numbers of SQL statements must be used to

retrieve RIDs, a rather heavyweight call interface that detracts

from efficiency. Database storage of documents is of great

interest, however, with Oracle Cartridges such as ConText and

DB2 Extenders such as Text Extender [BYTE97, PCW97].

Algorithm 5.2, which is based on bit-sliced Index operations

useful for a large number of query types other than text

retrieval, would be natural to implement in native database

form. Because of this, we claim that our BSTM algorithm has

particular interest to database practitioners.

6. Experimental Findings
To test the performance of the Perry-Willet Algorithm 5.1

against the BSTM Algorithm 5.2 (i.e., 4.2), we created synthetic

benchmark tables and queries for our BITSLICE architecture

implementation and ran experiments to measure performance

under varying conditions. The experiments were performed on

a 333 Mhz Sun Ultra-Sparc-IIi, with 128M of memory, running

on Sun Solaris OS 5.7.

The design of our benchmark tables is based on some of the

larger document collections in [PW83], rather small

collections by today’s standards, but appropriate for our

system configuration. In Table 1, we provide a list of

notational symbols used in our experiments, along with the

values or range of values these symbols represent.

Table 1. Notation Used

Notational symbol Values used
N (# rows = # docs) 50,000, 100,000,

200,000, 300,000

T (# terms) 10,000

TD (# terms/doc) 40

TQ (# terms/Query) 5, 10, 20, 30, 40

DQ (avg. # docs/Q_term)

(approximately linear in N)

0.01*N = 500,

 1000, 2000, 3000

Focusing for the moment on the  minimal configuration of

Table 1, we see we have N = 50,000 documents in our smallest

table, with TD = 40 terms for each document (terms are

represented by integers because of limitations in our index

implementation). This means that the number of term-

document pairs contained in index entries is N*TD =

2,000,000. Since there are 10,000 distinct terms, we calculate

the average number of documents per term to be 200. The

number of documents per term grows linearly with the number

of documents, for N = 100,000 we have 400, 800 for N =

200,000, etc. We generated the terms in each document at

random, using a Zipfian 70-30 distribution skew (a realistic

assumption), and then created queries whose terms tended to

use the more popular terms, behavior we modeled after [PW83].

When the average number of documents per term is 200, the

average number of documents per query term is 500, i.e., DQ =

500. In general, we tuned the Zipfian function choosing terms

of the query so that query terms are 2.5 times more popular

than the average document terms; so for N = 100,000, when the

average number of documents per term is 400, the average

number of documents per query term is 1000, i.e., DQ = 1000.

The number of rows (or documents) N in the tables and the

number of terms per Query TQ are the only independently

ranging parameters of Table 1, and we ran  experiments with all

pairs of values. We randomly generated query runs with TQ = 5,

10, 20, 30, and 40 terms, and ran them against

implementations of Algorithms 5.1 and 5.2 on the BITSLICE

architecture for tables of N = 50,000, 100,000, 200,000 and

300,000 rows. Three runs of each case were performed, with

CPU and Elapsed times averaged across the ten queries for each

run. An attempt was made to flush UNIX buffers prior to a run,

but the result was not perfect so the one requiring the longest

elapsed time out of three was dropped in each case as an

outlier. We gave the Perry-Willet Algorithm 5.2 the same

access to our term index that the BSTM Algorithm 5.1 had,

thus providing the  advantage of bitmap compression for

extremely popular terms. We graph the CPU and Elapsed time

for all cases in Figures 5 and 6 below.
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 Figure 5. CPU Times Per Query for BSTM (Solid Lines) and

 PWTM  (Dashed Lines) Algorithms

Note that PWTM and BSTM have very similar Elapsed time

because they are performing the same I/Os. CPU time is more

distinguishing, and tends to support the discussion in Section

5, since BSTM has a slight advantage over PWTM for a smaller

numbers of terms and is at a disadvantage for a larger numbers

of terms.
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We take two lessons from these results.

• The BSTM algorithm is comparable in performance with the

best IR Term-Matching algorithm PWTM.
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• CPU Performance of the BSTM algorithm degrades as the

number of Query Terms increases, which we take to be an

artifact of the increasing number of Carries required as

more terms are added. However, BSTM performance for 30

terms is still comparable to PWTM, and probably quite a

bit better than existing Database methods.

7. CONCLUSIONS AND FUTURE WORK
In the current paper we have shown, for any BSI’s X and Y on a

table T, how to efficiently generate new BSI’s Z, V, and W, such

that Z = X + Y, V = X - Y, and W = MIN(X, Y). We claim that BSI

arithmetic such as this is the most straightforward way to

determine multisets of rows (with duplicates) resulting from

the SQL clauses UNION ALL (addition), EXCEPT ALL (subtrac-

tion), and INTERSECT ALL (min). Another contribution of this

paper has been to demonstrate how to determine the top k BSI-

valued rows, for any meaningful value k between one and the

total number of rows in T. Together with bit-sliced addition,

this has allowed us to solve a common problem of text

retrieval: an efficient algorithm to find k documents that share

the largest number of terms with some query list Q of terms.

7.1 Future Work
One avenue of future work is suggested by the fact that our

algorithms for BSI arithmetic can be extended by

automatically pipelining intermediate results in calculating

expressions on multiple BSI’s. For example, when we add the

three bitmaps from Figure 3, B1 + B2 + B3, instead of creating

S1 = B1 + B2, then writing S1 out to disk, and later reading it in

again to calculate S = S1 + B3, we can maintain S1 in memory to

be consumed by immediate addition to B3. Pipelining was

implemented in our BITSLICE architecture for the simple

special case of multiple index term bitmap addition used in

Term Matching, but a more general solution would be

valuable. It is also worth noting that BSI arithmetic is easily

parallelized. Multi-Segment bitmaps can have their Segments

partitioned out to be dealt with by different process threads.

MODEL 204 [ON87] has long provided pipelining and

parallelism of this kind.

Concurrency control to support bitmap indexing and BSI

arithmetic presents special problems unless the update

frequency is reasonably limited. MODEL 204 has provided a

form of concurrency control based on locking for a number of

years. But a valuable future task would be to provide a new

form of multi-version concurrency (see the Snapshot Isolation

discussion in Section 4.2 of [BBG+93]). A particularly

challenging avenue which seems feasible would be to

implement Snapshot Isolation so as to run queries as

efficiently as possible, trading efficient queries for less

efficient update transactions when necessary. Up to now,

implementers have taken the opposite tack [JAC95].

We now describe how our BSTM approach could be extended

in the future to deal with weighted term matching.

7.2 Weighted Term Matching
The IR field has an extremely large number of approaches to

evaluating document queries. In [ZM98] there are eight

different formulations listed (in Table 1) of similarity

measures between a query and a document (e.g., two forms of

"inner product", the "cosine measure", two forms of

"probabilistic measure", etc.). Each of these similarity

measures depends on how weights are assigned to matching

terms, and in Table 2, nine different weight functions are

listed, including "binary match", "logarithmic", "hyperbolic",

two "normalized", and four involving noise and entropy. The

simple non-weighted approach we’ve been dealing with up to

now uses the simpler form of "inner product" similarity

measure formulation, with the "binary match" weight function.

To illustrate how BSI arithmetic can deal with complex

weighted similarity matches, we consider the "Cosine

Measure" of similarity between a document d and a query q

that was used exclusively in [KZS99]. We define the simplest

terms first, and build up to the full similarity function.

• fx t,   The number of occurrences (frequency) of the term t in

x; x might be either a document or a query.

• w fd t e d t, ,log ( )= + 1   Weight of term t in document d. Note

that if t doesn’t appear in d then the weight is zero; the

more times t appears in d, the more highly the document i s

weighted for queries seeking this term.

• w f N fq t e q t e t, ,log ( ) log ( / )= + • +1 1  Weight of term t in

query q. As before, a higher "frequency" of the term in the

query increases weight. Note that ft  is a count of

documents that contain the term t, and N is the total

number of documents, so rare terms appearing in a query

are more highly weighted.

The Cosine measure of similarity of a query q and a document

d is symbolized by C q d( , ). To evaluate a query, we will need to

calculate this measure for a specific q and all documents d,

then choose the k documents with the largest measures. The

formula for C q d( , ) is:

(7.1)
C q d

w w

w

q t d t
t q

d t
t d

( , )
, ,

,

=
•( )

∈

∈

∑
∑ 2

   (Note that wd t
t d

,
2

∈
∑  i s

represented below by Wd
 for short.)

While formula (7.1) might seem complex, the approach to

calculating it using a BSI is relatively straightforward. First,

we note that [MZ96] says we can use low-precision document

weights of about six bits without significantly affecting

retrieval effectiveness.  Prior to knowing what terms exist in

the query q, we can precalculate fd t, , the frequency of each

term in each document d, then calculate w fd t e d t, ,log ( )= + 1
and Wd

 = wd t
t d

,
2

∈
∑ . Finally, we can calculate the document

weights w Wd t d, / , and represent these values as 6-bit integers

associated with each term and each document. We construct for

each term t a BSI Bt  to represent these document weight

values w Wd t d, /  for all documents in T; thus the BSI Bt  i s

associated with each term in our Index I (as currently a single

bitmap is associated with each term). To calculate the BSI Cq d,

representing C q d( , ) by formula (7.1), we begin by deriving the

values of wq t,  for each term t of the query. From the query q

we know fq t,
, the frequency of each query term, so we can

calculate w fq t e q t, ,log ( )= + 1 , and from this we construct 6
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bit integer approximations. Then Cq d,  is derived by

calculating w Bq t
t q

t,
∈
∑ • . This is a sum of BSI’s arrived at by

multiplying a list of known BSI’s Bt  from the index by small

binary integers wq t, . The method of multiplying is simply a

matter of left-shifting for 1-bit positions in wq t,  and then

adding the shifted BSI’s Bt .

Most of the calculations above must be performed for any

algorithm that solves the given problem; calculations to create

the BSI’s Bt  are used in creating the index for any approach,

and in any event do not occur at runtime. The calculation of

w Bq t
t q

t,
∈
∑ •  is the only one that is peculiar to our approach,

and while the additions involved are rather time consuming,

so is the multiplication needed for the algorithm that

accumulates product terms into an array. We leave

implementation and performance tests of this algorithm for

future work.
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