Software for the control of experiments for investigation

of low-vision reading from video displays
Robert A. Morris', Dean Yager?, Kathy L. Aquilante’

Abstract. Rigorous object-oriented design and programming produced a robust,
extensible, long-lived system for the control of real-time investigations of
reading from video displays.

1 Introduction

This paper describes the architecture, engineering, use and evolution of a specialized system of |aboratory
control software for research in reading from video displays by subjects who are patientsin the low-vision
clinic at the SUNY College of Optometry. The National Eye Institute (NEI), abranch of the Nationa
Ingtitutes of Health (NIH), funded the research, including much of the software development (RO1-11617
to DY and K23-00366 to KA).

Estimates indicate that more than 3 million Americans suffer from low-vision, which is defined as any
chronic visua deficit that impairs everyday function and is not correctable by ordinary eyeglasses or
contact lenses. Some i nvestigators argue that these numbers under-estimate the prevalence of visual
impairment and recommend a more inclusive definition of visua impairment bringing the number of
visually impaired Americans up to 14 million (National Advisory Eye Council 1998). Based on
fragmentary datathat is believed to be an underestimate, the World Health Organization estimates the
number of cases of blindness, defined as visual acuity of 20/400 or worse in the better seeing eye, to be
greater than 15 million people worldwide. These figures do not include persons with visual impairment,
and the number of blind and visually impaired is expected to increase due to increases in popul ation and
life expectancy (WHO Study Group (1973) 1973).

A wide variety of strategies and devices have been developed to aid low-vision readers, ranging from large
print to computer controlled systems that magnify, alter presentation format, or use speech to improve
accessibility of print (Goodrich and Bailey 2000) and there is alarge scientific literature leading to their
development and evaluating their efficacy. In our case, the team led by the authors has special interest in
the typographic factors that might affect low-vision readers, and, as experimental controls, those with
normal vision, asthey use computer-based reading. Readability from avideo display termina (VDT) has
been studied in both the reading research community and various segments of the Human Computer
Interface (HCI) community (For areview, see (Muter 1996)). One recurring problem with these studies—
especially asto typographic issues—is that the reading research community has sometimes suffered from a
lack of typographic sophistication, and the HCI community is sometimes lacking in expertise about the
subtleties of gathering data on reading performance. In the HCI community this has often led to claims
based on out-of-date research and to confounding user preferences with user performance. In the reading
community, it has often led to comparing typographic conditionsthat are varying in many more ways than
the researchersimagined. Our interdisciplinary approach teamstwo vision scientists (Y ager and Aquilante)
who are specialistsin low-vision reading, with a computer scientist (Morris), who has along involvement
in both digital typography, and in engineering complex software systems. We describe el sewhere the
scientific results of our studies ((Aquilante, Y ager, Morris and Khmelnitsky 2001); (Aquilante, Y ager and
Morris 2000); (Aquilante, Yager and Morris 1999) (Aquilante, Y ager and Morris 1999) (Aquilante, Y ager
and Morris 1998)). Here we discuss only the kinds of problemswe work on, the kind of data we gather,
and the kind of data analyseswe do, in order to leave the reader an understanding of the requirements of the
software architecture.

Our software methodol ogies are now quite common: principally they comprise careful attention to the
software life cycle and object-oriented design and programming (Jacobson 1992). The novelty arisesin the

! Department of Computer Science, UMASS-Boston
2 SUNY College of Optometry

Morris, Yager & Aquilante v6 08/01/2001 -1-

object-oriented modeling of the control and analysis of experiments using human subjects. We believe that
the ease with which we routinely added most enhancements desired by the vision scientists, aswell asthe
difficulty we had with afew such requests, can inform others who might need to build systemsfor the
control of experiments with human subjects.

2 Low-vision readers and RSVP.

The single biggest advantage that can be offered to most low-vision readers in any medium isto make the
type bigger ((Dickinson 1998), (Rubin and Turano 1994), (Fine and Peli 1998), (Whittaker and Lovie-
Kitchin 1993),). Thisis because, for avariety of reasons, amost all low-vision resultsin reduced visual
acuity ((Leat, Legge and Bullimore 1999), (Dickinson 1998)). Besides aculity loss, low-vision readers
also may suffer reduced contrast sensitivity ((Leat and Woodhouse 1993), (Rubin and Legge 1989),
(Whittaker and Lovie-Kitchin 1993),) inability to control the eye movements necessary for traditional
reading ((Bullimore and Bailey 1995), (Timberl ake, Mainster, Peli, Augliere, Essock and Arend 1986),
(Timberlake, Peli, Essock and Augliere 1987), (Whittaker, Cummings and Swieson 1991), (McMahon,
Hansen and Viana 1991)). These and other factors have been much studied, but there is only a small
literature carefully addressing them under paradigms that directly addresses the acuity issue ((Aquilante,

Y ager and Morris 1998),(Fine and Peli 1998), (Legge, Rubin, Pelli and Schleske 1985; Rubin and Turano
1994))(Whittaker and Lovie-Kitchin 1993). Two such paradigms that allow very large characters are
scrolled text and Rapid Serial Visual Presentation (RSVP). In RSV P reading, words are flashed rapidly in
the center of the screen, one after another. In normal reading of al phabetic languages such as English, as a
substantial amount of the time spent in normal readings devoted to the eye-motion enterprise.. Typical
reading by normal -vision adult readers consists of afixation of about 250 ms on each word (depending
dlightly on the word length and/or its familiarity to the reader), followed by ajump, called a saccade, to the
next word. This takes about 30-50 ms. (Rayner, Inhoff, Morrison, Slowiaczek and Bertera 1981). These
numbers lead to reading rates of 240-300 words/minute, which isin fact typical for adult readers of
English. However, alarge fraction of the fixation time is devoted to the task of planning the next saccade.
Indeed, the visual information for reading is available within the initial 50 msec of afixation.(Rayner,
Inhoff, Morrison, Slowiaczek and Bertera1981). Thereis substantia controversy about the precise role of
the saccade planning and how much of it can be donein parallel with the rest of the normal reading task
((Kennedy 2000), (Reichle, Pollatsek, Fisher and Rayner 1998), (Starr and Rayner 2001)), but it is clear
that eliminating eye motion has the potential to increase reading speed and many studies find that normal -
vision readers can increase their reading speed by afactor of 2-3 using RSV P. For low-vision readers the
apped of RSVP reading is clear: The words can be made much bigger—as big as will fit on the screen—
and the subject need not move her eyes. This directly addresses two of the aforementioned impedimentsto
reading by low-vision readers. Some patientsin our studies, e.g. one with 20/400 visiort, had no effective
visual aid to reading except RSV P. Indeed, by use of video projection, we can make words as large asthe
projection surface and distance allows, and some of our experiments are carried out on arear-projection
screen with words approximately 5 inches (146 mm) high. Most of the research in our project has focused
on RSV P reading. For this reason, we call our system UMB-SUNY OPT RSVP, or simply RSVP.

3 Engineering Requirements.

For software to support investigation of exactly what factors might be most useful to low-vision readers, a
great many experimental controls must be supported. Many are obvious, such as typographic factors
including the choice of typeface, character and word spacing, contrast, size and timing. Others come from
standard scientific requirements to understand what results are really due to low-vision and what to normal
reading, aswell as more subtle requirements to reduce confounding of variables. In addition to their
scientific importance, these factors must aso be considered if the softwareis potentially to function not
only to support data gathering and analysis, but also be useful as an instrument for clinical evaluation of
vision deficitsin order to formulate assistive strategies, and also to support the building of an actual reading
aid. Both of these are long-term goals of our project.

Initially we identified two important classes of scientific controls that impose engineering requirements:

3 A person with 20/400 vision must be at 20 feet to see what a normally-sighted person can see at
400 feet

Morris, Yager & Aquilante v6 08/01/2001 -2-

Data must be gatherable from normal -vision readers, and reading paradigms other than RSV P must be
easily chosen by the experimenters—particularly paradigms that are reported elsewherein the literature,
including those corresponding to more traditional forms of reading. Support for experiments with normal -
vision readers might seem no different from support for low-vision subjects. However, normal -vision
readers often read appreciably faster than low-vision readers ((Legge, Rubin, Pelli and Schleske 1985),
(Rubin and Turano 1994, Aquilante, 2001 #348)). Some reportsin the literature have claimed to measure
RSV P reading rates of 1400-1800 wpm (23-30 words/sec) ((Rubin and Turano 1992), (Latham and
Whitaker 1996)). Displays of asingle word at this rate comprises only afew frame-times per word on
standard video hardware and imposes performance reguirements on the software that would not occur in
presenting, say, a 10 word sentence for 500 ms.

Aswith most software systems, the designer must expect that functional requirements evolve with use. In
our case, the anticipated evolution included migration to various computing platforms and O/S revisions,
and the addition of experimental variables unspecified at the time of design. Another requirement that
emerged early initerations of our design documents was explicitly to model the roles of the experimenter
aswell asthose of the subject. We will discuss these and other aspects of our architecturein the next
sections.

4 Design.

Our design and analysis followed the Use Case methodology (Jacobson 1992). There are thr ee principal
actors. a subject, an experimenter, and the system. We will use upper caseto refer to software objects
modeling human actors and other facets of the enterprise.

A (human) experimenter decides the parameters of areading experiment, which is modeled by an object
caled aRun. A Run consists of several Trials, each of which presents on the screen a sentence in ways
decided upon by the experimenter and recorded in an initiaization file. The subject reads the sentence
aloud and the experimenter enters on the keyboard the number of errors made. If the subject has made more
than the number of allowable mistakesindicated in theinitiaization file, then the software increases the
length of time the next trial will take—i.e., decreasesthe reading rate. Otherwise that rate isincreased. This
so-called staircase procedure oscillates around arate that is taken as the reading rate. The procedure stops
when a predetermined number of oscillations have occurred. In our experiments thisistaken to be four.
Thereading rate is taken to be the geometric mean of the turning points of the staircase. This common
psychometric procedure is used to establish a maximum likelihood estimator of the true reading rate
exhibited by the subject during the run. From run to run the experimenter may vary the conditions
according to the variable being studied, e.g. font, character size, spacing, etc.

If we describe the system with the Model -View-Controller architecture (Borland 1994), we identify several
software artifacts, of which thosein the Model and Controller have the most explicit object representation.
The View is quite simple and has no classes associated with it: there is a startup screen that allowsthe
experimenter to initiate the experiment, including specifying theinitiaization file if not the default. There
are (optionally) two screens supported, one from which the subject reads a sentence during the experiment
and one on which the sentence is presented statically to the experimenter as an aid to scoring the reading
(Otherwise, she has the sentences on paper). This description of the View is somewhat oversimplified. In
fact, display is mediated by an API of our devising, the purpose of which isto support both modularity and
portability. We discussthis at length later. We mention here in passing that afew of the facilitieswe
implemented are available in the Standard Template Library (STL) (Silicon Graphics 2001) but when we
began the project we were not satisfied that STL would be uniformly and correctly implemented on the
platforms we targeted.

The Model consists of three classes, each with asingle instance. These are theSubject and the
Experimenter objects, and a Saircase object that holds the parameters of the staircase and accumulates data
for analysisat the end of arun. Once arunisinitiated the software islargely in control, and the methods of
the Experimenter class play little role except to record the error count, and, optionally, to initiate the next
trial if the experimental conditions do notrequire that this be automatic. Additionally the Experimenter
may terminate the run before its normal end, because human subject protocols require that the subject be
permitted to leave the experiment at any time during its course.

Morris, Yager & Aquilante v6 08/01/2001 -3-

The Subject and Experimenter classes arein fact specialized from apure virtual class called User whose
principa methods represent various signatures of amethod called ShowTrial Text, which is devoted to the
actual display. For the Experimenter, they consist of very little more than output to the standard 1/O stream
connected to the Experimenter’ sterminal if thereis one. The Experimenter also has methods for input from
the standard input stream in order to record the error count. For the Subject, the display methods have
extreme performance and timing requirements required to insure validity of the data. Thispoint is
discussed below.

Several classes participate in the Controller. A Setup object is constructed from the initialization file when a
run starts. It holds all the experimental parameters. A Run class, whose single constructor takes the Setup
object as a parameter, controls the experiment in conjunction with the Staircase. The participation of the
Staircasein both Model and View rolesisone point of fragility in our implementation. The Staircase object
has to be accessible to anumber of different methods of the Run and its subservient Tria objects, and
because the Staircase requires side-effects (namely the accumulation of data), enhancement engineering has
to take special care at several pointsto maintain the contract of the Staircase. Although the code and
methods were generally well documented, this particular fragility was not, and has required the first
author—who isthe sole system architect, original implemerter, and supervisor of all of the other people
who have ever modified the software—to be the principa implementer of modifications to the Staircase
which have been required by enhancementsto the dataanaysis.

The main roles of the Run object are to provide for the construction of a Trial object, call its Execute
method, arrange for the recording of the timing and result of the Trial (i.e. the error count), negotiate with
the Staircase object whether another Tria iswarranted, and finally to set the timing parametersto be passed
to the Trial for its next execution. As an implementation strategy, asingle Tria object isreused by the Run,
and in support of this, Trial objects do no dynamic memory management. In C++, careless dynamic
memory management isthe largest source of programming errors and memory leakage®. The Trial and its
Execute method therefore directly know only how long its text presentations should take, what text it
should present, and by reference, where the Subject and Experimenter objects may be found. This latter is
becauseit is actually those objects which know how to display text on their respective screens under
conditionsthat the Trial tellsthem. However, thisisolation of the Trial from the rest of the system, while
architecturdly appealing, proved impractical at the implementation stage—representing inadequate
modeling at the design stage that we were prepared to code around in away that introduced the second
major fragility of the system. Namely, we found that the Run object was in too much control of resources
needed by a Trial, both for reading and updating. Consequently, we changed the definition of aTria so that
it always knows the Run that initiated it. Thus, deep in code initiated by the Trial, it is possible for

carel essly coded methods to have side effects on the Run. Avoiding this or controlling its consequences
requires extreme programming discipline, including consideration of the impact on the Run all the way up
the call chain to the point where the method Run.Execute() has invoked Trial.Execute(). In general, C++
offersmainly the rather coarse and dangerous “friend” facility for allowing classes to access each others
private methods, and we were forced to declare the Trial and Run classes to be mutual friends. Despite this,
the careful separation of data gathering and analysis from control of the presentation of text, has allowed us
successfully to make nearly two dozen functional enhancementsin the course of five years of ongoing use
of the software that has resulted in 10 studies and five refereed papers and conference presentations. Most
of these enhancements have been quite easy, requiring only afew programmer hours or days to implement.
In a subsequent section we will discuss those that were difficult.

5 Abstraction of typographic and display primitives.

The RSV P machine-independent C++ code has about 7600 lines in 25classes. For these classesto use
machine dependent code, thereisasmall collection of primitives for manipulating and displaying text and
processing 1/0 events. In order to port to anew architecture, we have only to implement these primitives.
For display, the situation is much akin to the design of the Abstract Windowing Toolkit of Java 1l inwhich

* This is such a common problem that a Google web search on * “Memory leak” C++ ' produced
nearly 30,000 links, and quite a few open source and proprietary software packages have been
developed to detect such leaks.

Morris, Yager & Aquilante v6 08/01/2001 -4-

a “peer” isimplemented in the particular architecture®, and we will use that terminology below. The first
implementation was for the Macintosh under MacOS version 7, using the QuickDraw GX graphics APl and
the VideoToolkit of Denis Pelli (Pelli 2000), and we have since implemented under Microsoft Windows
using the Windows SDK and recently using OpenGL. The latter should run under the new MacintoshOS/X,
but has not been tried. These implementations required from 1300 to 2000 lines of system dependent code.

There are several critical requirements for the peer. Foremost isthe ability to support painting—and more
particularly erasing—text for RSV P display in asingle frame time, synchronized to the video vertical
retrace. This synchronization guarantees that when an RSV P word is on the screen, sometimesf or aslittle
as 13.33 ms (one frame time on a 75 Hz display), the only pixels visible are those of the given word.
Without this synchronization and erasure between words, the display code might deposit aword in the
frame buffer before the previous word is erased and, as the pixels are read from the frame buffer to the
screen by the sweeping beam, there would be pixels from both words on the screen for part of the display.
This strategy limits our presentation rate to one word every two frames, which is 37.5words per second on
a 75 Hz display. This corresponds to 2250 words per minute (wpm), which is 2-3 times faster than anyone
can read. Our need for this strategy is clearly not arequirement to have presentations thisfast. Rather itis
to have fine temporal resolution in increasing and decreasing reading speed without having to consider
whether the erasure time is a consequential fraction of the display time. For example areading rate of 500
wpm, i.e. 120 ms per word, is quite feasible with RSV P for normal readers and thisis only 9 frame times
ona75Hz display. To assign a 500 wpm reading rate, the staircase procedure requires us to determine that
the subject cannot reliably read an 8 frame-time display®. Other requirements for the typographic peer
include the ability to scale and display outline fontsin standard formats, to provide control of color and
intensity of characters and background, to support scrolled text, and to support two monitors independently
programmable (one for presentation to the subject and one for the experimenter to see what sentence the
subject isreading). Other requirementsfor the host support include reliable clock access with millisecond
resolution and ease of accepting and ignoring mouse and keyboard events. All three current
implementations provide these.

Two enhancements arising several years after initia delivery imposed additional requirements on the host
interface. In investigations now ongoing, we control eye tracking hardware to discover whether subjectsin
fact keep their eyes fixed when they read RSV P presentations (low-vision subjects don't; normal-vision
subjects do (Rubin and Turano 1994); Normal subjects reading RSV P text dowly make
saccades(Aquilante, Y ager and Morris 2000)). Thisrequiresrelatively simple, albeit real-time, control of an
externa device. The Macintosh allowsthis easily, but Windows does not.

A second new functionality, still under development, requires various transformations of imaged text. The
first ismirror image presentation. Thiswill be used in experiments driving a Scanning Laser
Opthalmoscope (SLO). An SLO images directly on the retinawith alow-power laser and also captures a
reflected image of theretinaitself, from the light of a second low-power laser Many low-vision patients
have physical retinal damage resulting in scotomas—holesin their visua field—whose location can be
seen on the reflected retinal image. By comparing in software (or visually with captured video) the
reflected retinal image with the projected text image, it is possible to know exactly where on the retinathe
subject is placing each word ((Timberlake, Peli, Essock and Augliere 1987), (Webb and Hughes 1980)).
Simple geometric opticswill convince the reader that the outside world is actually projected on the retina
upside down and backwards from our learned sensation of it, and to use the SL O for our experiments we
must adjust the projection for this.

In a contemplated set of experiments about reading from medicine bottles, we need to image text on a
virtual cylinder that can be rotated during reading. Both this and the mirror image presentation have been
implemented with OpenGL, which has standard matrix transformations for accomplishing these

® http://java.sun.com/products/jdk/1.0.2/api/Package-java.awt.peer.html

®: Aslong as we are prepared to ignore the psychophysical significance of the erasure time the
distinction between counting erasure and not is actually irrelevant to our real purposes. The
reason for thisis that absolute reading rates are essentially never of interest. Rather, we want to
compare reading rates under different conditions of presentation and typography

Morris, Yager & Aquilante v6 08/01/2001 -5-

manipulations. At thiswriting, the mirror imaging has adequate performance, but rotating 3D text does not.
We believe that we can accomplish this, and that the OpenGL implementation will become our standard on
both Windows and Macintosh platforms.

Theinput side of the peer interfaceis quite simple, amounting only to afunction getkey() to get asingle
character from the keyboard and several functions for dealing with mouse button events. Because of this
simplicity, we easily added code to these functions that intercepts them in the based on a boolean variable
signifying that system regression testing isin progress. This allows us during testing to take these events
from a script file and thereby easily compare the results with execution of the same script on another
platform or from a previous version, without need to maintain platform dependent native scripting
arrangements for such tests.

6 Memory management

Asremarked above, C++ is notorious for leaking memory because memory management isleft to the
application programmer. Indeed, had Java been mature when we started the project in 1996, its built-in
garbage collection alone would have motivated usto useit instead of C++. Instead, we adopted arigorous
disciplinein our classimplementation that not only prevents memory leaks, but rewarded us handsomely in
asimple enhancement that should have been foreseen at design time, but wasn’t. The disciplineisthat for
any class that does dynamic memory management we always provide destructors to release memory, deep
copy methods, a copy constructor, and a method to override the assignment operator (these latter
necessarily go hand in hand in C++). Thisalows cavalier assignments of complex objects. Althoughin
generd thisentailsalot of copying and freeing memory, it has no impact on us because such events are
rare, and most of our performance requirements are deep in the typographic peer. Thisissue too would have
been moot in Java, where assignment is only by reference.

An experiment in asingle condition (comprising asingle Run) is concluded when the staircase procedure
terminates as described earlier. Thisistypically afew minutes for normal -vision subjects, and rarely more
than 10 minutes for low-vision subjects. Indeed, if the experimenter has a good sense of the likely reading
rate for a given experiment, she can cause initiation near this rate and the staircase might terminate after
only afew Trias. Aswe gained experience using the software it became obvious that rather than restarting
once per experiment (i.e. per Run), it would be better to have alist of the varying experimental conditions
required for a particular investigation (e.g. for several Runs at different type sizeswhen sizeisthe
controlled variable). In order to accomplish thisit was merely necessary to control the Run by an object
from anew classwe called a Session. A Session executes aloop mediated by alist of Setup objects
(initialized from external files) passed as arguments to the constructor for a Run object that is destroyed,
along with the Setup object, after the Run’s Execute method completes. In reality, our code review prior to
doing this revealed that in fact we had not implemented destructors for the Run and Setup classes as our
coding discipline required, though to do so was straightforward. In the single Run-per-execution

i mplementation this was unnoticed and inconsequential. (However, we have seen versions of both
Windows and MacOS in which the OS did not always recover application memory after termination, and a
long series of executions could require areboot due to memory exhaustion.)

7 Adding functionality

The most frequent enhancement request has been the addition of experimental conditionsthat can be
controlled by the experimenter. In our design, this entails providing the experimenter away to put akey
and value into an external file, reflecting that key-value pair in the Setup object, and modifying the business
logic of aRun to account for the new condition. Since the Run has access to the Setup object, no
communication has to be modified as a consequence of the new facility. Because this pattern recurred in
severad other (lessrapidly evolving) facilities, we implemented a map function of our own (actually an
associative list with both forward and reverse lookup) using the somewhat controversial C++ template
facility. Such maps are available in the now stable STL. Our associative list is simple (we were content
with linear search through the associative lists because all were small and searched only once, at the
congtruction of each Run), but we would probably use STL now. A recent enhancement records on thefile
system what sentences a subject has seen and never presents the same sentence twice, no matter how many
experiments a subject participatesin. For thisit wasindeed convenient to use the STL hash facility, since

Morris, Yager & Aquilante v6 08/01/2001 -6-

our sentence library runsto the thousands and is growing.

A typical class of enhancements whose ease accrues from the strict object orientation was control of the
output format of the data gathered. Because datais accumulated in the Staircase object, format is controlled
in asingle output method of the Staircase class, which method also has access to the experimenter’ s format
requirements expressed in theinitiaization file. Indeed, though we presently support only two specific data
recording formats (a human readable one with extensive labels and a tal-separated one for import into
spreadsheets and data analysis software), a change to only asingle line of code in the output method and

the addition of onein the Staircase initialization file reader, could implement, for example, passingaC
printf-style format string from the initialization all the way to the output. All the intermediate businesslogic
would remain ignorant of this change.

To date, the only enhancements that have presented any consequentia difficulties have been those
requiring modifications to the peer to support continuously scrolling text under carefully timed conditions.
The main reason for thisisthat in al our current architectures, the native API for scrolling text islargely
devoted to processing messages from user interface components such as scroll bars on windows. In our
case, we needed to provide the experimenter to control independently several scrolling parametersfor
comparison of their impact on reading. These included both the scrolling speed and its temporal resolution,
i.e. how many pixels text moves on each motion aswell ashow long it is paused at the location. Together
these determine the scroll velocity, but the reader’ s perception is different according to how smooth the
scroll is. In addition, scrolled display must be possible both vertical and horizontal, and must also be viable
with al transformations we might make of the text. OpenGL presents simpler interfaces for doing this, but
in some cases the text must be converted to OpenGL “textures’ or rendered using special fonts (Kilgard
1997). We expect that thiswill ultimately prove the most satisfactory solution, especialy asincreasing
numbers of video accelerators are providing fast hardware support for OpenGL, which will probably make
al our performance requirements met without sophisticated video programming on our part. Meanwhile,
our scroll implementations have depended on rendering text off-screen and moving it as clipped images
through the scroll region.

Finally, we note that although we have not done so, our software can support the investigation of other
time-based psychophysica and cognitive investigations with little or no modification. Thisis because
among the objects we can display are arbitrary images provided in the Portable Graymap Metafile format
(PGM). Other formats could be supported with only programming in the peer, as described earlier.

8 Futures

Informal evidence from our low-vision subjects suggests that our software would make a useful low-vision
reading aid in its RSV P display mode. We have aready implemented anumber of controls by which the
subject can control the reading rate and re-read text that went by too fast. We have aso implemented RSVP
timing based on word length so that shorter words need not take as much time, and subjects report a
preference for this and indeed read on average 33% faster than without this adjustment ((Aquilante, Y ager,
Morris and Khmelnitsky 2001)). This expression of satisfaction with control of presentation speed suggests
that we try other speed control Ul, such asjoysticks and voice control.

Thereis aso some reason to believe that prescribing reading lenses based on letter charts under-prescribes
the optimal magnification for reading ((L ovie-Kitchin and Whittaker 1999)). Because our software is easily
installed on alaptop computer, we are contemplating designing adiagnostic aid based on it.

Colored text is usually without impact on normal readers unlessit hasluminance contrast that istoo low
(Legge, Parish, Luebker and Wurm 1990). Colored text is often used on the web and has been widely
studied (Muter 1996). However, very little seemsto be known about the interaction between color and text
size and there is some reason to expect such interaction because large and small objects are processed in
different parts of the human visual system, and the subsystem responsible for the large objectsis color
blind. In addition, some controversial studies suggest that reading is mediated by this subsystem (Garzia
1995). Our present implementation supports the display of colored text, but should we pursue studies of
such text it may become convenient to provide subject-specific color and luminance calibration, discussion
of which is beyond the scope of this paper.

Morris, Yager & Aquilante v6 08/01/2001 -7-

9 References

Aquilante, K., D. Yager and R. A. Morris (1998). How big must letters be for patients with central field
lossto read RSV P text at their maximum rate? Vision Science and its Applications, Optical
Society of America.

Aquilante, K., D. Yager and R. A. Morris (1999). Are low vision patients with central visua field loss more
sensitive to changes in luminance when reading than are age-matched normals? Vision Science
and Its Applications. Washington, Optical Society of America. 1. 25-28.

Aquilante, K., D. Yager and R. A. Morris (1999). Does RSV P reading take practice to reach maximum
reading rates?Vision Science and Its Applications.

Aquilante, K., D. Yager and R. A. Morris (2000). Can visua acuity predict the size of text that low vision
readers need to read at maximum rates? Vision rehabilitation. Assessment, intervention and
outcomes. C. Stuen, A. Arditi, A. Horowitzet al. Lisse, Swets & Zeitlinger: 288-292.

Aquilante, K., D. Yager, R. A. Morrisand F. Khmelnitsky (2001). "Low vision patients with age-related
macul opathy read RSV P faster when word duration varies according to word length." Optometry
and vision science : official publication of the American Academy of Optometry 78: 290-296.

Borland (1994). "C++ Design - Implementing a Model-View-Controller designin C++." Borland C++
Developer's Journal 1(9).

Bullimore, M. A. and |. L. Bailey (1995). "Reading and eye movements in age-related macul opathy."
Optom Vis Sci 72(2): 125-38.
Dickinson, C. (1998). Low Vision. Principles and Practice. Oxford, Butterworth Heinemann.

Fine, E. M. and E. Pdli (1998). "Benefits of rapid serial visual presentation (RSVP) over scrolled text vary
with letter size." Optom Vis Sci 75(3): 191-6.

Garzia, R. P., Ed. (1995). Vision and Reading, Mosby-Y ear Book, Incorporated.

Goodrich, G. and I. Bailey (2000). A history of the field of vision rehabilitation from the perspective of low
vision. The Lighthouse handbook on vision impairment and vision rehabilitation. B. Silverstone,
M. Lang, B. Rosentha and E. Faye. New Y ork, Oxford University Press 675-715.

Jacobson, 1. (1992). Object-oriented software engineering : a use case driven approach. Reading, Mass.,
Addison-Wesley Pub.

Kennedy, A. (2000). Attention allocation in reading: Sequential or parallel? Reading as a perceptual
process. A. Kennedy, R. Radach, D. Heller and J. Pynte. Amsterdam, Elsevier.

Kilgard, M. (1997). A Simple OpenGL-based API for Texture Mapped Text, Silicon Graphics, Inc.

Latham, K. and D. Whitaker (1996). "A comparison of word recognition and reading performance in fovea
and peripheral vision." Vision Research 36(17): 2665-74.

Leat, S. J, G. E. Leggeand M. A. Bullimore (1999). "What is low vision? A re-evaluation of definitions."
Optom Vis Sci 76(4): 198-211.

Leat, S. J. and J. M. Woodhouse (1993). "Reading performance with low vision aids: relationship with
contrast sensitivity." Ophthalmic Physiol Opt 13(1): 9-16.

Legge, G. E., D. H. Parish, A. Luebker and L. H. Wurm (1990). "Psychophysics of reading. X1. Comparing
color contrast and luminance contrast." J Opt Soc Am A 7(10): 2002-10.

Legge, G. E., G. S. Rubin, D. G. Pelli and M. M. Schleske (1985). "Psychophysics of reading--11. Low
vision." Vision Research 25(2): 253-65.

Lovie-Kitchin, J. and S. G. Whittaker (1999). "Prescribing near magnification for low vision patients." Clin
Exp Optom 82: 214-224.

McMahon, T. T., M. Hansen and M. Viana (1991). "Fixation characteristics in macular disease.

Relationship between saccadic frequency, sequencing, and reading rate." Invest Ophthalmol Vis
Sci 32(3): 567-74.

Morris, Yager & Aquilante v6 08/01/2001 -8-

Muter, P. (1996). Interface Design and Optimization of Reading of Continuous Text. Cognitive aspects of
electronic text processing. H. van Oostendorp and S. de Mul. Norwood, N.J, Ablex Publishing
Corp.

National Advisory Eye Council (1998). Visual Impairment and its rehabilitation. Vision Research - A
National Plan: 1999 -2003,, National Institutes of Health. Publication No. 98-4120: 117-130.

Pelli, D. (2000). VideoToolbox: C routinesfor visual psychophysics on Macs.
PGM (2001). Portable Graymap Metéfile.

Rayner, K., A. W. Inhoff, R. E. Morrison, M. L. Slowiaczek and J. H. Bertera (1981). "Masking of foveal
and parafoveal vision during eye fixationsin reading." J Exp Psychol Hum Percept Perform 7(1):
167-79.

Reichle E. D., A. Pallatsek, D. L. Fisher and K. Rayner (1998). "Toward amodel of eye movement control
inreading." Psychol Rev 105(1): 125-57.

Rubin, G. S. and G. E. Legge (1989). "Psychophysics of reading. VI--Therole of contrast in low vision."
Vision Research 29(1): 79-91.

Rubin, G. S. and K. Turano (1992). "Reading without saccadic eye movements." Vision Research 32(5):
895-902.

Rubin, G. S. and K. Turano (1994). "Low vision reading with sequential word presentation.” Vision
Research 34(13): 1723-33.

Silicon Graphics, |. (2001). Standard Template Library Programmer's Guide, Silicone Graphics, Inc.,.
2001.

Starr, M. S. and K. Rayner (2001). "Eye movements during reading: some current controversies.” Trends
Cogn Sci 5(4): 156-163.

Timberlake, G. T., M. A. Mainster, E. Peli, R. A. Augliere, E. A. Essock and L. E. Arend (1986). "Reading
with amacular scotoma. |. Retinal location of scotomaand fixation area” Invest Ophthalmol Vis
Sci 27(7): 1137-47.

Timberlake, G. T., E. Pdli, E. A. Essock and R. A. Augliere (1987). "Reading with a macular scotoma. 11.
Retinal locusfor scanning text." Invest Ophthalmol Vis Sci 28(8): 1268-74.

Webb, R. H. and G. W. Hughes (1980). "Flying spot TV ophthalmoscope." Applied Optics19: 2992-2997.

Whittaker, S. G., R. W. Cummings and L. R. Swieson (1991). " Saccade control without afovea." Vision
Research 31(12): 2209-18.

Whittaker, S. G. and J. Lovie-Kitchin (1993). "Visual requirementsfor reading." Optom Vis Sci 70(1): 54-
65.

WHO Study Group (1973) (1973). The Prevention of Blindness. Geneva, World Health Organi zation.
Report No. 518.

Morris, Yager & Aquilante v6 08/01/2001 -9-

