
Contributions to Metric Methods in Data Mining

A Dissertation Presented

by

Richard A. Butterworth

Submitted to the Office of Graduate Studies, University of Massachusetts
Boston, in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2006

Computer Science Department



c© 2006 by Richard A. Butterworth

All rights reserved



Contributions to Metric Methods in Data Mining

A Dissertation Presented

by

Richard A. Butterworth

Approved as to style and content by:

Dan A. Simovici, Professor
Chairperson of Committee

William R. Campbell, Associate Professor
Member
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ABSTRACT

Contributions to Metric Methods in Data Mining

May 2006

Richard A. Butterworth, B.S., Virginia Military Institute
M.S., The University of North Carolina at Chapel Hill

M.S., University of Massachusetts Boston
Ph.D., University of Massachusetts Boston

Directed by Professor Dan A. Simovici

Data mining is an attempt to obtain information from a mass of data that is not

easily discernable. Since many data mining techniques are designed for discrete

data while frequently the data is actually continuous, there is a great need for rea-

sonable approaches for converting the data from continuous to discrete. This thesis

will examine one discretization technique and some of its implications. Clustering

data is also an important field of study in data mining. This paper will examine a

technique for clustering and uses thereof. The unifying topic is a distance function,

called the Barthélemy-Monjardet distance, which will be used for both discretizing

and clustering.
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CHAPTER 1

Preliminaries

‘Begin at the beginning,’ the King said gravely, ‘and go on till you come to the

end: then stop.’

– Lewis Carroll, Alice in Wonderland

The average Ph.D thesis is nothing but the transference of bones from one grave-

yard to another.

– J. Frank Dobie, A Texan in England

Here’s hoping this is not that kind of average.

The questions remain the same. The answers are eternally variable.

– anon

1.1 Overview

The unifying theme of this dissertation is a distance function, the Generalized

Barthélemy-Monjardet distance, described in Section 1.7, which is based on a

generalization of the concept of entropy. This metric is used in a variety of ways,
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such as discretization and clustering. An explanation of how this metric works and

how it compares with other methods will be given. This chapter will attempt to

give the reader some background as why this is important, and how the distance

function was obtained. Later chapters will look at the theory behind the work,

examine the various areas upon which these techniques have been brought to bear,

and finally look at some experimental results.

1.2 Uses of Metrics in Data Mining

There many branches of data mining that utilize the concept of distance, dis-

cretization and clustering are two major ones.

Discretization : Many data mining techniques are designed to work well with

discrete data but are overwhelmed, or just don’t work, with continuous data.

Whereas, continuous data is extremely common, for example, blood pressure

and the amount a gene is expressed. To expand on this, continuous data will

mean data where the number of values a particular attribute can assume is

large relative to the data size. Thus, even if blood pressure is measured only

to the nearest whole number, the number of values that blood pressure could

take on is relatively large1.

Clustering : Often datasets contain a huge number of attributes, e.g. datasets

involving genes. These large number of attributes can be cumbersome and

very time-consuming to analyze. There are also, often, attributes that are

essentially noise and will actually detract from attempting to wrest informa-

tion from the dataset by merely confusing classification. Clustering allows

1Large is definitely a fuzzy term here. A rule of thumb would be “large” means that the
attribute takes on more than about 40 values.
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one to reduce the number of attributes needed to analyze the data. In order

to cluster one needs the concept of how close each attribute or collection of

attributes is from each other, that is, one needs the concept of distance.

1.3 Building Toward Distance

The distance function used in this dissertation comes directly from the concept of

a partition so Section 1.5 will introduce partitions. Succeeding sections will then

introduce entropy and generalizations of it since conditional entropy is a measure of

the impurity of partitions with each other, introduce distance functions especially

those that are derived from entropy, and finally examine the distance function

which is the focus of this paper.

1.4 Naming Conventions in This Paper

In this paper the word proposition will be used to indicate concepts which will be

proved that are generally known. The word theorem will be used otherwise.

1.5 Partitions

Informally a partition of a set is a breaking up of the set into subsets such that

the subsets are mutually exclusive, i.e. the intersection of two different subsets is

empty.

A more formal definition of the concept of a partition would be: a partition of

a non-empty set S is a non-empty collection of non-empty subsets of S, π = {Pi |
i ∈ I}, such that

⋃{Pi | i ∈ I} = S, and i, j ∈ I, i 6= j implies Pi ∩ Pj = ∅, see

3



figure 1.1.

a3
a1 a2

a4

a5

a6

a7

Figure 1.1: Simple Partition of a Set

Here is an example of a partition to attempt to make the various aspects of

a partition clear. Suppose there is a dataset concerning people, their weight and

blood pressure, see Table 1.1. Notice the data could be partitioned by weight or by

blood pressure. You might note that it is already sorted on weight so partitioning

on that would be trivial. The partition by weight would be:

{{s1, s2}, {s3, s5, s9, s11, s14, s7, s13}, {s4, s6, s8, s10, s12, s15}}

While the partition by blood pressure would be:

{{s1, s3, s5, s9, s11, s14}, {s7, s4, s6}, {s2, s13, s8, s19, s12, s15}}

Partitions can be generated using SQL by the select T group by A com-

mand. This partition is denoted πA of the set of rows of table T .

Partitions have an order so they can be organized as a lattice [Gr91], see

Figure 1.2, where for partitions A and B A ≤ B if each block of A is contained in

a block of B.

4



Weight vs Blood Pressure

subject weight bpres

s1 under low

s2 under high

s3 norm low

s5 norm low

s9 norm low

s11 norm low

s14 norm low

s7 norm med

s13 norm high

s4 over med

s6 over med

s8 over high

s10 over high

s12 over high

s15 over high

Table 1.1: Example Data Set
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{{ a }, { b , c }}

¡
¡

¡¡

@
@

@@

{ a, b, c }

{ { a, b }, { c }}

{ { a }, { b }, { c }}

@
@

@@

¡
¡

¡¡

{{ a, c }, { b }}

Figure 1.2: Example of the Lattice Structure of Partitions of the set {a, b, c}

The number of partitions of a set with n elements is B(n), the Bell num-

ber [Bel34]. The Bell number may represented recursively as,

B(n + 1) =
n∑

k=0

(
n

k

)
B(k), B(0) = 1

Or, B(n) may be represented as a sum of Stirling numbers of the second kind:

B(n) =
n∑

k=0

S(n, k) for n ≥ 1

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1), 1 ≤ k < n

S(n, n) = S(n, 1) = 1

where S(n, k) is the number of ways to partition n objects k at a time.

As noted in the previous section there is interest not only in the basic idea of a

partition also in comparing different partitions of the same dataset. This leads to

the trace of the partition. For a subset L of S the trace of the partition π on the

set L is the partition

πL = {Pi ∩ L | 1 ≤ i ≤ k and Pi ∩ L 6= ∅}

6



see figure 1.3 or look back at table 1.1 and notice that the trace of partition of

blood pressure on normal weight is

{{s3, s5, s9, s11, s14}, {s7}, {s13}}

.

Figure 1.3: Trace of a Partition

7



1.6 Entropy

The distance function exploited in this paper comes from the concept of entropy

which was defined and explained by Claude E. Shannon in the field of communi-

cations [SW63]. This idea has been used within the field of data mining to express

the purity (or impurity) of a partition of a set [Fay91]).

Let T be a set, π a partition of T , and S a subset of T . To evaluate the purity

of S relative to π, examine the trace of πS of the partition π. The set S is π-pure if

all its elements belong to the same block B of π. The more blocks of S intersects,

the more impure S is relative to π.

This concept is extended to the relative purity of a partition σ with respect to

a partition π. The purity of σ is defined in terms of the purity of the blocks of σ

relative to π.

For example, suppose you had the table 1.2. Notice it is sorted on weight and,

within that sorting, sorted on blood pressure. One can look at the table to get some

idea of the purity of partition on blood pressure relative to weight. Notice that most

of the normal weighted people have low blood pressure, whereas most of the over-

weight people have high blood pressure. The Generalized Barthélemy-Monjardet

distance function will use a generalization of Shannon entropy to quantify this

purity.

8



Weight vs Blood Pressure

subject weight bpres

s1 under low

s2 under high

s3 norm low

s5 norm low

s9 norm low

s11 norm low

s14 norm low

s7 norm med

s13 norm high

s4 over med

s6 over med

s8 over high

s10 over high

s12 over high

s15 over high

Table 1.2: Example Data Set
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1.6.1 Shannon Entropy

To be more formal as to what entropy is. If S is a finite set, a partition π =

{B1, . . . , Bk} generates a random variable:

Xπ =


 1 2 · · · k

p1 p2 · · · pk


 ,

where pi = |Bi|
|S| , i.e. pi is the fraction of the number of tuples in the ith block.

Entropy measures the dispersion of values of a random variable. Thus the Shannon

entropy [SW63] of π may be defined as the entropy of the random variable Xπ,

i.e.:

H(π) = −
k∑

i=1

pi log2 pi (1.1)

As an example, notice that the entropy of the dataset represented in Table 1.2

partitioned on the attribute weight is:

H(π) = − 2

15
log2

2

15
− 7

15
log2

7

15
− 6

15
log2

6

15
.

It can be noted that the maximum entropy for a k-valued random variable is

obtained when p1 = · · · = pk = 1
k

and equals log2k.

Lemma 1.6.1 ln x ≤ x− 1 for all x > 0.

Proof:

Define the function f : R>0 −→ R by f(x) = x − 1 − ln x. Its derivative is

f ′(x) = 1 − 1
x

and its second derivative is f ′′(x) = 1
x2 for x > 0. Thus, since

f ′(1) = 0 and f ′′(x) > 0, a minimum must occur at x = 1, i.e. the minimum is

f(1) = 0. So, 0 ≤ x− 1− ln x. Therefore, ln x ≤ x− 1 for all x > 0.

Proposition 1.6.2 H(S) has a maximum of log2k when p1 = · · · = pk = 1
k
.
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Proof:

Note, since ln x ≤ x− 1, then ln 1
x
≥ 1− x.

Consider log2k and H(S) =
∑k

i=1−pilog2pi

ln k

ln 2
−H(S) =

k∑
i=1

pi
ln k

ln 2
−

k∑
i=1

pi

ln
(

1
pi

)

ln 2

=
1

ln 2

k∑
i=1

pi ln (pik)

≥ 1

ln 2

k∑
i=1

pi

(
1− 1

pik

)

≥ 1

ln 2

(
k∑

i=1

pi − 1

k

k∑
i=1

pi

pi

)

=
1

ln 2

(
1− 1

k
(k)

)

= 0

Therefore, log2k ≥ H(S). Finally note that

k∑
i=1

−1

k
log2

1

k
= −1

k

k∑
i=1

log2
1

k

=
1

k

k∑
i=1

log2k

= log2k

Thus H(S) has a maximum of log2k which occurs when p1 = · · · = pk = 1
k
.

1.6.2 Shannon Conditional Entropy

So far only entropy with a single attribute partitioning the dataset has been dis-

cussed. Remember the more interesting question is how the partitions of a dataset

by several attributes compare since the ultimate goal is to be able to compare how

11



a given attribute partitions the dataset versus the target attribute. For example,

consider the previous dataset, represented by Table 1.2, it would be informative

to compare how blood pressure partitions the dataset with how weight does to see

if weight can predict, and how reliably, blood pressure. Conditional entropy will

deal with this dilemma.

If π and σ are two partitions in PART(S), the average impurity of the blocks

of σ relative to π is defined to be the conditional entropy of π relative to σ:

H(π|σ) =
m∑

j=1

|Qj|
|S| H(πQj

),

where σ = {Q1, . . . , Qm} and H(πQj
) is the entropy of the block Qj with respect

to π, see figure 1.4. For example, using the dataset from Table 1.2, where π is the

partition using blood pressure, results in:

H(πnormal) = −5

7
· log2

(
5

7

)
− 1

7
· log2

(
1

7

)
− 1

7
· log2

(
1

7

)
.

And, H(π|σ), where π is the partition by blood pressure and σ is the partition by

weight, is

H(π|σ) = − 2

15
H(πunder)− 7

15
H(πnorm)− 6

15
H(πover)

1.6.3 Generalizations of Shannon Entropy

Several authors have introduced generalizations of entropy, see [Dev74, Dar70,

HC67]. The common nature of these generalizations has been highlighted in [SJ02],

where a unified axiomatization was introduced. In particular, Daróczy suggested

a generalization of the Shannon entropy [Dar70] adding a parameter, β. Daróczy’s

β-entropy for a partition π = {P1, . . . , Pk} ∈ PART(S) is:

Hβ(π) =
1

21−β − 1

(
k∑

i=1

( |Pi|
|S|

)β

− 1

)
, β > 0. (1.2)
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Figure 1.4: Two partitions of a set – solid and dotted lines

Note that this is an extension of Shannon entropy since limβ→1 Hβ(π) is the Shan-

non entropy.

Proposition 1.6.3

Hβ(π) =
1

21−β − 1

(
k∑

i=1

( |Pi|
|S|

)β

− 1

)
, β > 0.

is an extension of Shannon entropy, i.e. limβ→1 Hβ(π) = H(π).

Proof:

lim
β→1

Hβ(π) = lim
β→1

∑k
i=1

(
|Pi|
|S|

)β

− 1

21−β − 1
, now use l’Hôpital’s Rule

= lim
β→1

∑k
i=1

(
|Pi|
|S|

)β

· ln
(
|Pi|
|S|

)

−2 · 2−β · ln 2
, simplify

=
k∑

i=1

−
( |Pi|
|S|

)
log2

( |Pi|
|S|

)

= H(π).

13



Daróczy also generalized the concept of conditional entropy. For σ, π ∈ PART(S),

where π = {P1, . . . , Pk} and σ = {Q1, . . . , Qm}, the Daróczy’s conditional β-

entropy Hβ(π|σ) is given by

Hβ(π|σ) =
m∑

j=1

( |Qj|
|S|

)β

Hβ(πQj
),

and thus, using Equation 1.2 we can obtain an equation which is more efficient to

implement:

Hβ(π|σ) =
m∑

j=1

( |Qj|
|S|

)β

Hβ(πQj
)

=
m∑

j=1

( |Qj|
|S|

)β

· 1

21−β − 1
·
(

k∑
i=1

( |Pi

⋂
Qj|

|Qj|
)β

− 1

)

=
1

(21−β − 1)|S|β
(

k∑
i=1

m∑
j=1

|Pi ∩Qj|β −
m∑

j=1

|Qj|β
)

. (1.3)

Daróczy’s conditional β-entropy is what will be used to create the Generalized

Barthélemy-Monjardet distance function.

1.7 Distance Functions

The discussion now turns to distance functions (or metrics) so an introduction

as to what a distance function is would be appropriate. A distance function is a

function with the following properties:

1. d(x, y) = 0 iff x = y

2. d(x, y ≥ 0

3. d(x, y) = d(y, x)

4. d(x, y) ≤ d(x, z) + d(z, y)

14



Note, a dissimilarity is similar to a metric except that property 4 (the triangle

property) need not apply. There are many distance functions that are used in data

mining today, such as [WM97] :

Minkowsky : D(x, y) = (
∑m

i=1 |xi − yi|r)1/r

Euclidean : D(x, y) =
√∑m

i=1 (xi − yi)
2

Manhattan : D(x, y) =
∑m

i=1 |xi − yi|

Canberra : D(x, y) =
∑m

i=1

∣∣∣xi−yi

xi+yi

∣∣∣

Chebychev : D(x, y) = maxm
i=1 |xi − yi|

Quadratic :

D(x, y) = (x− y)T Q(x− y) =
m∑

j=1

(
m∑

i=1

(xi − yi)qji

)
(xj − yj)

• Q is a problem-specific positive definite m×m weight matrix

Mahalanobis : D(x, y) = [detV ]1/m(x− y)T V −1(x− y)

• V is the co-variance matrix of A1 . . . Am

• Aj is the vector of values for attribute j occurring in the training set

instances 1 . . . n

Correlation :

D(x, y) =

∑m
i=1(xi − x̂i)(yi − ŷi)√∑m

i=1(xi − x̂i)2
∑m

i=1(yi − ŷi)2

• x̂i = ŷi and is the average value for attribute i occurring in the training

set

Chi-square : D(x, y) =
∑m

i=1
1

sumi

(
xi

sizex
− yi

sizey

)2

15



• sumi is the sum of all values for attribute i occurring in the training set

• sizex is the sum of all values in the vector x

Kendall’s Rank Correlation :

D(x, y) = 1− 2

n(n− 1)

n∑
i=1

i−1∑
j=1

sign(xi − xj)sign(yi − yj)

• Definition of sign(x)

sign(x) =





−1, if x < 0

0, if x = 0

1, if 0 < x

1.7.1 The Distance Function

Now all the pieces can be combined. The technique to be used in this paper

for discretizing and clustering is to measure the dissimilarity between attributes.

One way to do that would be to examine the distance between them. López de

Màntaras proved that the function d : PART(S) × PART(S) −→ R defined by:

d(π, σ) = H(π|σ) + H(σ|π), where H is the Shannon entropy is a metric [Man91].

In [SJ03] Simovici and Jaroszewicz showed a generalization of de Màntaras’s dis-

tance function, i.e. that the function dβ : PART(S)× PART(S) −→ R given by

dβ(π, σ) = Hβ(π|σ) + Hβ(σ|π)

=
1

(21−β − 1)|S|β
(

k∑
i=1

m∑
j=1

|Pi ∩Qj|β −
m∑

j=1

|Qj|β +

k∑
i=1

m∑
j=1

|Pi ∩Qj|β −
k∑

i=1

|Pi|β
)

=
1

(21−β − 1)|S|β
(

2 ·
k∑

i=1

m∑
j=1

|Pi ∩Qj|β −
k∑

i=1

|Pi|β −
m∑

j=1

|Qj|β
)

. (1.4)
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is a distance. This is the distance function to be used in the rest of this paper.
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CHAPTER 2

Discretization

Es brillig war. Die schlichte Tovern

Wirrten und wimmelten in Waben;

Und aller-mümsige Burggoven

Dis mohmem Räth’ ausgraben.

– Through the Looking Glass

2.1 Various Discretization Strategies

There are several basic discretization strategies which are standard:

1. binning

(a) equiwidth

(b) equidepth

2. cluster analysis

3. natural partitioning

4. entropy-based partitioning

Binning is taking the data and distributing it approximately equally. Equiwidth

is dividing the range of the attribute under consideration such that each bin is the
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same width. Equidepth is dividing the range such that each bin has approximately

the same number of data.

Cluster analysis is examining the data looking for groupings. This is best seen

by thinking of the data points as objects in a two-dimensional space and looking

to see how they group.

Natural partitioning is dividing the range of the attribute in a ‘natural’ way.

For example, if one was looking at weights, divide the weights into groups of 5

kilograms, e.g. (40, 45], (45, 50], and so on.

Entropy-based partitioning is grouping the data using entropy. The present

strategy, to be explained below, will use a variant of this.

2.2 How To Partition Data – Cutpoints and An Example

In Table 1.2 blood pressure was divided into three categories low, medium, and

high; weight was divided into under, normal, and over. But how is continuous data

aggregated into such discrete groups? One approach is to use the aforementioned

generalized entropy to do the job. First potential cutpoints, i.e. appropriate places

to divide the tuples, need to be determined.

If T is a table and A is an attribute of T , the set of members of the domain of

A that occur under A in T will be referred to as the active domain of A; this set is

denoted by adomT (A), or, if there is no risk of confusion, simply by adom(A). The

partition of the set of tuples of T that corresponds to a partition π of adomT (A)

is denoted by π∗. A block of π∗ consists of all tuples whose A-projections belong

to the same block of π.

Discretization of a numeric attribute A involves selecting a set of cutpoints
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S = {t1, . . . , t`} in the active domain of the attribute adom(A), where t1 < t2 <

· · · < t`. This set of cutpoints creates a partition πS = {Q0, . . . , Q`} of adom(A),

where Qi = {a ∈ adom(A) | ti−1 ≤ a < ti} for 0 < i ≤ ` + 1, where t0 = −∞ and

t`+1 = +∞. If the set S consists of a single cutpoint t we shall denote πS simply

by πt. The discretization process consists of replacing each value that falls in the

block Qi of πS by i for 0 ≤ i ≤ `. Thus we have gone from continuous data to

discrete data which could be viewed as ordered if needed.

The following example should help to clarify how this works.

Example 2.2.1 To assess the influence of physical parameters of individuals for

the risk for hypertension data is collected concerning the height and weight in

the table MEASUREMENTS. A classifier is constructed based on the training data set

shown in Table 2.1.

The active domains of the attributes of this table are:

adom(subject) = {s1, . . . , s15}
adom(weight) = {160, 165, 175, 180, 183, 185, 188, 190,

190, 198, 200, 202, 205, 210, 212, 228}
adom(height) = {60, 62, 64, 65, 67, 68, 69, 70, 71, 72, 74}
adom(bpres) = {low, med, high}.

The attribute bpres of this table determines a 3-block partition

πbpres = {Blow, Bmed, Bhigh}

of the set of rows (identified here by the subject number), where each block contains
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MEASUREMENTS

subject weight height bpres

s1 160 62 low

s2 165 65 high

s3 180 67 low

s4 210 70 med

s5 185 72 low

s6 228 74 med

s7 190 68 med

s8 200 71 high

s9 198 69 low

s10 205 68 high

s11 183 64 low

s12 202 74 high

s13 175 60 high

s14 188 70 low

s15 212 65 high

Table 2.1: Training Data Set
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the individuals having the same category of blood pressure readings:

Blow = {s1, s3, s5, s9, s11, s14}
Bmed = {s4, s6, s7}
Bhigh = {s2, s8, s10, s12, s13, s15}.

In order to classify individuals based on their risk for hypertension one needs to

discretize the attributes weight and height. The simplest discretization of weight

involves splitting adom(weight) into two classes Q
tweight

≤ and Q
tweight

> , defined by:

Q
tweight

≤ = {w ∈ adom(weight) | w ≤ tweight}
Q

tweight

> = {w ∈ adom(weight) | w > tweight},

where tweight is a cutpoint. The cutpoint tweight should be selected such that the

sets of tuples whose weight belong to Q
tweight

≤ and Q
tweight

> are as “pure” as possible

relative to the partition πbpres. In other words, one needs to choose tweight such that

each of these sets is scattered over as few blocks of πbpres as possible. Intuitively, if

the tuples whose weight components belong to Q
tweight

≤ were included in Blow, this

would be a strong indication that low weight favors low blood pressure.

Example 2.2.2 In the case of the MEASUREMENTS data shown in Example 2.2.1,

tweight must be chosen such that H(πbpres|πtweight
∗ ) is minimal.

Figure 2.1 shows the distribution of the individual weights and marks the class

where each point belongs.

Example 2.2.3 The partition πweight,bpres consists of the blocks:

{{w1}, {w2, w13}, {w3, w11, w5, w14}, {w7},
{w9}, {w8, w12, w10}, {w4}, {w15}, {w6}}
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150 160 170 180 190 200 210 220 230

r r r rr rr rr rr rr r r
l h h l l l lm l hh h mh m

1 2 13 3 11 5 14 7 9 8 12 10 4 15 6

weight

Figure 2.1: Distribution of the weight values

The boundary points of this partition are

w1, w2, w13, w3, w14, w7, w9, w8, w10, w4, w15, w6.

Here we denoted by wh the weight of the individual sh for 1 ≤ h ≤ 15.

2.3 Choosing Cutpoints

Fayyad [Fay91] showed that to obtain the least value of Shannon’s conditional

entropy H(πbpres|πtweight
∗ ) the cutpoint tweight may be chosen among the bound-

ary points of the the partition πweight,bpres. This is a powerful result that limits

drastically the number of possible cut points and improves the tractability of the

discretization.

Theorem 2.3.1 If C is a cutpoint for attribute A that minimizes the measure

|T1|
|T | H(T1) + |T2|

|T | H(T2) , where T1 ⊂ T and T2 = T − T1, for example set T, then C

is a boundary point.

(Fayyad’s Theorem)
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Simovici and Butterworth showed that the same choice of cutpoints may be

made for a broader class of impurity measures, namely the impurity measures

related to generalized conditional entropy [SB04].

Theorem 2.3.2 Let T be a table where the class of the tuples is determined by the

attribute A and let β ∈ (1, 2]. If S is a set of cutpoints such that the conditional

entropy Hβ(πA|πS
∗ ) is minimal among the set of cutpoints with the same number

of elements, then S consists of boundary points of the partition πB,A of adom(B).

(proved in Chapter 4)

Moreover, when the purity of the partition π
tweight
∗ is replaced as a discretization

criterion by the minimality of the entropic distance, dβ, between the partitions

πbpres and π
tweight
∗ (introduced in [SJ03]) the same method for selecting the cutpoint

can be applied [SB04].

Theorem 2.3.3 If β ∈ (1, 2]. If S is a set of cutpoints such that the distance

dβ(πA, πS
∗ ) is minimal among the set of cutpoints with the same number of elements,

then S consists of boundary points of the partition πB,A of adom(B).

(proved in Chapter 4)

Discretizing adom(B) involves seeking a set of cutpoints such that dβ(πA, πS
∗ ) =

Hβ(πA|πS
∗ ) + Hβ(πS

∗ |πA) is minimal. In other words, seek a set of cutpoints such

that the partition πS
∗ induced on the set of rows is as close as possible to the target

partition πA. Initially, before adding cutpoints, S = ∅, πS
∗ = ω, and therefore

Hβ(πA|ω) = Hβ(πA). Observe that as the set S grows the entropy Hβ(πA|πS
∗ )

decreases. Therefore the use of conditional entropy Hβ(πA|πS
∗ ) tends to favor

large cutpoint sets for which the partition πS
∗ is small in the partial ordered set

(PART(S),≤). In the extreme case, every point would be a cutpoint, a situation
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that is clearly unacceptable. But, using the Generalized Barthélemy-Monjardet

distance, this is counterbalanced by Hβ(πS
∗ |πA) which will increase as the number

of cutpoints increases. Note that initially Hβ(πS
∗ |πA) = Hβ(ω|πA) = 0 and as S

increases it increases. Thus while the Fayyad-Irani technique halts the discretiza-

tion process using the principle of minimum description length, the above strategy

will continue until dβ stops decreasing.

More formally, the generalized conditional entropy is dually monotonic in its

first argument and monotonic in its second, that is π ≤ π′ implies Hβ(π|σ) ≥
Hβ(π′|σ), i.e. as the first argument becomes finer, more blocks, entropy increases.

While σ ≤ σ′ implies Hβ(π|σ) ≤ Hβ(π|σ′), i.e. as the second argument becomes

finer entropy decreases, as Simovici and Jaroszewicz showed in [SJ03].

2.4 The Generalized Barthélemy-Monjardet distance and

Näive Bayes

The discretization method lends itself to use in the Näive Bayes algorithm partic-

ularly since Näive Bayes assumes the attributes are independent, and the method is

myopic in its approach which means it assumes the attributes are independent.[BSS04]

Näive Bayesian classification is based on Bayes theorem and an assumption

that the effect of an attribute value on a given class is independent of the values

of the other attributes. It should be noted that it also needs the attributes to be

nominal, so results were compared within Weka between this discretization method

and the method used within Weka. The results were quite encouraging as will be

seen in the next chapter.
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CHAPTER 3

Discretization – Experimental Results

Any sufficiently advanced technology is indistinguishable from a rigged demo.

– Andy Finkel

Maier’s Law: If the facts do not conform to the theory, they must be disposed

of.

– N.R. Maier, “American Psychologist”, March 1960 Corollaries: (1)

3.1 Discretization Algorithm and Experimental Results

This discretization algorithm was tested on several machine learning data sets from

UCI [BM98] that have numerical attributes. After discretizations were performed

with several values of β (typically β ∈ {1.5, 1.8, 1.9, 2}), the decision trees were

built on the discretized data sets using the WEKA J48 variant of C4.5 [WF00]. The

size, number of leaves, and accuracy of the trees are described in Table 3.1, where

trees built using the Fayyad-Irani discretization method of J48 are designated as

“standard”. Figure 3.1 shows how the distance varies as the cardinality of the set

of cutpoints increases on an artificial dataset.

The following charts show that the discretization technique has a significant

impact of the size and accuracy of the decision trees and that an appropriate choice
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Database Experimental Results

Discretization

method
Size

Number of

leaves

Accuracy

(stratified

cross-validation)

heart-c standard 51 30 79.20

β = 1.5 20 14 77.36

β = 1.8 28 18 77.36

β = 1.9 35 22 76.01

β = 2.0 54 32 76.01

glass standard 57 30 57.28

β = 1.5 32 24 71.02

β = 1.8 56 50 77.10

β = 1.9 64 58 67.57

β = 2.0 92 82 66.35

ionosphere standard 35 18 90.88

β = 1.5 15 8 95.44

β = 1.8 19 12 88.31

β = 1.9 15 10 90.02

β = 2.0 15 10 90.02

iris standard 9 5 95.33

β = 1.5 7 5 96

β = 1.8 7 5 96

β = 1.9 7 5 96

β = 2.0 7 5 96

diabetes standard 43 22 74.08

β = 1.8 5 3 75.78

β = 1.9 7 4 75.39

β = 2.0 14 10 76.30

Table 3.1: Experimental Results
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Figure 3.1: Variation of Distance with the Cardinality of the Set of Cutpoints

of β can reduce significantly the size and number of leaves of the decision trees,

roughly maintaining the accuracy (measured by stratified 5-fold cross validation)

or even increasing the accuracy as shown by the experiments on the glass data set.

(see Figure 3.2).
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CHAPTER 4

Discretization – Theorems

This is a one line proof... if we start sufficiently far to the left.

– Cambridge University math professor

4.1 Introduction

This chapter will show the proofs of Theorems 2.3.2 and 2.3.3. Theorem 2.3.2 is a

generalization of Fayyad’s Theorem 2.3.1 extending the choosing of cutpoints from

Shannon entropy to generalized entropy. The second, Theorem 2.3.3, extends this

to the Generalized Barthélemy-Monjardet distance.

4.2 Some Partition Notation

The following is some of the notation needed to follow the proofs:

PART(S): will denote the set of all partitions of a dataset, S.

π ≤ σ: Suppose there are two partitions of the set S, π and σ, then this could be

denoted by π, σ ∈ PART(S). Write π ≤ σ if each block of π is included in a

block of σ.

π1 ∧ π2: If π1, π2 ∈ PART(S), then π1 ∧ π2 denotes the partition whose blocks are
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all non-empty intersections of the form K ∩H, where K ∈ π1 and H ∈ π2.

Thus π1 ∧ π2 ≤ π1 and π1 ∧ π2 ≤ π2.

π1 ∨ π2: denotes the partition whose blocks, Dk, are the smallest blocks such that

for every Ki in π1 and Hj in π2 there is some Dki
and Dkj

such that Ki ⊆ Dki

and Hj ⊆ Dkj
. Note that π1 ≤ π1 ∨ π2 and π2 ≤ π1 ∨ π2.

πA: is a partition of the set of tuples of a table determined by the values of an

attribute A, as an aside recall that SQL computes such a partition using the

group by A option of a select phrase.

πB,A: If the tuples are first sorted on attribute B and then partitioned on attribute

A, this partition would be denoted πB,A of adom(B) and consists of the

longest runs of consecutive B-components of the tuples in this list that belong

to the same block K of the partition πA.

〈x〉, x↓, x↑: The boundary points of the partition πB,A are the least and the largest

elements of each of the blocks of the partition πB,A. If x ∈ adom(B) is a tuple,

the block of πB,A that contains x will be denoted by 〈x〉 and the least and

largest elements of 〈x〉 will be denoted by x↓ and x↑, respectively.

π∗: Suppose π is a partition of adomT (B), then π∗ denotes the partition of T that

corresponds to π. A block of π∗ consists of all tuples whose B-projections

belong to the same block of π. Note that πB,A∗ ≤ πA for any attribute B.

4.2.1 Finding A Cutpoint

To find a cutpoint Fayyad-Irani used the Shannon entropy:

Theorem 2.3.1 If C is a cutpoint for attribute A that minimizes the measure
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|T1|
|T | H(T1) + |T2|

|T | H(T2) , where T1 ⊂ T and T2 = T − T1, for example set T, then C

is a boundary point.

Here is a generalization of this:

Theorem 2.3.2 Let T be a table where the class of the tuples is determined by the

attribute A and let β ∈ (1, 2]. If S is a set of cutpoints such that the conditional

entropy Hβ(πA|πS
∗ ) is minimal among the set of cutpoints with the same number

of elements, then S consists of boundary points of the partition πB,A of adom(B).

Proof: Note that since πB,A∗ ≤ πA for any t ∈ adom(B), the set 〈t〉 is included

in some block Pg of the partition πA (see Figure 4.1).

-

-¾

-¾-¾

Pg
t↓ t↑t

Qh

Q′
h Q′′

h

¾ --¾· · ·-¾· · · PiPdPb
¾ -· · · · · ·

Figure 4.1: Position of Qh relative to other blocks

The proof is by induction on the number of cutpoints ` = |S|. If ` = 0, the

statement is immediate since in this case πS
∗ is the one-class partition ωT of the set

of tuples T . Suppose that the statement holds for a set of cutpoints that contain

` elements and let Z = S ∪ {t}, where S = {t1, . . . , t`} is a set of cutpoints that is

a subset of the set of boundary points of πB,A, |S| = ` and t 6∈ S.

Let πA = {P1, . . . , Pk} and πS
∗ = {Q0, . . . , Q`}. The conditional entropy
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Hβ(πA|πS
∗ ) is given by:

Hβ(πA|πS
∗ ) =

1

(21−β − 1)|T |β
(

k∑
i=1

∑̀
j=0

|Pi ∩Qj|β −
∑̀
j=0

|Qj|β
)

.

Suppose that the new cut point t is placed between th−1 and th. Then, the partition

πZ
∗ is obtained from πS

∗ by splitting Qh in Q′
h and Q′′

h. Also, t is located between

two cutpoints t↓ and t↑ of the partition πB,A. By a previous remark the set of

tuples whose B-component is included in the interval 〈t〉 = [t↓, t↑] is a subset of a

block Pg of the partition πA.

The variation of the entropy caused by the introduction of the split in Qh is

given by:

Hβ(πA|πZ
∗ )−Hβ(πA|πS

∗ )

=
1

(21−β − 1)|T |β
(

k∑
i=1

∑̀

j=0,j 6=h

|Pi ∩Qj|β −
∑̀

j=0,j 6=h

|Qj|β
)

+
1

(21−β − 1)|T |β
(

k∑
i=1

|Pi ∩Q′
h|β +

k∑
i=1

|Pi ∩Q′′
h|β − |Q′

h|β − |Q′′
h|β

)

−
(

k∑
i=1

∑̀
j=0

|Pi ∩Qj|β −
∑̀
j=0

|Qj|β
)

. (4.1)

Since the partition πS
∗ is such that Hβ(πA|πS

∗ ) achieves a local minimum, it

follows that the difference Hβ(πA|πZ
∗ )−Hβ(πA|πS

∗ ) needs to have a local minimum

in order for Hβ(πA|πZ
∗ ) to achieve a local minimum.

The number of tuples in the sets Pi ∩ Qj for i 6= g and j 6= h is unaffected

by the split of Qh since 〈t〉 ⊆ Pg. To make it simpler to see use a constant K

(independent on t) to replace the parts of Equation 4.1 such that the variation in
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entropy can be written as

Hβ(πA|πZ
∗ )−Hβ(πA|πS

∗ ) =
1

(21−β − 1)|T |β
(
K + |Pg ∩Q′

h|β + |Pg ∩Q′′
h|β

−|Q′
h|β − |Q′′

h|β
)
.

Denote n = |〈t〉|, and let µ be the number of tuples whose B-component is in

(t↓, t]. Then, the number of tuples whose B-component is in (t, t↑] is n−µ. Denote

by a, b the number of tuples in Q′
h and Q′′

h whose B-component is less than t↓ and

t↑, respectively. With these notations we can write

Hβ(πA|πZ
∗ )−Hβ(πA|πS

∗ ) =
1

(21−β − 1)|T |β
(
K + µβ + (n− µ)β

−(a + µ)β − (b + n− µ)β
)
,

If µ is regarded as a continuous variable varying in the interval [0, n], then one

needs to examine the variation of the real-valued function

F (µ) =
1

(21−β − 1)|T |β
(
K + µβ + (n− µ)β − (a + µ)β − (b + n− µ)β

)
,

on the interval [0, n]. The second derivative of this function is:

F ′′(µ) =
β(β − 1)

(21−β − 1)|A|β
(
µβ−2 + (n− µ)β−2

−(a + µ)β−2 − (b + n− µ)β−2
)
.

Since β > 1, β(β−1)
21−β−1

< 0. Also, for 1 ≤ β < 2 it is true that µβ−2 − (a + µ)β−2 > 0

and (n − µ)β−2 − (b + n − µ)β−2 > 0, which imply that the second derivative is

negative on [0, n]. This proves that the minimum of this function is attained either

for µ = 0 or for µ = n, that is, in one of the πB,A-boundary points.

The case β = 2 is immediate since in this situation F is a linear function of µ.
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The next theorem is a companion to Fayyad’s result and makes use of the same

hypothesis as Theorem 2.3.2 and is similar except it deals with the Generalized

Barthélemy-Monjardet distance function.

Theorem 2.3.3 If β ∈ (1, 2]. If S is a set of cutpoints such that the distance

dβ(πA, πS
∗ ) is minimal among the set of cutpoints with the same number of elements,

then S consists of boundary points of the partition πB,A of adom(B).

Proof: As before the argument is by induction on |S| and the basis |S| = 0 is

vacuous. Suppose that the statement is true for |S| = `, so S consists of boundary

points of the partition πB,A.

The conditional entropy Hβ(πS
∗ |πA) is given by

Hβ(πS
∗ |πA) =

1

(21−β − 1)|T |β
(

k∑
i=1

∑̀
j=0

|Pi ∩Qj|β −
k∑

i=1

|Pi|β
)

.

If a new cutpoint t is added between the boundary points th−1 and th to obtain

the new set of cutpoints Z = S ∪ {t}, the new value of the conditional entropy is:

Hβ(πZ
∗ |πA) =

1

(21−β − 1)|T |β
(

k∑
i=1

∑̀

j=0,j 6=h

|Pi ∩Qj|β+

k∑
i=1

|Pi ∩Q′
h|β +

k∑
i=1

|Pi ∩Q′′
h|β −

k∑
i=1

|Pi|β
)

.

Thus, we have:

Hβ(πZ
∗ |πA)−Hβ(πS

∗ |πA) =
1

(21−β − 1)|T |β
(

k∑
i=1

|Pi ∩Q′
h|β+

k∑
i=1

|Pi ∩Q′′
h|β +

k∑
i=1

|Pi ∩Qh|β
)

.

Since 〈t〉 ⊆ Pg only the intersections that contain Pg depend on the position of the

new cutpoint t. Therefore, the variation of the conditional entropy can be written
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as

Hβ(πZ
∗ |πA)−Hβ(πS

∗ |πA)

=
1

(21−β − 1)|T |β
(
H + |Pg ∩Q′

h|β + |Pg ∩Q′′
h|β − |Pg ∩Qh|β

)
,

where H is a constant that does not depend on t. Using the notation previously

introduced produces

Hβ(πZ
∗ |πA)−Hβ(πS

∗ |πA)

=
1

(21−β − 1)|T |β
(
H + µβ + (n− µ)β − nβ

)
.

The second derivative real-valued function G defined by

G(µ) =
1

(21−β − 1)|T |β
(
H + µβ + (n− µ)β − nβ

)

for µ ∈ (0, n] is

G′′(µ) =
β(β − 1)

(21−β − 1)|T |β
(
µβ−2 + (n− µ)β−2

)

and is clearly negative.

The variation of the distance dβ(πA, πZ
∗ )−dβ(πA, πS

∗ ) is the sum of the variations

of the entropies Hβ(πA|πZ
∗ ) − Hβ(πA|πS

∗ ) and Hβ(πZ
∗ |πA) − Hβ(πS

∗ |πA). With

the above notation, this variation equals F (µ) + G(µ), where F is the function

introduced in the proof of Theorem 2.3.2. Since F ′′(µ) + G′′(µ) < 0, the minimum

value of the distance can be attained only when t coincides with either t↓ or with

t↑.
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CHAPTER 5

Discretization – Coding

If builders built buildings the way programmers wrote programs, then the first

woodpecker to come along would destroy civilization.

–Anonymous

5.1 Introduction

First, here is a pseudo-code explanation of how discretization is done:

The algorithm shown below is used for discretizing an attribute B. It makes

successive passes over the table and, at each pass it adds a new cutpoint chosen

among the boundary points of πB,A.

Input: A table T, a class attribute A,

and a real-valued attribute B.

Output: A discretized attribute B.

Method: sort table T on attribute B;

compute the set BP of boundary points of partition πB,A∗;

S = ∅; d = ∞;

while BP 6= ∅ do

let t = arg min t∈BPdβ(πA, π
S∪{t}
∗ );

if d ≥ dβ(πA, π
S∪{t}
∗ ) then
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begin

S = S ∪ {t}; BP = BP− {t};
d = dβ(πA, πS

∗ )

end

else exit while loop;

end while

for πS
∗ = {Q0, . . . , Q`} replace

every attribute in Qi by i for 0 ≤ i ≤ `.

The while loop is running for as long as there exist candidate boundary points

and it is possible to find a new cutpoint t such that the distance dβ(πA, π
S∪{t}
∗ ) is less

than the previous distance dβ(πA, πS
∗ ). An experiment performed on a synthetic

dataset shows that a substantial amount of time (about 78% of the total time) is

spent on decreasing the distance by the last 1% (see Figure 3.1). Therefore, in

practice run a search for a new cutpoint only if |d− dβ(πA, π
S∪{t}
∗ )| > 0.01d.

The discussion will now turn to an implementation some of the functions used.

At first the distance function was written in Java using Oracle. Although this

was successful, it was painfully slow. Thus, System R was used to do much of

preliminary work, and Weka was used to do some of the analysis, e.g. creating the

Näıve Bayes and J48 classifiers.

5.2 A Brief Overview of System R

System R is a public version of System S where S was created by Bell Labs. It is

designed as an environment for doing statistics. There is a large complement of

functions to allow one to do statistics from simple functions like mean to sophisti-
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cated ones like creating dendrograms. There is also a language which is functional

and object-oriented included with the environment. Since it is an interactive en-

vironment, it allows the programmer to build it up in pieces, trying each piece

as one goes, and putting them together. It also has the capability of incorporat-

ing functions from other languages, especially compiled languages such as C or

FORTRAN, which allows the programmer to speed up the running considerably.

Because R is interactive, it is ideal as a test bed to implement functions quickly

and relatively painlessly.

As was said before, there are techniques that are designed to work with discrete

data so one needs to discretize data which is continuous. The theory behind this

has been described previously in Chapter 1. The implementation of this in R used

the following steps:

• call getdistab(exponent, tab, tar, ..., stopnum=20)

– It goes through each column (attribute) calling finddiscol(tab, i, tar,

exponent).

• call finddiscol(tab, i, tar, exponent)

– calls sortcol2(tab, att, tar) which sorts the data on the designated

attribute, att, and the target attribute, tar.

– calls getcutpts(tab, att, tar, index) which gets the cutpoints for the

given attribute.

– calls getdiscol which returns the column discretized.

∗ calls setdiscol(index, att, tar, cutpts, exponent, stopnum

which returns the column with the latest discretization done.
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∗ calls finddist(a1, a2, exponent which actually finds the distance

between the two attributes, a1 and a2.

The above inputs are:

exponent: the exponent to be used in the Generalized Barthélemy-Monjardet

distance,

tab: the table of tuples,

tar: the class (or target) attribute,

stopnum: the maximum number of blocks to be found (to ensure it will stop

in a reasonable time if it might create a partition with a huge number of

blocks),

i: the column number of the column to be operated on,

att: an attribute,

cutpts: a vector of the cutpoints

5.2.1 General Comment

The information obtained was exported to Weka for analysis, and the results im-

ported back to R to create graphs.
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CHAPTER 6

Clustering Introduction

A gaggle of swans, a pride of lions, a murder of crows

6.1 Introduction

This chapter will introduce attribute selection, i.e. how to pick good attributes

for predicting the class. According to Tsamardinos and Aliferis [TA03], there is

a basic concept one needs to worry about when choosing attributes: relevance.

What relevance means will be clarified below.

First, why limit the attributes? Why not use all the attributes? Theoretically

the more attributes the better. However, in learning experiments involving many

practical algorithms a reasonable selection of the attributes, rather than the full

set, often yields models with better generalization performance [DHS01]. Second,

using all the attributes may be very expensive. Third, smaller models are easier

to understand and less computationally expensive when performing inference and

prediction. A follow-on to the previous comment, if the object is to increase the

understanding of the interrelationship of the attributes and what will cause which

result, smaller is considerably easier to understand. Fourth, some of the attributes

may be redundant, and thus, not all of them are necessary to increase accuracy.

Finally, some of the attributes may be noise, i.e. they are irrelevant to the class
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and will only confuse a classifier.

6.2 Relevance

As data mining is used to study data sets with more and more attributes, the

number of attributes tends to overwhelm many strategies for analyzing the data.

Thus, there is a real need to try to filter the attributes and keep only the truly

relevant ones.

The first problem is ascertaining exactly what is a relevant attribute. This

has been studied by various authors, such as [BL97]. The basic issue relative to

relevance is relevant to what. Different definitions may be appropriate depending

on what the goal is. For example, a common idea would be to have the attributes

be relevant to the class attribute. Of course, even that demands clarification.

Suppose we have a Table, T , with a set of attributes, Ai, such that each at-

tribute has a domain adom(Ai). The learning algorithm is given a set S of training

data taken from the table where each datum is a tuple consisting of all the at-

tributes including the class attribute. Although the learning algorithm sees only

the sample S, it is often helpful to postulate two additional quantities: a proba-

bility distribution function D over the whole table and a target function t from

examples to labels. Now S can be viewed as having been produced by repeatedly

selecting examples D and then labeling them according to the function t.

Given this setup, relevance can be viewed as “relevant to the target attribute”.

Definition 6.2.1 (Relevant to the target) An attribute Ai is relevant to a

target attribute c if there exists a pair of tuples, A and B, in the table such that A

and B differ only in their assignment to Ai and c(A) 6= c(B).
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In other words, an attribute Ai is relevant if there exists some tuple in the table

such that changing the value of Ai affects the value of the class attribute.

Notice that this notion has the obvious drawback that the learning algorithm

has access to only the tuples in S and thus can not necessarily determine whether or

not an attribute is relevant to the entire table, T . Further, if each of the attributes

is redundant, e.g. each attribute has a duplicate, then it is not possible to find a

tuple where they differ by a single attribute. To remedy this, John, Kohavi, and

Pfleger [JKP94] suggest the following two definitions.

Definition 6.2.2 (Strongly Relevant to the Sample/Distribution) An at-

tribute Ai is strongly relevant to sample S if there exists tuples A and B in S

that differ only in their assignment to Ai and have different labels (or have dif-

ferent distributions of labels if they appear in S multiple times). Similarly, Ai

is strongly relevant to target c and distribution D if there exists tuples A and B

having non-zero probability over D that differ only in their assignment to Ai and

satisfy c(A) 6= c(B).

This is the same as Definition 6.2.1 except A and B are only required to be in

S.

Definition 6.2.3 (Weakly Relevant to the Sample/Distribution) An at-

tribute Ai is weakly relevant to sample S (or to target c and distribution D) if it is

possible to remove a subset of the attributes so that Ai becomes strongly relevant.

These notions of relevance are useful in attempting to decide which attributes

to keep and which to ignore. Attributes that are strongly relevant are generally

important to keep no matter what since removing them would add ambiguity to

43



the sample. Attributes that are weakly relevant may or may not be important to

keep depending on which other attributes are ignored.

6.3 Filters

Filters are an approach to attribute selection that introduces a separate process for

this purpose that occurs before the basic induction step [JKP94]. The preprocess-

ing step uses general characteristics of the training set to select some attributes

and exclude others. Note, that filters are independent of the induction algorithm

that will use their output so they can be combined with any such method.

Perhaps the simplest filtering strategy is to evaluate each attribute individu-

ally based on its correlation with the target function, e.g. use the Generalized

Barthélemy-Monjardet distance, and then choose the k attributes with the highest

value, i.e. closest to the class attribute.

6.4 Wrappers

Wrappers are a method named by John et al. [JKP94]. The typical wrapper

algorithm searches the same space of attribute subsets as filter methods, but it

evaluates alternative sets by running some induction algorithm on the training

data and using the estimated accuracy of the resulting classifier as its metric.

That is, it repeatedly takes a set of attributes; uses the given classifier, e.g. J48;

obtains results; and compares these results to see which is the best set of attributes

for classification.

The essential argument for wrapper approaches is that the induction method

that will use the attribute subset should provide a better estimate of accuracy
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than a separate measure that may have an entirely different inductive bias. The

major disadvantage of wrapper methods over filter methods is the computational

cost since the wrapper method calls the induction algorithm for each attribute set

considered.
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CHAPTER 7

Clustering Attributes

Felson’s Law: To steal ideas from one person is plagiarism; to steal from many is

research.

– Anonymous

7.1 Introduction

The performance and the robustness of classification algorithms is strongly influ-

enced by the dimensionality of the data. Also, the usefulness of the results yielded

by classifiers is increased when relatively few features 1 are involved in the clas-

sification. Thus, selecting relevant features for the construction of classifiers has

received a great deal of attention. A lucid taxonomy of algorithms for feature selec-

tion is discussed in [ZJ96]. A more recent reference is [GE03]. Several approaches

to feature selection have been explored, including wrapper techniques [KJ97], sup-

port vector machines [BGL00], neural networks [KWR01] and prototype-based

feature selection [HCB03]; the last is close to the approach used in this paper.

The central idea of this chapter is to introduce an algorithm for feature selection

that clusters attributes using the Generalized Barthélemy-Monjardet distance and

then uses a hierarchical clustering for feature selection. [BPS05]

1Feature and attribute are used interchangeably in data mining.
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Hierarchical algorithms generate clusters that are placed in a cluster tree. Clus-

terings are obtained by extracting those clusters that are situated at a given height

in this tree. The intent is to show that in building classifiers one needs to retain

only an attribute that is centrally situated in each cluster and this data compres-

sion can be achieved with little or no penalty in terms of the accuracy of the

classifier produced.

To give a more rigorous structure to the argument, consider the following: an

object system is a pair S = (S,H), where S is set called the set of objects of

S and H = {A1, . . . , Am} is a set of mappings defined on S. Assume that for

each mapping Ai (referred to as an attribute of S) there exists a nonempty set Ei

called the domain of Ai such that Ai : S −→ Ei for 1 ≤ i ≤ m. The value of

an attribute Ai on an object t is denoted by t[Ai]. This terminology is consistent

with the terminology used in relational databases, where a table can be regarded

as an object system; however, the notion of object system is more general because

objects have an identity as members of the set S, instead of being regarded as just

m-tuples of values. In this spirit, t[Ai] will denote the projection of t on Ai.

Let S be a set. As introduced in 1.5, a partition on S is a non-empty collection

of subsets of S indexed by a set I, π = {Bi | i ∈ I} such that
⋃

i∈I Bi = S and

i 6= j implies Bi ∩ Bj = ∅. The sets Bi are commonly referred to as the blocks of

the partition π. The set of partitions on S is denoted by PART(S).

An attribute A of an object system S = (S,H) generates a partition πA of the

set of objects S, where two objects belong to the same block of πA if they have

the same projection on A. BA
a denotes the block of πA that consists of all tuples

of S whose A-component is a.

The set of partitions of a set can be naturally equipped with a partial order.
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For π, σ ∈ PART(S) write π ≤ σ if every block B of π is included in a block of σ,

or equivalently, if every block of σ is an exact union of blocks of π. This partial

order generates a lattice structure on PART(S) 2; this means that for every two

partitions π, π′ ∈ PART(S) there is a least partition π1 such that π ≤ π1 and

π′ ≤ π1 and there is a largest partition π2 such that π2 ≤ π and π2 ≤ π′. The first

partition is denoted by π ∨ π′, while the second is denoted by π ∧ π′ 3.

7.2 Distance between partitions and the Pearson index

To introduce a metric on the set of partitions of a finite set define the mapping

v : PART(S) −→ R by v(π) =
∑n

i=1 |Bi|2, where π = {B1, . . . , Bn}. The mapping

v is a lower valuation on PART(S), that is,

v(π ∨ σ) + v(π ∧ σ) ≥ v(π) + v(σ) (7.1)

for π, σ ∈ PART(S).

For every lower valuation v the mapping d : (PART(S))2 −→ R defined by

d(π, σ) = v(π) + v(σ) − 2 · v(π ∧ σ) is a metric on PART(S) (see [BL95, Bar78,

Mon81]). d will be referred to as the Barthélemy-Monjardet distance4.

Using the cardinalities of the blocks of the partitions yields

d(π, σ) =
∑

i

|Bi|2 +
∑

j

|Cj|2 − 2
∑

i

∑
j

|Bi ∩ Cj|2,

where π = {B1, . . . , Bn} and σ = {C1, . . . , Cp}.

This metric was used for the development of an incremental clustering algorithm

[SS04]; in that paper Simovici and Singla used it to cluster attributes.

2see fig. 1.2
3see 1.5 and 4.2 for more information
4Note, this is the Generalized Barthélemy-Monjardet distance with β = 2.
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For a partition π = {B1, . . . , Bn} denote by M(π) and m(π) the largest and

the smallest size of a block of π.

Let π = {B1, . . . , Bn}, σ = {C1, . . . , Cp} be two partitions. The contingency

matrix of π and σ is the matrix Pπ,σ whose entries are given by pij = |Bi ∩Cj| for

1 ≤ i ≤ n and 1 ≤ j ≤ p. The Pearson χ2 association index can be written in this

context as:

χ2
π,σ =

∑
i

∑
j

(pij − |Bi||Cj|)2

|Bi| · |Cj|
It is well-known (See [Agr97]) that the asymptotic distribution of this index is a

χ2-distribution with (n− 1)(p− 1) degrees of freedom.

Theorem 7.2.1 If S is a finite set and π, σ ∈ PART(S), where π = {B1, . . . , Bn}
and σ = {C1, . . . , Cp}, then

v(π) + v(σ)− d(π, σ)

2M(π)M(σ)
− 2np + |S|2 ≤ χ2

π,σ ≤
v(π) + v(σ)− d(π, σ)

2m(π)m(σ)
− 2np + |S|2.

Proof:

Note that

χ2
π,σ =

∑
i

∑
j

p2
ij

|Bi| · |Cj| − 2np + |S|2.

Since m(π)m(σ) ≤ |Bi||Cj| ≤ M(π)M(σ):

p2
ij

M(π)M(σ)
≤ p2

ij

|Bi| · |Cj| ≤
p2

ij

m(π)m(σ)
.

Thus,
v(π ∧ σ)

M(π)M(σ)
− 2np + |S|2 ≤ χ2

π,σ ≤
v(π ∧ σ)

m(π)m(σ)
− 2np + |S|2

Since d(π, σ) = v(π) + v(σ)− 2
∑

i

∑
j p2

ij, it follows that

v(π) + v(σ)− d(π, σ)

2M(π)M(σ)
− 2np + |S|2 ≤ χ2

π,σ ≤
v(π) + v(σ)− d(π, σ)

2m(π)m(σ)
− 2np + |S|2,
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which concludes the argument.

Note that for partitions π, σ if size of the blocks of each partition stay the same

but the distance between the partitions varies, the Pearson coefficient decreases

as the distance increases, and, thus, the probability that π and σ are independent

increases with the distance. This suggests that partitions that are correlated are

close in the sense of the Barthélemy-Monjardet distance; therefore it would seem

appropriate to say, if attributes are clustered using the corresponding distance

between partitions clusters of attributes could be replaced by their centroids and,

thereby, drastically reduce the number of attributes involved in a classification

without significant decreases in accuracy of the resulting classifiers.
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CHAPTER 8

Cluster Algorithms – Experimental Results

Williams and Holland’s Law: If enough data is collected, anything may be proven

by statistical methods.

– Anonymous

There are known knowns. There things we know that we know. There are known

unknowns. That is to say, there are things that we know we don’t know. But there

are also unknown unknowns. There are things we don’t know that we don’t know.

– Defense Secretary Donald Rumsfeld

8.1 Experimental Validation

Nine data sets were examined: Anneal,Hepatitis, Ionosphere, Lymph, Mushrooms,

Soybean, Splice, Voting, and Zoo1. In each case, starting from the matrix (d(πAi , πAj))

of Barthélemy-Monjardet distances2 between the partitions of the attributes A1, . . . , An,

the attributes were clustered using an agglomerative hierarchical algorithm [KR90].

Nine set were used to examine the results for data sets whose properties were quite

different.

1from the UCI data sets
2the Generalized Barthélemy-Monjardet distance with β = 2
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Clusterings were extracted from the tree produced by the algorithm by cutting

the tree at various heights starting with the maximum height of the tree created

above (corresponding to a single cluster) and working down to a height of 0 (which

consists of single-attribute clusters). A ‘representative’ attribute was chosen for

each cluster as the attribute that has the minimum total distance to the other

members of the cluster, again using the Barthélemy-Monjardet distance. The J48

and the Näıve Bayes algorithms of the WEKA package [WF00] were used for

constructing classifiers on data sets obtained by projecting the initial data sets on

the sets of representative attributes. In addition, the data set was also run through

the CSF [Hal99] and Wrapper methods within Weka.

The CSF, correlation-based feature selection, is particularly interesting since

it uses a method that is quite unlike the method used in this paper. The present

method clusters attributes that are similar and picks the one closest to all the in

the group. While CSF picks attributes that are highly correlated with the class

attribute, yet uncorrelated with each other.

It should be noted that while the the Barthélemy-Monjardet distance method

is not always better then the other two methods, as will be seen below, it does

have the advantage of showing the user how various attributes cluster which could

be of significant benefit by itself.

To give a fuller of explanation of the results, consider the UCI Mushroom data

set [BM98] which consists of 8124 instances with 22 nominal attributes. The class

distribution is 51.8% edible and 48.2% poisonous. The following figures and tables

show:

• the dendrogram created, Figure 8.1.

• the attributes used by and the results of the CSF and Wrapper methods built
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in to Weka, Table 8.3.

• the heights, accuracies of Näıve Bayes and J48, and the attributes used at

each clustering height3, Table 8.1.

• what the Vi’s in the previous table stand for in the data set, see Table 8.2.

• graphs of Näıve Bayes and J48 accuracies at each clustering height, Figure 8.2

and Figure 8.3.

• One might note that the Barthélemy-Monjardet distance results take more

attributes to get the same results as the other two methods.

3i.e. each height where attributes are clustered
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Figure 8.1: Mushroom Data Set – Dendrogram
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Mushroom - NB & J48

Height NB J48 Attributes Used

0 95.8 100.0 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19

V20 V21 V22

436,456 95.7 100.0 V01 V02 V03 V04 V05 V07 V08 V09 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20

V21 V22

3,257,492 95.8 100.0 V01 V02 V03 V04 V05 V07 V08 V09 V10 V11 V12 V13 V14 V15 V17 V18 V19 V20 V21

V22

11,222,285 95.6 100.0 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V14 V15 V19 V20 V21 V22

14,552,216 97.0 100.0 V01 V02 V03 V04 V05 V06 V07 V08 V10 V11 V12 V13 V14 V15 V19 V20 V21 V22

18,198,460 97.7 100.0 V01 V02 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V14 V15 V19 V21 V22

19,086,682 97.4 100.0 V01 V02 V04 V05 V08 V09 V10 V11 V12 V13 V14 V15 V16 V19 V21 V22

19,423,488 97.5 100.0 V01 V02 V04 V05 V08 V09 V10 V11 V12 V13 V15 V16 V19 V21 V22

19,906,429 97.9 100.0 V01 V02 V04 V05 V08 V09 V10 V12 V13 V15 V16 V19 V21 V22

20,196,288 98.3 100.0 V01 V02 V04 V05 V08 V09 V10 V13 V15 V16 V19 V21 V22

20,776,000 98.3 100.0 V01 V02 V05 V08 V09 V10 V13 V15 V16 V19 V21 V22

20,789,022 90.4 100.0 V01 V02 V08 V09 V10 V13 V15 V16 V19 V21 V22

21,350,859 90.0 99.7 V01 V02 V08 V09 V10 V13 V15 V16 V19 V21

23,586,212 89.1 99.2 V01 V02 V08 V09 V10 V13 V15 V16 V19

24,155,040 89.6 99.0 V01 V02 V08 V09 V10 V15 V16 V19

26,271,030 88.6 96.3 V01 V08 V09 V10 V15 V18 V19

27,804,551 88.3 96.1 V01 V08 V09 V10 V16 V19

28,455,166 88.3 95.4 V08 V09 V10 V16 V19

29,049,718 91.1 97.7 V08 V10 V16 V20

30,026,619 86.8 92.9 V10 V16 V20

30,849,706 80.5 80.5 V9 V16

39,119,363 77.6 77.6 V19

Table 8.1: Mushroom Data Set – NB & J48



Code Actual Name Code Actual Name

V1 cap shape V13 stalk surface below ring

V2 cap surface V14 stalk color above ring

V3 cap color V15 stalk color below ring

V4 bruises V16 veil type

V5 odor V17 veil color

V6 gill attachment V18 ring number

V7 gill spacing V19 ring type

V8 gill size V20 spore print color

V9 gill color V21 population

V10 stalk shape V22 habitat

V11 stalk root V23 class

V12 stalk surface above ring

Table 8.2: Mushroom Names and Codes

Mushroom - NB & J48

Attributes odor

Type NB J48

CSF 95.8 98.5

Wrapper 98.5 98.5

Table 8.3: Mushroom Data Set – CSF & Wrapper
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Figure 8.2: Mushroom Data Set – NB
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Figure 8.3: Mushroom Data Set – J48
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In order to see how well this clustering technique really works, it was tried on

eight other data sets. The data sets vary by the number of attributes and the

number of items in each set. The data sets vary from having a moderate number

of attributes, 16, to quite a few, 61. In addition, the number of items vary from

44 to 3198. Here are the results:

• Anneal

– Number of Attributes: 38

– Number in Data Set: 798

– Dendrogram of attributes, Figure 8.4

– Table of Näive Bayes and J48 at various heights, Table 8.4

– Table of Näive Bayes and J48 for the CSF and Wrapper methods in-

cuded in Weka, Table 8.6

– Graph of Näive Bayes and J48 at various heights, Figures 8.5 and 8.6

– The Barthélemy-Monjardet distance does better than the other two

methods with the same number of attributes.

– The graph of the Barthélemy-Monjardet distance suggests there is some

noise in the data since the results actually degrade after seven attributes

in the Näive Bayes approach.

• Hepatitis

– Number of Attributes: 20

– Number in Data Set: 154

– Dendrogram of attributes, Figure 8.7

– Table of Näive Bayes and J48 at various heights, Table 8.7
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– Table of Näive Bayes and J48 for the CSF and Wrapper methods in-

cuded in Weka, Table 8.9

– Graph of Näive Bayes and J48 at various heights, Figures 8.8 and 8.9

– The Barthélemy-Monjardet distance does not do quite as well the other

two. In fact, it takes most of the attributes to get good results.

• Ionosphere4

– Number of Attributes: 34

– Number in Data Set: 350

– Dendrogram of attributes, Figure 8.10

– Table of Näive Bayes and J48 at various heights, Table 8.10

– Table of Näive Bayes and J48 for the CSF and Wrapper methods in-

cuded in Weka, Table 8.11

– Graph of Näive Bayes and J48 at various heights, Figures 8.11 and 8.12

– The Barthélemy-Monjardet distance did about as well as the other two.

• Lymph

– Number of Attributes: 19

– Number in Data Set: 147

– Dendrogram of attributes, Figure 8.13

– Table of Näive Bayes and J48 at various heights, Table 8.12

– Table of Näive Bayes and J48 for the CSF and Wrapper methods in-

cuded in Weka, Table 8.14

4This was first discretized with β = 1.8
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– Graph of Näive Bayes and J48 at various heights, Figures 8.14 and 8.15

– The Barthélemy-Monjardet distance does about the same as the Näive

Bayes strategy but a bit worse than J48. However, note that its accuracy

increases substantially with only a few attributes.

• Soybean

– Number of Attributes: 36

– Number in Data Set: 667

– Dendrogram of attributes, Figure 8.16

– Table of Näive Bayes and J48 at various heights, Table 8.15

– Table of Näive Bayes and J48 for the CSF and Wrapper methods in-

cuded in Weka, Table 8.17

– Graph of Näive Bayes and J48 at various heights, Figures 8.17 and 8.18

– The Barthélemy-Monjardet distance does not do quite as well as the

other two.

• Splice (Gene Splicing)

– Number of Attributes: 61

– Number in Data Set: 3189

– There is no dendrogram nor graphs since there are so many attributes,

and it would be impossible to read.

– Table of Näive Bayes and J48 at various heights, Table 8.18

– Table of Näive Bayes and J48 for the CSF and Wrapper methods in-

cuded in Weka, Table 8.19
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– The Barthélemy-Monjardet distance does not do quite as well as the

other two.

• Voting

– Number of Attributes: 17

– Number in Data Set: 434

– Dendrogram of attributes, Figure 8.19

– Table of Näive Bayes and J48 at various heights, Table 8.20

– Table of Näive Bayes and J48 for the CSF and Wrapper methods in-

cuded in Weka, Table 8.22

– Graph of Näive Bayes and J48 at various heights, Figures 8.20 and 8.21

– The Barthélemy-Monjardet distance does not do quite as well as the

other two.

• Zoology

– Number of Attributes: 16

– Number in Data Set: 100

– Dendrogram of attributes, Figure 8.22

– Table of Näive Bayes and J48 at various heights, Table 8.23

– Table of Näive Bayes and J48 for the CSF and Wrapper methods in-

cuded in Weka, Table 8.25

– Graph of Näive Bayes and J48 at various heights, Figures 8.23 and 8.24

– The Barthélemy-Monjardet distance does about as well as the other

two.
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Figure 8.4: Anneal Data Set – Dendrogram
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Anneal - NB & J48

Height NB J48 Attributes Used

0 90.2 97.0 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19

V20 V21 V22 V23 V24 V25 V26 V27 V28

1,794 90.2 96.7 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V13 V14 V15 V16 V17 V18 V19 V20

V21 V22 V23 V24 V25 V26 V27 V28

3,733 90.0 96.7 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V13 V14 V15 V16 V17 V18 V19 V21

V22 V23 V24 V25 V26 V27 V28

11,130 89.9 97.0 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V13 V14 V15 V16 V17 V18 V19 V21

V23 V24 V25 V26 V27 V28

13,606 89.7 96.9 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V13 V14 V15 V16 V17 V19 V21 V23

V24 V25 V26 V27 V28

16,932 89.9 96.8 V01 V02 V03 V04 V05 V06 V07 V08 V10 V11 V13 V14 V15 V16 V17 V19 V21 V23 V24

V25 V26 V27 V28

18,748 89.2 96.5 V01 V02 V03 V04 V05 V06 V07 V08 V10 V11 V13 V14 V15 V16 V17 V19 V21 V23 V24

V25 V26 V27

31,660 89.3 96.5 V01 V02 V03 V04 V05 V06 V07 V08 V10 V11 V13 V14 V15 V16 V17 V19 V21 V23 V24

V26 V27

32,725 89.1 96.0 V01 V02 V03 V04 V05 V06 V07 V08 V10 V13 V14 V15 V16 V17 V19 V21 V23 V24 V26

V27

51,149 89.1 96.2 V01 V02 V03 V04 V05 V06 V07 V08 V10 V13 V14 V15 V16 V19 V21 V23 V24 V26 V27

59,658 89.1 96.0 V01 V02 V03 V04 V05 V06 V07 V08 V10 V13 V14 V15 V16 V19 V23 V24 V26 V27

66,464 86.1 95.0 V01 V02 V03 V04 V05 V06 V08 V10 V13 V14 V15 V16 V19 V23 V24 V26 V27

87,086 87.2 95.1 V01 V02 V03 V04 V05 V06 V08 V10 V13 V14 V15 V16 V19 V23 V24 V26

98,810 86.7 94.6 V01 V02 V03 V04 V05 V06 V08 V10 V13 V14 V15 V16 V19 V24 V26
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Anneal - NB & J48 (cont’d)

Height NB J48 Attributes Used

123,852 87.5 94.4 V01 V02 V03 V04 V05 V06 V08 V10 V13 V14 V15 V16 V19 V24

137,119 88.0 94.5 V01 V02 V03 V04 V05 V06 V08 V10 V13 V15 V16 V19 V24

142,355 87.8 94.5 V01 V02 V03 V04 V05 V06 V08 V10 V13 V15 V16 V24

154,176 86.6 94.3 V02 V03 V04 V05 V06 V08 V10 V13 V15 V16 V24

198,647 86.6 94.4 V02 V03 V04 V05 V06 V10 V13 V15 V16 V24

223,498 85.8 94.2 V02 V03 V04 V05 V06 V10 V15 V16 V24

229,500 84.1 94.5 V02 V03 V05 V06 V10 V15 V16 V24

243,348 91.0 93.9 V02 V03 V06 V10 V15 V16 V24

248,733 91.1 94.0 V02 V03 V06 V10 V15 V24

308,928 87.5 88.6 V02 V06 V10 V15 V24

317,545 88.2 88.6 V02 V06 V10 V24

325,139 76.3 76.3 V02 V06 V24

383,698 76.3 76.3 V02 V06

476,978 76.3 76.3 V02

Table 8.4: Anneal Data Set – NB & J48
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Code Actual Name Code Actual Name

V1 FAMILY V15 BWME

V2 LEN V16 BL

V3 STEEL V17 CHROM

V4 TEMPERROLLING V18 PHOS

V5 CONDITION V19 CBOND

V6 FORMABILITY V20 EXPTL

V7 STRENGTH V21 FERRO

V8 NONAGEING V22 BLUEBRIGHTVARNCLEAN

V9 SURFACEFINISH V23 LUSTRE

V10 SURFACEQUALITY V24 SHAPE

V11 ENAMELABILITY V25 WIDTH

V12 BC V26 OIL

V13 BF V27 BORE

V14 BT V28 PACKING

Table 8.5: Anneal Names and Codes

Anneal - NB & J48

Attributes family, steel, temperRolling, surfaceQuality, chrom, ferro

Type NB J48

CSF 89.3 91.8

Wrapper 89.3 91.8

Table 8.6: Anneal Data Set – CSF & Wrapper
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Figure 8.5: Anneal Data Set – NB
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Figure 8.6: Anneal Data Set – J48
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Figure 8.7: Hepatitis Data Set – Dendrogram
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Hepatitis - NB & J48

Height NB J48 Attributes Used

0 85.1 82.5 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V14 V16 V17 V18 V19

2900 85.7 83.8 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V17 V18 V19

3978 85.1 83.8 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V17 V19

4194 83.1 84.4 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V19

5632 79.9 81.2 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V13 V16 V19

5936 79.2 81.2 V01 V03 V04 V05 V06 V07 V08 V09 V10 V11 V13 V16 V19

6534 77.9 76.0 V01 V03 V04 V05 V06 V07 V08 V09 V10 V11 V16 V19

7626 77.3 77.9 V01 V03 V04 V05 V07 V08 V09 V10 V11 V16 V19

8277 79.2 79.2 V01 V03 V05 V07 V08 V09 V10 V11 V16 V19

8448 77.3 76.6 V01 V03 V05 V07 V09 V10 V11 V16 V19

9048 77.3 79.2 V01 V03 V05 V07 V09 V11 V16 V19

10,023 76.0 79.2 V01 V03 V05 V07 V09 V16 V19

10,274 74.7 79.2 V01 V03 V05 V09 V16 V19

11,014 77.3 79.2 V01 V03 V05 V16 V19

11,451 75.3 79.2 V01 V03 V16 V19

11,590 78.6 79.2 V01 V03 V16

11,734 79.2 79.2 V03 V16

14,303 79.2 79.2 V16

Table 8.7: Hepatitis Data Set – NB & J48

68



Code Actual Name Code Actual Name

V1 AGE V11 SPIDERS

V2 SEX V12 ASCITES

V3 STEROID V13 VARICES

V4 ANTIVIRALS V14 BILIRUBIN

V5 FATIGUE V15 ALK PHOSPHATE

V6 MALAISE V16 SGOT

V7 ANOREXIA V17 ALBUMIN

V8 LIVER BIG V18 PROTIME

V9 LIVER FIRM V19 HISTOLOGY

V10 SPLEEN PALPABLE V20 Class

Table 8.8: Hepatitis Names and Codes

Hepatitis - NB & J48

Attributes age, sex, malaize, spiders, ascites, varices,

bilirubin, albumin, protime, histology

Type NB J48

CSF 87.7 81.3

Wrapper 85.2 80.6

Table 8.9: Hepatitis Data Set – CSF & Wrapper
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Figure 8.8: Hepatitis Data Set – NB
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Figure 8.9: Hepatitis Data Set – J48
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Figure 8.10: Ionosphere Data Set – Dendrogram
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Ionosphere - NB & J48

Height NB J48 Attributes Used

0 90.9 88.1 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V14 V16 V17 V18 V19 V20 V21 V22 V23

V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34

7480 90.9 89.1 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V14 V16 V18 V19 V20 V21 V22 V23 V24

V25 V26 V27 V28 V29 V30 V31 V32 V33 V34

8136 90.3 88.9 V03 V04 V05 V06 V07 V08 V09 V10 V12 V14 V16 V18 V19 V20 V21 V22 V23 V24 V25

V26 V27 V28 V29 V30 V31 V32 V33 V34

9110 90.6 88.6 V03 V04 V05 V06 V07 V08 V10 V12 V14 V16 V18 V19 V20 V21 V22 V23 V24 V25 V26

V27 V28 V29 V30 V31 V32 V33 V34

10,623 90.9 88.3 V03 V04 V05 V06 V07 V08 V10 V12 V14 V16 V18 V19 V20 V22 V23 V24 V25 V26 V27

V28 V29 V30 V31 V32 V33 V34

11,565 89.4 90.6 V03 V04 V05 V06 V07 V08 V10 V12 V14 V16 V18 V19 V20 V22 V24 V25 V26 V27 V28

V29 V30 V31 V32 V33 V34

14,530 90.6 89.4 V03 V04 V05 V06 V07 V08 V10 V12 V14 V16 V18 V19 V20 V22 V24 V25 V26 V27 V28

V29 V30 V32 V33 V34

17,502 90.6 88.9 V03 V04 V05 V06 V07 V08 V10 V12 V14 V16 V18 V19 V20 V22 V24 V25 V26 V27 V28

V29 V30 V32 V33

17,671 91.4 89.4 V03 V04 V05 V06 V07 V08 V10 V12 V14 V16 V18 V19 V20 V22 V24 V25 V27 V28 V29

V30 V32 V33

17,872 91.1 88.6 V03 V04 V05 V06 V07 V08 V10 V12 V14 V16 V19 V20 V22 V24 V25 V27 V28 V29 V30

V32 V33

20,658 91.1 90.9 V03 V04 V05 V06 V07 V08 V10 V14 V16 V18 V19 V22 V24 V25 V27 V28 V29 V30 V32

V33
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Ionosphere - NB & J48 (cont’d)

Height NB J48 Attributes Used

20,741 91.7 88.3 V03 V04 V05 V07 V08 V10 V14 V16 V18 V19 V22 V24 V25 V27 V28 V29 V30 V32 V33

21,541 91.7 87.7 V03 V04 V05 V06 V07 V08 V10 V18 V19 V22 V24 V25 V27 V28 V29 V30 V32 V33

22,272 91.7 88.6 V03 V04 V05 V06 V07 V08 V10 V18 V19 V22 V24 V25 V27 V28 V29 V32 V33

22,324 91.4 88.9 V03 V04 V05 V06 V07 V08 V19 V20 V22 V24 V25 V27 V28 V29 V32 V33

23,663 92.3 89.4 V03 V04 V05 V06 V07 V08 V19 V20 V24 V25 V27 V28 V29 V32 V33

24,800 92.3 89.7 V03 V04 V05 V06 V07 V08 V19 V20 V24 V25 V27 V29 V32 V33

24,833 92.6 89.1 V03 V04 V05 V06 V07 V08 V18 V19 V25 V27 V29 V32 V33

25,420 90.0 90.0 V03 V04 V06 V07 V08 V18 V19 V25 V27 V29 V32 V33

26,371 90.6 90.3 V03 V04 V06 V07 V08 V18 V19 V25 V27 V29 V33

26,685 91.4 90.6 V03 V04 V07 V08 V18 V19 V25 V27 V29 V33

27,788 89.4 90.0 V04 V05 V08 V18 V19 V25 V27 V29 V33

28,053 90.0 91.4 V05 V08 V18 V19 V25 V27 V29 V33

30,699 89.4 89.7 V05 V18 V19 V25 V27 V29 V33

31,144 88.3 89.4 V05 V18 V19 V25 V27 V33

31,350 88.0 91.1 V05 V19 V25 V27 V33

35,554 89.4 87.1 V05 V19 V25 V33

38,652 88.3 86.3 V05 V17 V33

41,740 84.3 84.3 V17 V33

61,576 67.6 67.6 V21

Table 8.10: Ionosphere Data Set – NB & J48
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Ionosphere - NB & J48

Attributes Both: V03, V04, V05, V07, V08, V14, V27, V28, V33

NB also: V35

Type NB J48

CSF 93.7 90.3

Wrapper 91.2 89.7

Table 8.11: Ionosphere Data Set – CSF & Wrapper
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Figure 8.11: Ionosphere Data Set – NB
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Figure 8.12: Ionosphere Data Set – J48
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Figure 8.13: Lymph Data Set – Dendrogram
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Lymph - NB & J48

Height NB J48 Attributes Used

0 85.7 80.3 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V14 V15 V16 V17 V18

2234 85.0 77.6 V01 V02 V03 V04 V05 V06 V08 V09 V10 V11 V12 V13 V14 V15 V16 V17 V18

2503 84.4 77.6 V01 V02 V03 V05 V06 v07 V08 V10 V11 V12 V13 V14 V15 V16 V17 V18

5544 86.4 76.9 V01 V02 V05 V06 V07 V08 V10 V11 V12 V13 V14 V15 V16 V17 V18

6491 84.4 77.6 V01 V02 V04 V06 V08 V10 V11 V12 V13 V14 V15 V16 V17 V18

7262 80.3 78.2 V01 V02 V04 V06 V08 V10 V11 V12 V13 V15 V16 V17 V18

7975 83.0 80.3 V01 V02 V04 V06 V08 V11 V12 V13 V15 V16 V17 V18

8368 83.7 78.9 V01 V02 V04 V06 V08 V11 V13 V15 V16 V17 V18

8502 84.4 81.0 V01 V02 V04 V06 V08 V11 V13 V15 v17 V18

8805 83.7 70.1 V01 V02 V04 V06 V08 V11 V15 v17 V18

9250 81.6 71.4 V02 V04 V06 V08 V11 V15 v17 V18

9435 76.2 71.4 V02 V04 V06 V11 V15 v17 V18

9693 70.7 70.1 V02 V04 V06 V11 V14 V17

9702 61.9 62.6 V04 V06 V11 V14 V17

9735 61.9 62.6 V04 V06 V11 V14

10,129 53.7 53.1 V04 V06 V14

10,598 57.8 50.3 V04 V14

12,029 55.1 55.1 V05

Table 8.12: Lymph Data Set – NB & J48
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Code Actual Name Code Actual Name

V1 LYMPHATICS V10 LYMNODESENLAR

V2 BLOCKOFAFFERE V11 CHANGESINLYM

V3 BLOFLYMPHC V12 DEFECTINNODE

V4 BLOFLYMPHS V13 CHANGESINNODE

V5 BYPASS V14 CHANGESINSTRU

V6 EXTRAVASATES V15 SPECIALFORMS

V7 REGENERATIONOF V16 DISLOCATIONOF

V8 EARLYUPTAKEIN V17 EXCLUSIONOFNO

V9 LYMNODESDIMIN V18 NOOFNODESIN

V19 class

Table 8.13: Lymph Names and Codes

Lymph - NB & J48

Attributes lymphatics, blockofaffere, regenerationof, earlyuptakein,

lymnondesdimin, changesinode, specialforms, noofnodesin

Type NB J48

CSF 81.6 78.9

Wrapper 81.6 78.9

Table 8.14: Lymph Data Set – CSF & Wrapper
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Figure 8.14: Lymph Data Set – NB
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Figure 8.15: Lymph Data Set – J48
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Figure 8.16: Soybean Data Set – Dendrogram
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Soybean - NB & J48

Height NB J48 Attributes Used

0 92.4 91.6 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19

V20 V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35

15,538 92.2 91.3 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19

V20 V21 V22 V23 V24 V25 V26 V27 V28 V29 V31 V32 V33 V34 V35

20,242 92.5 92.1 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V14 V15 V16 V17 V18 V19 V20

V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V34 V35

27,081 90.6 91.9 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V17 V18 V19 V20 V21

V22 V23 V24 V25 V26 V27 V28 V29 V31 V32 V33 V34 V35

31,408 90.4 92.1 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V17 V18 V19 V20 V21

V22 V23 V24 V26 V27 V28 V29 V31 V32 V33 V34 V35

41,109 89.8 89.4 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V17 V18 V19 V20 V21

V22 V23 V24 V26 V27 V28 V29 V31 V32 V33 V34

48,748 90.3 87.9 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V17 V18 V19 V20 V21

V22 V23 V24 V26 V27 V29 V31 V32 V33 V34

56,188 88.0 86.2 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V18 V19 V20 V21 V22

V23 V24 V26 V27 V29 V31 V32 V33 V34

58,864 87.9 85.9 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V18 V19 V20 V21 V22

V23 V24 V26 V27 V29 V31 V32 V34

63,179 87.9 87.1 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V18 V19 V20 V21 V22

V23 V24 V26 V27 V29 V32 V34

64,984 87.7 89.4 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V18 V19 V20 V21 V22

V23 V24 V27 V29 V32 V34
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Soybean - NB & J48 (cont’d)

Height NB J48 Attributes Used

71,178 87.1 89.4 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V18 V19 V20 V21 V22

V23 V24 V27 V29 V34

81,533 85.9 86.2 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V18 V19 V21 V22 V23

V24 V27 V29 V34

85,362 84.3 82.8 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V19 V21 V22 V23 V24

V27 V29 V34

87,390 84.3 83.1 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V19 V22 V23 V24 V27

V29 V34

95,055 82.6 81.1 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V19 V23 V24 V27 V29

V34

105,706 81.9 81.7 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V16 V19 V24 V27 V29 V34

123,718 81.9 79.9 V01 V02 V03 V04 V06 V07 V08 V09 V10 V11 V12 V13 V16 V19 V24 V27 V29 V34

132,592 81.0 79.6 V01 V02 V03 V04 V06 V07 V08 V09 V10 V11 V13 V16 V19 V24 V27 V29 V34

136,612 79.9 78.4 V01 V02 V03 V04 V06 V07 V08 V09 V10 V11 V13 V19 V24 V27 V29 V34

146,972 79.2 79.0 V01 V02 V03 V04 V06 V07 V08 V09 V10 V11 V13 V22 V24 V27 V34

148,514 77.5 77.1 V02 V03 V04 V06 V07 V08 V09 V10 V11 V13 V22 V24 V27 V34

154,162 76.6 78.1 V02 V03 V04 V06 V07 V08 V09 V10 V14 V22 V24 V27 V34

154,388 73.8 76.2 V02 V03 V04 V06 V07 V09 V10 V14 V22 V24 V27 V34

156,382 72.0 70.2 V02 V03 V04 V06 V07 V09 V10 V14 V27 V29 V34

158,641 74.2 70.5 V01 V02 V03 V04 V06 V09 V14 V27 V29 V34

162,393 72.9 71.4 V01 V02 V03 V04 V09 V14 V27 V29 V34

162,604 72.3 72.0 V01 V02 V03 V04 V09 V14 V29 V34
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Soybean - NB & J48 (cont’d)

Height NB J48 Attributes Used

173,288 68.2 68.4 V02 V03 V04 V10 V14 V29 V34

173,546 62.4 56.2 V02 V03 V04 V10 V29 V34

188,903 62.1 55.8 V02 V03 V04 V29 V34

189,156 56.8 57.3 V02 V04 V29 V34

195,223 44.4 40.2 V02 V29 V34

196,468 31.9 31.9 V29 V34

205,659 16.8 16.8 V34

Table 8.15: Soybean Data Set – NB & J48
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Code Actual Name Code Actual Name

V1 month V19 stem

V2 plant stand V20 lodging

V3 precip V21 stemcankers

V4 temp V22 cankerlesion

V5 hail V23 fruiting bodies

V6 crop hist V24 external decay

V7 area damaged V25 mycelium

V8 severity V26 int discolor

V9 seed tmt V27 sclerotia

V10 germination V28 fruitpods

V11 plant growth V29 fruitspots

V12 leaves V30 seed

V13 leaf spots halo V31 mold growth

V14 leaf spots marg V32 seed discolor

V15 leaf spot size V33 seed size

V16 leaf shread V34 shriveling

V17 leaf malf V35 roots

V18 leaf mild V36 class

Table 8.16: Soybean Names and Codes
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Soybean - NB & J48

Attributes leafspotsize, leafmalt, leafmild, stem,

cankerlesion, fruittingbodies, externaldecay

Type NB J48

CSF 92.1 90.4

Wrapper 92.4 90.3

Table 8.17: Soybean Data Set – CSF & Wrapper
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Figure 8.17: Soybean Data Set – NB
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Figure 8.18: Soybean Data Set – J48
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Splice - NB & J48

Height NB J48 Attributes Used

0 95.4 94.3

3,554,098 93.8 90.6

3,703,528 93.0 90.8

3,724,774 93.0 91.1

3,725,600 92.5 90.3 01 02 03 04 05 06 07 08 09 10 11 12 14 15 16 17 18 19 20 21 22 23 24 26 27 28 30 31 32

33 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

3,726,910 92.7 90.3

3,730,546 92.5 90.7

3,732,684 93.0 90.6

3,734,102 92.8 90.7

3,734,330 93.1 90.6 01 02 03 04 05 06 07 08 09 10 11 12 14 15 16 17 18 19 20 21 22 23 24 26 27 28 30 31 32

33 35 36 37 38 39 41 42 43 44 46 48 49 50 51 52 53 54 55 57 59 60

3,734,904 92.9 90.1

3,736,416 93.0 90.1

3,736,510 92.9 90.7

3,739,256 92.9 90.3

3,740,794 93.1 90.2 02 03 04 06 07 08 09 10 11 12 14 15 16 17 18 19 20 22 23 24 26 27 28 30 31 32 33 35 36

37 39 41 42 43 44 46 48 49 51 52 53 54 55 57 59 60

3,744,322 93.0 90.1

3,747,788 93.1 90.1

3,750,280 92.8 89.9

3,751,984 93.0 90.4

3,755,524 92.8 90.1 02 04 06 07 09 11 12 14 15 16 17 18 19 20 22 24 26 27 28 30 31 32 33 35 36 37 39 41 42

44 46 48 49 51 52 53 54 55 57 59 60
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Splice - NB & J48

Height NB J48 Attributes Used

3,757,816 92.7 90.1

3,764,530 92.3 90.0

3,764,930 92.6 90.4

3,772,681 92.6 90.3

3,774,922 92.4 90.2 02 04 06 07 09 11 12 14 15 16 17 19 20 22 24 26 27 28 30 31 32 33 35 37 39 41 42 44 46

48 49 51 54 56 59 60

3,778,748 92.4 90.6

3,784,344 92.8 90.7

3,785,188 92.6 90.7

3,785,865 92.9 90.4

3,788,298 92.9 90.6 02 04 06 09 11 14 16 17 19 20 22 24 26 27 28 30 31 32 33 35 37 39 41 43 46 48 49 51 54

56 59

3,792,236 91.2 88.5

3,793,883 91.3 89.1

3,795,345 91.4 88.8

3,795,419 91.5 88.9

3,797,620 91.3 89.2 02 04 06 09 11 14 17 19 22 24 26 27 28 30 31 32 34 37 40 43 46 48 51 54 56 59

3,800,189 91.2 89.2

3,800,470 91.6 89.3

3,802,684 91.5 88.4

3,804,723 91.4 88.6

3,806,902 91.4 89.1 02 06 10 14 17 19 22 24 26 28 30 31 32 34 39 40 45 48 51 56 59

3,808,732 91.3 88.8

3,813,082 91.4 88.9
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Splice - NB & J48

Height NB J48 Attributes Used

3,814,390 91.3 88.9

3,814,712 89.7 89.7

3,814,724 90.8 88.9 02 13 17 19 22 26 28 30 31 32 34 37 44 48 51 56

3,815,043 91.2 88.8

3,817,437 91.3 89.0

3,818,000 91.1 89.1

3,818,957 91.3 89.0

3,822,777 91.0 88.8 13 18 22 26 28 30 31 32 34 37 50

3,823,863 90.9 88.6

3,829,874 90.0 89.3 18 25 28 30 31 32 34 37 50

3,831,247 90.2 89.2 18 25 28 30 31 32 34 50

3,837,327 89.6 88.0 25 28 30 31 32 34 50

3,839,485 87.6 87.1 28 30 31 32 34 50

3,862,554 84.5 84.9 28 30 31 35 50

3,941,893 76.9 77.5 28 30 31 50

3,984,256 70.5 70.4 30 31 50

4.159,405 70.5 70.4 30 50

4,310,989 52.0 51.9 50

Table 8.18: Splice Data Set – NB & J48
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Splice - NB & J48

Attributes 28, 29, 30, 31, 32, 35

Type NB J48

CSF 93.6 93.3

Wrapper 93.6 93.3

Table 8.19: Splice Data Set – CSF & Wrapper
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Figure 8.19: Vote Data Set – Dendrogram
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Voting Data - NB & J48

Height NB J48 Attrs Offered

0 90.3 95.9 V01 V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V14 V15 V16

34,244 89.9 96.8 V01 V02 V03 V04 V06 V07 V08 V09 V10 V11 V12 V13 V14 V15 V16

43,472 91.0 96.1 V01 V02 V03 V04 V05 V06 V07 V10 V11 V12 V13 V14 V15 V16

44,196 91.7 94.9 V01 V02 V04 V05 V06 V07 V10 V11 V12 V13 V14 V15 V16

50,687 92.2 94.7 V01 V02 V04 V05 V06 V10 V11 V12 V13 V14 V15 V16

54,296 92.4 94.9 V01 V02 V04 V05 V06 V10 V11 V13 V14 V15 V16

58,182 84.6 86.9 V01 V02 V06 V08 V10 V11 V13 V14 V15 V16

62,084 85.7 87.8 V01 V02 V08 V10 V11 V13 V14 V15 V16

65,117 86.2 89.4 V01 V02 V05 V10 V11 V14 V15 V16

69,136 89.9 89.6 V01 V02 V05 V10 V11 V15 V16

72,276 86.6 88.7 V01 V02 V05 V10 V11 V16

81,889 88.5 88.9 V02 V05 V10 V11 V16

88,240 88.7 88.9 V02 V05 V10 V11

90,828 84.8 84.8 V05 V10 V11

91,244 84.8 84.8 V05 V10

92,803 84.8 84.8 V05

Table 8.20: Voting Data Set – NB & J48
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Code Actual Name Code Actual Name

V01 handicapped.infants V09 mx.missile

V02 water.project.cost.sharing V10 immigration

V03 adoption.of.the.budget.resolution V11 synfuels.corporation.cutback

V04 physician.fee.freeze V12 education.spending

V05 el.salvador.aid V13 superfund.right.to.sue

V06 religious.groups.in.schools V14 crime

V07 anti.satellite.test.ban V15 duty.free.exports

V08 aid.to.nicaraguan.contras V16 export.admin.act.south.africa

Table 8.21: Voting Names and Codes

Voting - NB & J48

Attributes physician fee freeze

Type NB J48

CSF 95.6 95.6

Wrapper 95.6 95.6

Table 8.22: Voting Data Set – CSF & Wrapper
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Figure 8.20: Voting Data Set – NB
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Figure 8.21: Voting Data Set – J48
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Figure 8.22: Zoo Data Set – Dendrogram

hair

feathers

eggs

milk

airborne

aquatic

predator

toothed

backbone

breathes

fins

venomous

legs

tail

domestic

catsize

0 2000 4000 6000 8000 10000 12000

Height

95



Zoo - Naive Bayes

Height Naı̈ve Bayes J48 Attrs Used

0 93.1 92.1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17

588 93.1 93.1 V2 V3 V4 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17

1398 93.1 93.1 V5 V3 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17

1820 95.0 94.1 V5 V3 V6 V7 V8 V9 V10 V11 V12 V13 V14 V16 V17

2136 94.1 94.1 V5 V3 V7 V11 V8 V9 V10 V12 V14 V16 V17

2986 91.1 91.1 V5 V3 V11 V8 V9 V10 V12 V14 V16 V17

3116 91.1 91.1 V5 V3 V11 V8 V9 V10 V12 V14 V17

3240 93.1 91.1 V5 V3 V11 V8 V10 V12 V14 V17

3684 89.1 90.1 V5 V3 V11 V8 V10 V12 V14

3888 93.1 89.1 V5 V3 V11 V8 V10 V14

4296 89.1 90.1 V5 V3 V11 V8 V10

4421 72.3 87.1 V5 V10 V11 V8

4671 57.4 75.2 V5 V10 V8

4862 60.4 60.4 V5 V8

4948 60.4 60.4 V5

Table 8.23: Zoo Data Set – NB & J48
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Code Actual Name Code Actual Name

V02 hair V10 backbone

V03 feathers V11 breathes

V04 eggs V12 venomous

V05 milk V13 fins

V06 airborne V14 legs

V07 aquatic V15 tail

V08 predator V16 domestic

V09 toothed V17 catsize

Table 8.24: Zoo Names and Codes

Zoo - NB & J48

Attributes hair, feathers, milk, toothed, backbone,

breathes, fins, legs, tail

Type NB J48

CSF 94 91

Wrapper 94 91

Table 8.25: Zoo Data Set – CSF & Wrapper
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Figure 8.23: Zoo - NB
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Figure 8.24: Zoo - J48
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8.2 Results on Microarray Data Sets

As stated in [GE03], in early studies of relevance published in the late 90s [BL97,

KJ97], few applications explored data with more than 40 attributes. With the

increased interest of data miners in biocomputing in general, and in microarray

data in particular, classification problems that involve thousands of features and

relatively few examples came to the fore.

The the Barthélemy-Monjardet distance technique was applied to the Golub

data set [GST99] that contains a training set of 38 instances and 7130 attributes.

After discretization using the algorithm developed in [BFO98], there were 830

attributes that contained more than one value. These attributes were clustered

using the k-means algorithm [HW79]. The Barthélemy-Monjardet distance was

used to determine the central attribute within each cluster. Then, as before,

hierarchical clustering was done. The results obtained on the training and the test

set (that includes 34 instances) are shown in Tables 8.26 and 8.27, respectively.
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No. of Clusters Naı̈ve Bayes J48

all 829 100 89.5

128 100 84.2

64 100 89.5

32 100 94.7

16 97.4 89.5

8 97.4 86.8

4 97.4 92.1

Table 8.26: Golub Data Set – Training Set

No. of Clusters Naı̈ve Bayes J48

128 97.1 94.1

64 97.1 97.1

32 100 70.6

16 94.1 85.3

8 94.1 94.1

4 91.2 91.2

Table 8.27: Golub Data Set – Test Set
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8.3 Side Results

Not only were good results obtained using the “representative” attributes, the clus-

ters themselves might be informative to users to examine to see which attributes

clustered and which attribute was chosen as the “representative” one.

8.3.1 Hepatitis

In the hepatitis data set, SGOT was clearly a highly representative attribute, as

evidenced by the results shown below in tables of the clustering at several different

heights, 8.28 and 8.29.

Hepatitis Clustering

Cluster Rep Att Atts

1 STEROID STEROID AGE

2 SGOT HISTOLOGY PROTIME ALBUMIN SGOT

ALKPHOSPHATE BILIRUBIN VARICES

ASCITES SPIDERS SPLEENPALPABLE

LIVERFIRM LIVERBIG ANOREXIA

MALAISE FATIGUE ANTIVIRALS SEX

Table 8.28: Hepatitis Data Set – 14,000
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Hepatitis Clustering

Cluster Rep Att Atts

1 AGE

2 SGOT PROTIME ALBUMIN SGOT

ALKPHOSPHATE BILIRUBIN VARICES

ASCITES SPIDERS SPLEENPALPABLE

ANOREXIA MALAISE ANTIVIRALS SEX

3 STEROID

5 FATIGUE

8 LIVERFIRM LIVERFIRM LIVERBIG

19 HISTOLOGY

Table 8.29: Hepatitis Data Set – 11,000
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8.3.2 Voting

Similarly, for Voting el salvador aid was a good indicator of many other attributes,

see Tables 8.30, 8.31, and 8.32.

Voting Clustering

Cluster Rep Att Atts

1 EL SALVADOR AID EXPORT SOUTH AFRICA

DUTY FREE EXPORTS CRIME

SUPERFUND RIGHT TO SUE

EDUCATION SPENDING MX MISSILE

AID TO NICARAGUAN CONTRAS

ANTI SATELLITE TEST BAN

RELIGIOUS GROUPS IN SCHOOLS

EL SALVADOR AID

PHYSICIAN FEE FREEZE

ADOPTION BUDGET RESOLUTION

HANDICAPPED INFANTS

2 SYNFUELS CORPORATION CUTBACK SYNFUELS CORPORATION CUTBACK

WATER PROJECT COST SHARING

Table 8.30: Voting Data Set – 90,830
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Voting Clustering

Cluster Rep Att Atts

1 EL SALVADOR AID EXPORT SOUTH AFRICA

DUTY FREE EXPORTS CRIME

SUPERFUND RIGHT TO SUE

EDUCATION SPENDING MX MISSILE

AID TO NICARAGUAN CONTRAS

ANTI SATELLITE TEST BAN

RELIGIOUS GROUPS IN SCHOOLS

EL SALVADOR AID

PHYSICIAN FEE FREEZE

ADOPTION BUDGET RESOLUTION

HANDICAPPED INFANTS

2 WATER PROJECT COST SHARING

10 IMMIGRATION

11 SYNFUELS CORPORATION CUTBACK

Table 8.31: Voting Data Set – 88,250
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Voting Clustering

Cluster Rep Att Atts

1 HANDICAPPED INFANTS

2 WATER PROJECT COST SHARING

3 EL SALVADOR AID SUPERFUND RIGHT TO SUE

EDUCATION SPENDING MX MISSILE

AID TO NICARAGUAN CONTRAS

ANTI SATELLITE TEST BAN

EL SALVADOR AID

PHYSICIAN FEE FREEZE

ADOPTION BUDGET RESOLUTION

6 CRIME CRIME

RELIGIOUS GROUPS IN SCHOOLS

10 IMMIGRATION

11 SYNFUELS CORPORATION CUTBACK

15 DUTY FREE EXPORTS

16 EXPORT SOUTH AFRICA

Table 8.32: Voting Data Set – 65,200
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CHAPTER 9

Clustering – Theory

Blore’s Razor: Given a choice between two theories, take the one which is funnier.

– Anonymous

Mathematics consists of proving the most obvious thing in the least obvious way.

–GeorgePólya

9.1 Introduction

Here is another theorem showing a relationship between Generalized Barthélemy-

Monjardet distance function and Pearson’s coefficient.

9.2 Relationship Between The Distance Function and Pear-

son’s Co-efficient

A proof that the distance function is related to Pearson’s Co-efficient in that as the

distance increases Pearson’s Co-efficient decreases, as would be expected. Note,

for simplicity, the investigation we will be limited to when β = 2.

Theorem 9.2.1 Claim: 1
π+σ+

≤ χ2 ≤ 1
π−σ−

[‖π‖2 + ‖σ‖2 − d(π, σ)]
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Proof:

As a preliminary, note that:

χ2 =
∑

i

∑
j

(nij

N
− ni+n+j

N2

)2

ni+n+j

N2

=
∑

i

∑
j

(
nij − ni+n+j

N

)2

ni+n+j

=
∑

i

∑
j

n2
ij

ni+n+j

+
∑

i

∑
j

−2nijni+n+j

N · ni+n+j

+
∑

i

∑
j

n2
i+n2

+j

N2ni+n+j

=
∑

i

∑
j

n2
ij

ni+n+j

− 2

N

∑
i

∑
j

nij +
1

N2

∑
i

∑
j

ni+n+j

=
∑

i

∑
j

n2
ij

ni+n+j

− 1

, π+ is the size of the largest block in the partition π and π− is the size of the

smallest block in the partition π

d2(π, σ) =
1

N2

[∑
n2

i+ +
∑

n2
+j − 2

∑∑
n2

ij

]

, where i+ is the sum of the tuples whose attribute is ni, nij is the size of the

intersection of the ith block of π and the jth block of σ, and N is the total number

of tuples.

Now look at the right-hand inequality. The right-hand side is:

1

π−σ−

[‖π‖2 + ‖σ‖2 −N · d(π, σ)
] ≤ 1

π−σ−

[‖π‖2 + ‖σ‖2 − d(π, σ)
]
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=
1

π−σ−

[∑
n2

i+ +
∑

n2
+j −

∑
n2

i+ −
∑

n2
+j + 2

∑∑
n2

ij

]

=
2

π−σi

∑∑
n2

ij

1

π−σ−

∑∑
n2

ij ≤
∑∑ n2

ij

ni+n+j

≤
∑∑ n2

ij

ni+n+j

− 1 ≤

χ2 =

The left-hand inequality:

∑∑ n2
ij

ni+n+j

− 1 = χ2

∑ ∑ n2
ij

ni+n+j

−
∑∑ 1

mn
=

, where m is the number of blocks in π and

n is the number of blocks in σ
∑∑ (

n2
ij

ni+n+j

− 1

mn

)
=

Now examine an individual element of the sum
n2

ij

ni+n+j
:

mn · n2
ij − ni+n+j

mn · ni+n+j

=
n2

ij

ni+n+j

− 1

mn

mn · n2
ij − n2

ij

mn · ni+n+j

≤ , since ni+n+j ≥ n2
ij

(mn− 1)n2
ij

mn · ni+n+j

=

mn− 1

mn · ni+n+j

≤ , since n2
ij ≥ 1

1

mn · ni+n+j

≤ , since mn > 1
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Thus,

∑∑ n2
ij

ni+n+j

− 1 ≤ χ2

∑∑ 1

mn · ni+n+j

≤
1

mn

∑∑ 1

π+σ+

≤
1

π+σ+

=

Thus, as the distance measure increases χ2 decreases, i.e. the further apart

the attributes are, the more independent are the attributes, which is what would

expect.
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CHAPTER 10

Cluster Algorithms – Coding

Research is what I’m doing when I don’t know what I’m doing.

– Wernher von Braun

Mosher’s Law of Software Engineering: Don’t worry if it doesn’t work right. If

everything did, you’d be out of a job.

– Anonymous

10.1 Introduction

Clustering has been implemented with System R and using Java and Oracle. The

reason for this is that R lends itself to prototyping while the Java/Oracle combi-

nation may be more usable by others. So the discussion will break down into two

distinct parts: the R part and the Java part.

10.2 R Part

Implementing the cluster algorithm in R was quite straightforward, especially since

there are a number of functions that will help. The functions from existing libraries
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that were used were:

agnes (Agglomerative Nesting): computes the agglomerative hierarchical clus-

tering of the dataset [Tea03].

pam (Partitioning Around Medoids): partitions (clusters) the data into k

clusters “around medoids”, a more robust version of K-means [Tea03].

rpart (Recursive Partitioning and Regression Trees: grows a tree by binary

recursive partitioning [Tea03].

These were used with the distance function to see how it compared with other

techniques for clustering and creating decision trees. The essential idea was to

try to find ‘representative’ attributes which could be used to cluster the data

effectively. The distance function was first used to cluster the data and then

picked a representative attribute from each cluster of the pruned tree.

Here is the pseudo-code:

Input: A table T

Output: A list of trees at all the heights where clustering occurs,

showing the representative attribute and the other attributes

for each cluster

Method: if T is not discretized, discretize it;

find the distance between each attribute, store as a matrix;

Use agnes to compute an agglomerative hierarchical

clustering of T;

use rpart to create a tree at each height wanted;

A more detailed explanation of the using rpart in the implementation in R is:
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• call domyrpart which will go through getrepatts a given number of times

and return a list of the results which plotrpartL will use as input to plot

the number of clusters versus cross-validation error

– call getrepatts which returns a vector of the attributes’ col number for

a given number of clusters that are ‘representative’ of the attributes in

the clusters.

– call myrpart which takes the attributes from above converts them into

a formula which it feeds to rpart

– call rpart which returns an rpart object, essentially a tree

– call plotrpartL which will return a plot of the results.

10.3 R Functions Written for Clustering

System R was used to create the following major functions:

finddist : finddist(a1, a2, exponent)

• inputs:

a1: one attribute, its column number

a2; the other attribute, its column number

exponent: the exponent to use in the formula

• output: the distance between two attributes, using the distance function

mentioned throughout this paper

getdistobj: getdistobj(mat, tar=0, exponent=2)

• inputs:
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mat: a matrix of data, discretized

tar: the number of the column of the target attribute, the default is

0, i.e. the target attribute will not be left out. If you put in the

target’s column number, it will be left out in the calculations. You

might want to leave the target attribute out of the calculations if

you are looking at clustering of attributes.

exponent: the exponent to be used by our distance function, 2 is the

default

• output: a dist class object, essentially a matrix with distances in lower

left triangle, which are the distances between each attribute, using our

distance function, needs finddist from disstuff2.

getrepatts: getrepatts(distobj, treeobj, k=NULL, h=NULL)

• inputs:

distobj: a dist object

treeobj: a tree object

k: the number of clusters in the ‘smaller’ tree

h: the minimum height where the tree will be cut

• output: a vector of the attributes’ col number for a given number of clus-

ters or height that are ’representative’ of the attributes in the clusters,

used to try to use fewer attributes to classify correctly

domyrpart: domyrpart(tar, dtab, distobj, treeobj, ..., maxclust=0, height=T)

• inputs:

tar: target attribute
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dtab: data - assumed to be nominal

distobj: dist obj of data (excluding target attr)

treeobj: data in tree form, e.g. agnes

maxclust: the max number of clusters if the user inputs nothing the

function will find the number of clusters in the original tree and use

that

height: boolean, to state whether the tree is being trimmed by number

of clusters or pruned at a particular height

• output: rbiglist which is list(height, rcnt, rlist, attslist, attsusedlist)

height: boolean indicating whether the rparts were found using min

height or num of clusters

rcnt: either a count of the num of clusters or the heights for each pruned

tree found

rlist: a list of rparts - the decision trees

attslist: a list of the attributes ‘offered’ to rpart

attsusedlist: a list of the attributes actually used by rpart for each

rpart implementation

10.4 Java/Oracle

This implementation is quite different from the R implementation. While the

R implementation built the dendrogram, this version viewed the clustering as a

datatype and built it that way.1

The basic class is HCL which contains:

1Much of the inspiration for this code came from twins, FORTRAN code from the R project,
and F. Murtagh (f.murtagh@qub.as.uk).
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• Data:

dissmat: dissimilarity matrix of the attributes

attNames: attribute names, except the class attribute

className: class attribute name

heights: the heights where clustering occurs

tableName: the name of the table in Oracle

• Methods:

HCL: various constructors. The basic one of which will build the informa-

tion needed from the table, e.g. the dissmat, the clustering.

Output: various methods for writing out information, e.g. outputting an

arff file, for use in Weka.

There is a wrapper class HCLWrapper which gives the user a reasonable inter-

face to the HCL class. This class offers the user the following choices for massaging

the table:

Info: gives a short description of what the program can do.

Go through: take a table and create arff files for each height there is clustering.

The file consists of the representative attributes for that height.

Repeat: allows the user to go through a table repeatedly picking heights and

seeing the output. It will output on the screen the heights as a range or

all of them. Once the user has picked a height, it can output the clustering

as a vector of numbers (telling the user which cluster each attribute is in
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by number), the representative attributes, the clustering so the user can see

which attribute is in each cluster, the average distance within and between

the clusters, and will let the user decide whether to output an arff file for the

height and whether to leave the table in Oracle with the new column (the

column showing the clustering) or not.

Change table: go to a different table and go through it as the user wishes.

At present the Java implementation allows for clustering by the following meth-

ods: group, single, complete, or Ward. Since it uses the Lance-Williams formula,

any other method that can be written using that formula can be added merely by

changing a few places in the code.

The code mentioned in this dissertation may be found at cs.umb.edu/∼rickb.
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CHAPTER 11

Conclusion

Vail’s Second Axiom: The amount of work to be done increases in proportion to

the amount of work already completed.

– Anonymous

11.1 Conclusion

This thesis has introduced the Generalized Barthélemy-Monjardet distance, used

it to discretize data, and cluster data. In discetization, it tried to show that this is

a reasonable extension of Fayyad’s discretization strategy [Fay91] which often gives

better results. In clustering, it showed a clustering method which returned good

results and also returned dendrograms that gave the user an insight into which

attributes clustered to which for further study of these attributes relationships.

11.2 Future Work

Obvious avenues of future research would be:

• to determine if there are any predictors for which is the best value for β when

discretizing.
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• to determine if there is a way to predict when clustering using the Barthélemy-

Monjardet distance would be more or less effective than CSF or the Wrapper

method in Weka.
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[Man91] R. López de Màntaras. “A Distance-Based Attribute Selection Measure
for Decision Tree Induction.” Machine Learning, 6:81–92, 1991.

[Mon81] B. Monjardet. “Metrics on Parially Ordered Sets – A Survey.” Discrete
Mathematics, 35:173–184, 1981.

[SB04] D. A. Simovici and R. Butterworth. “A Metric Approach to Supervised
Discretization.” Revue des Nouvelles Technologies de l’Information,
1:197 – 202, Jan 2004.

[SJ02] D. A. Simovici and S. Jaroszewicz. “An Axiomatization of Partition
Entropy.” IEEE Transactions on Information Theory, 48:2138–2142,
2002.

[SJ03] D. A. Simovici and S. Jaroszewicz. “Generalized Conditional Entropy
and Decision Trees.” In Extraction et Gestion des connaissances - EGC
2003, pp. 363–380, Paris, 2003. Lavoisier.

[SS04] D. Simovici and N. Singla. “Metric Incremental Clustering of Categor-
ical Data.” In Proceedings of ICDM, pp. 523–527, 2004.

[SW63] C Shannon and W. Weaver. The Mathematical Theory of Communica-
tion. University of Illinois Press, 1963.

[TA03] I. Tsamardinos and C. F. Aliferis. “Towards Principled Feature Selec-
tion: Relevancy, Filters and Wrappers.” Proceedings of the Ninth Inter-
national Workshop on Artificial Intelligence and Statistics, Jan 2003.

[Tea03] The R Development Core Team. The R Environment for Statistical
Computing and Graphics. Number Version 1.8.1. The R Development
Core Team, 21 Nov 1999 - 2003.

[WF00] I. H. Witten and E. Frank. Data Mining – Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann,
San Francisco, 2000.

[WM97] D. Randall Wilson and Tony R. Martinez. “Improved Heterogeneous
Distance Functions.” Journal of Artificial Intelligence Research 6, pp.
1 – 34, January 1997.

121



[ZJ96] D. Zongker and A. Jain. “Algorithms for Feature Selection: An Evalua-
tion.” In Proceedings of the International Conference on Pattern Recog-
nition, pp. 18–22, 1996.

122


