
Distribution and Configuration System

Release 2.0

John P. Rouillard

January 2009

Contents

Contents 5

List of Tables 6

List of Figures 7

1 DACS Introduction 8
1.1 Should you deploy DACS? . 9
1.2 Why you should deploy DACS . 12
1.3 The Components . 14
1.4 DACS Documentation . 16

1.4.1 Basic introduction and concepts . 16
1.4.2 Training docs . 17
1.4.3 Reference section . 17

1.5 Getting Started . 17
1.6 Acknowledgments . 18

2 Using DACS 19
2.1 Use case troubleshooting a problem . 19
2.2 Use case recovering from a dead host . 21
2.3 Use case modifying a managed resolv.conf . 23
2.4 Use case setting up to manage sudoers file . 24
2.5 Use case set up to manage ntp.conf on all hosts from database 25

2.5.1 Planning the network time protocol setup . 25

3 The ”database” system 28
3.1 What does the database provide . 28
3.2 The database file . 28

3.2.1 Keyword definitions . 30
3.2.2 Further comments on the service, users, cluster and os keywords 32
3.2.3 Inheriting information from another host (creating child host) 33
3.2.4 Representing multiple IP addresses for a host 35
3.2.5 Using a unique IP address for a service (e.g. DNS) 35

3.3 Database output (class definitions) . 36
3.3.1 Class Types . 36

3.4 dbreport . 39

2

3.4.1 The command line . 39
3.4.2 Examples of dbreport usage . 40
3.4.3 Changing dbreport . 43

3.5 Special circumstances and configurations . 46
3.5.1 Deploying multiple redundant servers . 46

3.6 Standard database reports: wiring, asset, labels . 46
3.6.1 Obtain a report of all your assets in the database 46
3.6.2 Print labels to apply to hosts . 47
3.6.3 Obtain a report of the wiring layout for your systems 47

4 The Version Control System (VCS) 48
4.1 What does the VCS provide . 48
4.2 Which VCS . 49
4.3 VCS anatomy . 49
4.4 VCS setup . 50

4.4.1 Repository file structure . 50
4.4.2 Sample SVN configuration and hook files . 52
4.4.3 SVN Access controls . 53
4.4.4 Delegation of access to a non-admin user . 54
4.4.5 Setting owners, groups and permissions . 55

4.5 Workflow under the two VCS . 56
4.5.1 Workflow in a split work/production implementation 57
4.5.2 Promoting from work to production . 57
4.5.3 Tracking vendor releases . 61

5 The Build System 63
5.1 What does the Build System provide . 63
5.2 Build system setup . 64
5.3 Makefile template . 64
5.4 Setting modes, owner and groups . 64

5.4.1 Implementation notes . 66
5.5 Reducing dbreport invocations (using a per host cache) 66

5.5.1 VCS Interaction . 68
5.5.2 Adding new data to the host caches . 68
5.5.3 The internals . 69
5.5.4 Performance of caching . 70

5.6 Using templates and other file processing tasks . 71
5.6.1 Using filepp . 72
5.6.2 Basic directive/command examples . 74
5.6.3 Performing set operations with host classes 76

6 Distribution of files 80
6.1 What does the distribution system provide . 80
6.2 Running Rdist . 82

6.2.1 Other Rdist options . 83
6.2.2 Host selection and verification . 84

3

6.3 Target Overrides and Rdist fragments . 84
6.4 Controlling Rdist: the Distfile . 85

6.4.1 The anatomy of a Distfile entry . 85
6.4.2 Distfile Label Types and Special Purpose Labels 86
6.4.3 Distfile Macros . 90
6.4.4 Distfile set operations . 90
6.4.5 Distfile.base Examples . 91

6.5 Supporting Legacy hosts that have part of their configuration unmanaged 98
6.5.1 Why you shouldn’t do this . 98

6.6 Troubleshooting distribution errors . 99
6.6.1 Rdist/distfile errors . 99

6.7 Distribution Reports . 100
6.7.1 Host-target report . 100
6.7.2 Files-report report . 100
6.7.3 Files audit report . 101

7 Examples 103
7.1 Changing a managed file . 106
7.2 Adding a new file (simple case) . 106

7.2.1 File installation (basic step 3) . 107
7.2.2 Distfile.base setup (basic step 4) . 107
7.2.3 The finish (basic step 5, 6, 7, 8) . 107
7.2.4 Some Variations . 108

7.3 Adding a new host . 108
7.3.1 Managing the ssh keys . 109
7.3.2 Updating the host . 109

7.4 Setting up location specific timezone files . 110
7.5 Setting up a database driven ntp configuration (new top level directory) 112

7.5.1 Files and services . 113
7.5.2 Database changes . 113
7.5.3 The build system and file generation . 114
7.5.4 Distributing the generated files . 118
7.5.5 Testing . 119
7.5.6 Check in the changes . 119
7.5.7 Update the master tree with a new top level directory 120
7.5.8 Update the hosts . 120

7.6 Integrating external tools into DACS . 120
7.7 Adding new file or files (complex case) . 122

7.7.1 Identifying the file(s) . 123
7.7.2 Where should the files live in the DACS CCM tree 124
7.7.3 Automatic or manual file maintenance . 125
7.7.4 Add the unmodified file to the vendor tree . 126
7.7.5 Distribute from the CCM tree to the hosts 130
7.7.6 Testing the files . 131
7.7.7 Commiting the changes . 131
7.7.8 Pushing the files . 132

4

7.8 Configuring Solaris Zones or VMware guest OS . 132

7.9 Configuring MASTER/STANDBY services . 133

7.9.1 Conditions . 133

7.9.2 Implementation: single master, disabled standby 133

7.9.3 Enabled, but idled standby . 133

7.9.4 Multi-master variant . 134

7.10 Configuring dynamically reconfigurable services (firewalls, routing,...) 136

7.10.1 Implementing the file update rules . 137

7.10.2 Implement file verification rules . 143

7.11 DACS Invocation tips . 144

7.12 Renumbering a network and a caution about automation 146

8 Advanced Topics 149

8.1 Using multiple DACS master trees . 149

8.1.1 Split production/work CCM master trees . 149

8.1.2 Redundancy . 150

8.1.3 Load distribution (work in progress) . 152

8.1.4 Test trees . 153

8.2 Handling network devices . 154

9 Appendices 158

9.1 Importing the DACS repository tree . 158

9.1.1 Subversion hook scripts . 159

9.1.2 Finish svn setup . 159

9.2 Setting up ssh access from the master to clients . 160

9.2.1 Somewhat less secure . 160

9.2.2 Most secure setup . 161

9.3 Creating DACS working trees . 162

9.4 Creating DACS CCM master trees . 162

9.5 Replicating (synchronizing) DACS svn master repository 163

9.5.1 Configuring the replicas in SVN . 165

9.5.2 Using replication . 165

9.6 Other documentation . 166

10 Glossary 167

5

List of Tables

3.1 Keyword fields defined for use in the DACS database 30

3.2 The associative array that defines a keword’s values 44

5.1 Performance improvment using md5 mediated caching mechanism compared to di-
rect mode. 71

6.1 Common arguments to Rdist command . 83

6.2 Macros defined for use with Rdist in distfile.base . 90

6.3 Set operations supported by rdist. 90

6

List of Figures

4.1 Tree diagram of the subversion repository structure. 51

7

Chapter 1

DACS Introduction

What is DACS? DACS, the Distribution and Configuration System, is a tool for maintaining
system configuration on multiple computers. It is similar to other CCM (computer configuration
management) tools such as bcfg2, lcfg, puppet and the well known cfengine. However, it has some
unique features that makes it more than just a program which pushes files to other hosts. It
integrates:

• a host database

• a version control system

• an optional file generation system

• a file distribution and remote command execution mechanism

DACS started life as the config system
(http://www.usenix.org/publications/library/proceedings/lisa94/rouillard.html)
back in 1994 when it was presented as a paper at LISA. It’s current home page is:
http://www.cs.umb.edu/∼rouilj/DACS. It was intended as an experimental platform to provide
what I considered crucial components of a CCM system.
Despite being out of system administration for 5 years, I still got occasional reports of companies
using Config. I was amazed by some of the (crazy) things people were doing with Config. This
included managing VMS systems and a 5000 node network.
When I was rolling out a CCM system at my new job in 2005, I looked at the existing systems.
They had minimal support for some of the key things I wanted in a configuration system:

• a database of information about systems that can be queried

– to generate configuration files. E.G. get the addresses of the local NTP servers from
the database and automatically insert them in generated ntp.conf files to eliminate the
manual maintenance of those files when the servers change.

– to generate lists of computer wiring

– to generate lists of assets

– to select hosts running a particular OS version

8

http://www.usenix.org/publications/library/proceedings/lisa94/rouillard.html
http://www.cs.umb.edu/~rouilj/DACS

• ability to track changes to the configuration system

– Who did what change

– When was the change made

– What files were changed and how

– Why was the change made

• the ability to generate files in response to configuration changes to keep them in sync with
changes to the network

• the ability to quickly determine what services were lost if a host failed

As I write this in December 2008, some of these items are present in most of the CCM systems
(e.g. hosts are allowed to have additional information associated with them), but not all of the
functions are available. For example, version control still has an add-on feel in most of the other
systems rather than being a core part of the functionality. Also, performing database queries from
outside the tool is still somewhat clumsy.
The key element in DACS is the use of the database as the repository of configuration knowledge.
Once that is present it makes a lot of other tasks easier and possible.

1.1 Should you deploy DACS?

DACS is one of many CCM systems. It was not meant as the end-all and be-all of CCM systems.
It was designed to make managing 100 systems by one person tractable.
I have successfully used it for 1-200 hosts including a mix of Cisco and Unix/Linux based systems.
DACS should work well for 300 machines per installation. I have a report (from 10 years ago)
that it has been pushed to 5000 systems; the techniques used were inventive and it worked for
them allowing some really great functionality (see Renumbering a Network and a Caution About
Automation section 7.12).
With more than 300 hosts the reports get difficult to read and it is difficult to obtain a clear view
of the system configurations. This is especially difficult when there are a lot of anomalies between
the managed systems and the CCM system. This problem is not insurmountable, but is an issue.
I have also used it in environments with 10 different operating systems and I expect it would work
for many more.
I have used DACS/Config with 1 to 10 other administrators. DACS locks the configuration tree
while an update is being pushed to maintain consistency. Because of this, contention for the
shared tree can cause frustration as some admins are locked out. However, DACS does support
separate configuration master trees section 8.1.4. You can assign one tree to each administrator to
allow parallel testing and deployment. Using multiple trees does cause some temporary increase
in variation across your managed systems.
While I and a few others have used it successfully, it is not as polished as other tools. The
documentation is a bit spotty in places. Also DACS is not a monolithic tool. It incorporates
multiple tools which implement the various components. These components are integrated by a
wrapper. Because of this, the implementers (although not all the users) must be familiar with or
be willing to learn about the various tools:

9

• Perl

• Bourne shell

• text file database tools

• svn or cvs

• gnu make

• filepp

• rdist

The advantage to this is that DACS is flexible enough (if you know Perl) to replace ”gnu make”
with your favorite build tool (say ant or cons). If git is the preferred version control system it can
replace svn/cvs. This can be done with some Perl script editing. Filepp is used for macro
expansion and file generation from templates, but it can be replaced with your preferred tool. For
example, in Config templating was done with sed scripts. The native ’database’ can be replaced
with something SQL based section 3.2 if you desire. The Perl script Rdist is used to integrate all
these parts. It can be modified to suit the way you want to work.
There is a saying that a single admin can destroy a machine, but to destroy a site requires a
single admin multiplied by a CCM system. In this respect DACS is no different from any other
system. However DACS provides some safeguards if you wish to implement them:

• the version control system can implement safety checks and refuse to allow the check-in of
bad configurations or syntactically incorrect files or scripts.

• the build system can run verification checks as part of the distribution and will not push
any changes if the verification fails.

Configuring a host should be done by modifying it’s entry in the database. This way the database
becomes the ultimate repository of all knowledge about that host. You don’t usually configure
DACS to push a file to a specific host. Instead DACS provides classes (of hosts) which are used to
define the target machines for a file. The classes are automatically defined from information
contained in the DACS database. This abstraction makes it possible to determine the
configuration of a host by consulting the database.
You can choose to use a direct file to host mapping if you wish, but it makes gathering information
more difficult as your database is no longer the ultimate repository of knowledge. The knowledge
about host configuration is not in the database, but in the file that has the file -> host mappings.
You should not use DACS (or any CCM system) if you are just barely able to edit a hosts file
successfully the first time. However DACS is the right fit if you have mastered running a single
system and can plan out the steps needed to expand that to multiple systems.
For example if you understand the following steps for deploying the network time protocol at your
company:

• set up the top level NTP servers that all the rest will receive their time from

• generate the ntp.conf files for the top level servers

10

• generate the ntp.conf files for the hosts that will use the top level servers

• open firewall ports on the servers to allow NTP to pass

you will probably be able to successfully use DACS.
Because of the database, the feedback I have received is that you really have to understand what
you are trying to implement and lay it out before you start putting it into DACS. This level of
planning before implementation is not enforced by DACS, but you will waste a lot of time if you
don’t plan out what you are doing. Lack of planning will force you to keep revising the setup or
worse, start embedding configuration information in places other then the database. When you
change the configuration (and it will change) you need to search all the files in the CCM system
to find the embedded configuration information.
The effort of implementing and working within any CCM system is very visible, while the savings
are hidden. The effort includes:

• the learning curve to use the system

• in CCM systems changes are generalized to allow them to apply to multiple systems rather
than just one system. This makes deploying making large scale changes so much easier than
logging into 200 individual systems and editing the same (well hopefully it’s the same)
config file on each system.

• wasted time while files are generated and pushed. While this may appear to be
unproductive time, the time can be used to document the changes in the ticket or do
something else while waiting. Compare this to editing 200 files which looks like work, but is
really just busy work.

while the savings include:

• fixes are implemented once and applied to a class of machines. Hence you aren’t continually
fixing the same problem wasting your time and the time of the people who need the fix to do
their work. The effort is expended once per DACS installation and not once per machine.

• reduced impact due to changes. Standard configurations allow changes to be tested more
thoroughly and the DACS database can be used to look for host configurations which may
cause a problem allowing test prior to deployment on the edge cases.

• faster deployment of new/replacement systems. Because all the unique host info is in
DACS, it can be pushed out to a new system to replace a broken one.

• reduced archeology - when making a change on manually managed systems, you often have
to do a fair amount of digging and interpretation to understand how the system is set up
and how it is supposed to operate before you make a change. If you have 100 systems it is
possible you may have to do this 100 times prior to making a change. CCM systems by
their nature have a tendency to reduce this variability (by using one file for multiple hosts).
Also by gathering all the files together it is easier to compare them when there are multiple
files. Also with a VCS system, the log messages supplied when the changes were done
provides the context needed to understand the changes.

11

Many of these wastes of time (archeology, breaking systems with changes, fixing things over and
over again) are considered ”business as usual” at many locations and the cost due to this is never
identified. However the time spent properly implementing a CCM system which reduces these
(and other) causes of waste is very visible. I would love to have solid statistical evidence and case
studies proving CCM systems result in performance improvements, but sadly I do not. I think the
biggest issue is that creating these studies requires time, planning and commitment which are in
short supply when you’re running in firefighting mode most of the time.

1.2 Why you should deploy DACS

Now that we have discussed some of the reasons why you may not be able to deploy DACS, let’s
discuss some of the features of DACS when properly deployed:

• Accountability - the person responsible for each change to the system is recorded by the
version control system.

• Automatic documentation - documentation in the form of a check-in log message is
requested at the time the files are checked into the version control system. The version
control system can require a trouble ticket identifier linking this check-in to the requirement.

As a second form of documentation, using DACS as the ultimate authority of what should
be running where, the documentation (in the form of database settings, files in the CCM
system) and the systems are always in sync. DACS will warn you when the docs don’t
match reality.

• Quick repair - if a system is misbehaving, DACS can be used to verify that the system is
running the proper configuration. If it is not DACS can be used to impose the proper
configuration. This cuts down on the time to repair by fixing the problem, or eliminating
possible causes.

In addition the VCS underlying DACS can be used to search for operation impacting
changes. So rather than looking through dozens of files on the misbehaving host, DACS can
quickly narrow down the search to files that have changed recently. Even better, it can
narrow down the field to specific changes within those files that caused the problem.

• Reduce complexity/variation - you can get reports on the number of files pushed to a
machine and the number of tokens that defines configuration settings is directly proportional
to the complexity of your environment. In the database you can see how complex your
configurations are getting and how many variations of configurations you have. You can use
these as metrics to try to reduce the amount of variation. E.G. you have six different copies
of /etc/httpd/conf/httpd.conf being pushed. Why not see what the differences are and
reduce it to three or even to one copy of the file. The goal is not to run 100 systems but to
run 1 system 100 times as this leads to less documentation, training and confusion.

• Faster modifications - because all the files are identical or similar across all machines, it
helps re-enforce best practices for setting up software. As a result there is:

– one instruction manual/training set on how to do it

12

– less time spent trying to understand some novel configuration before it is modified.
The configuration is standard and hopefully documented, so changes can be
accomplished quickly.

– better testing as the database can identify different host configurations which should
be used for testing. This should reduce deployment problems caused by the change
allowing them to be discovered during testing.

– less manual work by using templates and generating files rather than editing 200 files.
Instead edit one template file and have the system build the 200 files. This frees you to
have coffee, answer email or write documentation while the system is building the files.
Plus it reduces variability as the files all follow the same template.

• Increase predictability - rolling out changes shouldn’t result in surprises. By having a
standard platform, unintended interactions are minimized and can be found during testing
rather than after deployment.

• Oops recovery - since all changes to the configuration tree go through the version control
system, you can always roll back a bad change and push the older (i.e. working)
configuration. Then you can use the difference tool in the version control system to see
what you changed and understand what actually went wrong.

• Why is it configured that way - have you ever looked at a configuration file and thought,
”well that’s wrong” and ”fixed” it? Then three months later discovered it was right and you
now have a week of repair/recovery. With a version control system enforcing the
requirement to have ticket information in the check-in message, you can relate changes in
the configuration to tickets and discover the cause for the change before you undo it.

• Delegation - finding a system administrator for every configuration change isn’t always the
way to go. Wouldn’t it be nice to be able to allow a user to make changes in a controlled
way? Using the version control and build systems you can delegate changes to others. If
things break, you can see what changes were made. No more cries of ”but I didn’t change
anything”.
Using the version control system you can delegate an entire file to one or more users to
change, or you can have them edit a control file whose changes are validated and merged
into other configuration files by the build system. Further details can be found in
Delegation of access to a non-admin user section 4.4.4.

None of these features comes without a cost, however, I believe the features outweigh the cost.
The biggest difference between DACS and other system is the explicit support for a ”database”.
The database can track equipment even if it is not managed via DACS. The database can be
mined to extract a lot of information which would otherwise be scattered throughout files in the
DACS tree. For example:

• what is the IP address for a host?

• what services does a host run? (Used to determine what files should be pushed, what
firewall configuration settings should be enabled, what services should run on boot etc).

13

• what are the attributes of a host? (What patches does it receive, does it have a 3ware raid
card so the control program for it should be loaded on the system etc.)

plus the database can provide answers to the questions:

• how many unique configurations of systems do I have

• how many different configurations of this service do I have deployed

• how many hosts are running a particular OS

• what hosts are running services exposed to the Internet

The database is meant to be the ultimate repository about information for each system, from
Ethernet address to whether it allows ssh access from the Internet.

1.3 The Components

DACS consists of 4 basic components:

• Database - defines properties and capabilities of the hosts. It is sort of a prototype
configuration management database (CMDB) from ITIL.

• Source code control system (currently subversion with some support for the older CVS)
tracks all changes to the database, build system and distributed files.

• File build mechanism based on gnu make(1). It can use database info via the dbreport
command to extract IP addresses, host names and other host attributes to build custom
files (perhaps using filepp(1)) for hosts. Using this is optional but recommended, as it
reduces variation between files and allows for reuse of configurations between machines.

• File distribution/remote command execution mechanism based on rdist(8). A control file is
provided to define labels: a set of files and remote commands to run as a unit.

and includes the commands:

• Rdist - main Perl script wrapper

– updates, generates and pushes files to the managed systems

– supports host verification before files are distributed. This makes sure the machine
matches the database values (this is done by the HOSTVERIFY script). If the
verification fails, the host not updated.

– determines the default distribution targets by searching for labels in it’s control file
(Distfile) rather than from the list of top level directories (as in Config).

– supports verification which doesn’t change any operational files and is used for
generating a report on what would be pushed if a normal distribution run was done.

– allows specialized -verify targets to run which verify configurations that are not file
based or can be dynamically reconfigured. For example firewalls or a windows registry.

14

– optionally enforces distribution to a limited set of hosts (i.e. a test network) to prevent
accidental installs of files on production hosts.

– provides a mechanism for determining and distributing the Rdist command line to
other systems. This is used to set up a hierarchy of Rdist servers to provide load
balancing, redundancy etc.

– permits supplemental targets to be defined via .targets files (target override).

• dbreport - a Perl script for querying and validating the database. (For those familiar with
the Config system, this replaces class gen.) It:

– provides regular expression based host selection

– allows host selection using any host property in the database

– provides simple query/report formatting capabilities

– is used to generate reports such as asset lists and wiring tables

– provides data validation via regular expressions to detect typos in any field.

• cleangrep, cleanfind - allows searching of files under subversion control to identify files
affected by config changes. They ignore files in the working tree not checked into subversion,
including generated files.

and uses the following external tools:

• subversion or CVS - version control system

– provides accountability for changes

– provides authorization for users to change files. This allows the right to change a file to
be delegated to particular users.

– allows rollback of changes to a known good state.

– implements safety checks on files to prevent broken files from being checked in.

– records documentation on each change entered

– optionally verifies each change message to make sure required elements are present
(e.g. ticket numbers)

– optionally distributes change messages via email or other mechanism to notify other
and implement change review process.

• gnu make - acts as the build system for DACS

– provides the ability to generate files from templates or other mechanism

– sets ownership/permissions/group for files which need to be different from the default
settings.

– implements validation and verification checks which halt distribution if they fail.

• filepp - a macro pre-processor written in Perl. Similar to cpp but better and simpler to use
than m4.

15

– used with an extensive set of macros for rdist to make specifying common operations
easier

∗ saving of N copies of a file on the remote host
∗ force execution of commands on remote hosts
∗ rule to report the target (remote) file name
∗ diff a remote file with the config copy
∗ others (see the automatically generated macro documentation)

– Can be obtained from http://www.cabaret.demon.co.uk/filepp.

• rdist - distribution program which is supplied by most Unix vendors. Version 6 of rdist
(which is the current release at the time this was written) is preferred.

– provides file distribution and remote command execution functionality

– an intro to rdist and its syntax can be found at
http://www.benedikt-stockebrand.de/rdist-intro e.html

• sed - a program used for file processing. The one installed on your operating system should
work fine.

• sudo - used to provide elevated privileges while being able to track the actual user
performing the execution via the SUDO USER variable. This is technically optional and
can be bypassed by using su and setting the SUDO USER variable manually, but the use of
sudo is strongly encouraged.

• robodoc (optional) - extracts specially formatted comments from source files into mtml, text
and other forms of output. It is used to extract the documentation of filepp macros,
makefiles, firewall rules etc.

1.4 DACS Documentation

The DACS documentation is split into multiple files. The files are of three types:

• Basic introduction and concepts

• Training Docs

• Reference

I suggest reading the basic introduction files first then the reference documents in the order given
below.

1.4.1 Basic introduction and concepts

Are covered by this document/chapter (section 1) which introduces the basics of DACS and the
tools you need to implement it.
To see DACS in action as it were you want to read the DACS usage section 2 document/chapter.
It discusses using DACS and hopefully shows how the concepts described in section 1 fit together
and are used on a day to day basis.

16

http://www.cabaret.demon.co.uk/filepp
http://www.benedikt-stockebrand.de/rdist-intro_e.html

1.4.2 Training docs

The training docs are some computer based training lessons I developed.
The CbtDacsDbreport.txt file provides a tutorial on using dbreport for generating database
reports and getting information from the database.
The CbtDacsFirewall.txt is a tutorial on the iptables firewall generating system implemented in
DACS and included in the distribution. They are provided as seperate files in the DACS
distribution and are written in TWiki markup language.

1.4.3 Reference section

The reference section is composed of the majority of the documentation and is composed of one
section for each of the 4 basic components:

• DACS database section 3 - all you want to know about the database and generating reports
from it.

• DACS version control section 4 - using a version control systems (primarily subversion) with
DACS.

• DACS build section 5 - using the build system with DACS

• DACS distribution section 6 - distribution of files and commands with DACS

The DACS examples section 7 chanpter/document provides a set of examples ranging from simple
to complex. The examples provide more detail on the information presented in DACS usage
section 2 as well as provide examples for new tasks.
There are advanced topics such as using multiple DACS master for redundancy and load
balancing.

• Dacs Advanced section 8 - advanced topics

In the appendix is information about using the DACS distribution to create your own DACS
installation.

• DACS appendix section 9 - appendix

Lastly there is the glossary of terms:

• DACS Glossary section 10 - glossary of terms

1.5 Getting Started

To get started with DACS:

• Read this chapter

• Read Using Dacs section 2 to get a feel for how things fit together and the types of
operations you will be doing.

17

• Install the required tools on your system (if you run Linux most of these will be
prepackaged) listed in the third list of section 1.3.

• Then visit the Appendix section 9 for instructions on importing the repository for testing
and creating a working copy.

• Add some hosts to Config/database/db as you read the “database” system section 3.

• Create a Config/distfile/distfile.base while reviewing Dacs distribution section 6 and use
make files-report to see what files would be installed. Maybe even set it up to install a
file in /tmp so you don’t make any operational changes.

• Check in your changes and create a master repository at /config following the directions in
Creating DACS CCM master trees section 9.4 (Use the file:/// access method is you haven’t
set up an ssh based repository.)

• Set up your client host(s) following one of the methods in Setting up ssh access from the
master to clients section 9.2.

• Try distributing to a client.

The homepage for DACS (http://www.cs.umb.edu/∼rouilj/DACS) will provide other resources
to help you get started.

1.6 Acknowledgments

I would be remiss if I didn’t thank the people who contributed to DACS over the past 15-20 years.

• Rick Martin - Sysadmin Computer Science department at the University of Massachusetts
who provided the basic idea and my editor for the original Config paper.

• Tom Bechard - System administrator where most of the initial development for Config
occurred.

• Nerayan Desai - for some in-depth discussions of CM and how to improve performance.

Anything that makes sense in this documentation can be blamed on my reviewers:

• Darlene Choontanom

• Devdas Bhagat <devdas at dvb.homelinux.org>

• Nate McKervey

while all the errors are my responsibility.

18

http://www.cs.umb.edu/~rouilj/DACS

Chapter 2

Using DACS

This section describes at a high level working with DACS on a daily basis. It glosses over the
details that are covered is subsequent sections and provides a framework for how you interact
with DACS.
You should read ”The Components” section of DacsIntro to be familiar with the names and roles
of the tools that are used in the following sections.

2.1 Use case troubleshooting a problem

You receive a report that Jane can’t log into the web server. What do you do? If you are using
DACS, you have a few things you can do before you log into the web server and start searching.
First run /config/Rdist -v -m webserver.example.com to see if somebody made an
unauthorized change that broke the service. Simply reverting unauthorized changes fixes many
issues quickly with almost no effort. (Well ok, you have to expend effort to find out who changed
things, but at least the users aren’t impacted.) Let this run and move to the next troubleshooting
step.
Since this problem deals with the web server, it would be nice to know if anybody changed the
configuration on the server. If the server config is managed via DACS, using:

cd DACS/httpd
svn up
svn log -v |less

will give you a report of all the changed files and the log messages associated with the changes.
You notice:

--
r1034 | rouilj | 2008-12-13 18:54:31 -0500 (Sat, 13 Dec 2008) | 22 lines
Changed paths:

M /repository/Config/work/httpd/conf.d/authenticate.conf

ticket:10233 Modifying to authenticate against the L3DAR ldap server
used for external authentication rather then the L1DFS ldap server.

19

Hmm, the change occurred three days ago and Jane said she could log in last Thursday. Well now
we have something to investigate since the /config/Rdist run reported that everything was as
specified in DACS.
Go to rouilj’s office and tell him about the problem. He looks at the L3DAR server and realizes
that Jane’s info hadn’t been copied from the L1DFS server because she wasn’t listed as a user.
He completes the operation to authenticate Jane and she is now happy.
Now let’s run through a scenario where DACS isn’t in place.
First knowing that the authentication comes from LDAP, you log in as yourself and verify that
the authentication is working, for you at least. Since Jane sent email, you know she can log in, so
that seems to rule out an LDAP issue.
You now log into the web server and look for recently changed files. You discover that
/etc/httpd/conf.d/authenticate.conf has changed recently. So you view the file and start going
through all the various authentication rules. Then you realize you don’t know what area of the
web site Jane was trying to log into. So you call her and find out. Then you start going through
the authenticate.conf file looking for the rule that controls the area Jane was logging into.
Ok, you find it, but it doesn’t look right. So what do you do?

1. change it back to what you think it should be (possibly breaking things in a different way).

2. start asking around to try to find out why authenticate.conf changed.

3. look at a backup of the file from last Thursday (the last day it was known to work). Maybe
the change in the authenticate.conf file is correct and occurred before last Thursday.

4. look at the sudoers and su logs to see who may have changed the file between last Thursday
and today.

5. shuffle the ticket off to somebody else.

While option 5 is looking very tempting, you decide to send an email to all of the admins. After
20 minutes you get back an email that indicated that the rouilj guy may have made a change.
So you go to his office and sure enough he made a change. But he is old and getting senile and
doesn’t remember what the setting was before he changed it. So off to the backups to figure out
what was working before. Now with the info in hand it is an easy matter to make the changes on
the L3DAR to authenticate Jane.
But look at all the extra work and time spent solving this.
Now some people may say:

yeah of course that was easy he documented in the log message all the info he needed.
Most people never do that.

Well that’s ok. Running svn diff -r 1033:1034 will generate output that shows you the before
(working) and after (not working) configurations in unidiff format. So even though the log
message may have been only:

ticket:10233

You still have the information needed to fix the problem.
(In this scenario, the entry of a ticket number is enforced by the VCS, so every change has to
have at least that bit of info.)

20

2.2 Use case recovering from a dead host

Your monitoring system reports that the host box01 is dead. You go over and power cycle it and
nothing happens. No POST, nothing indicating any sign of life.
Now what do you do? Well you call hardware support, but you still need to restore any services
that were running on the box so that others aren’t impacted by the death of box01.
Turning to the DACS database the entry for box01.example.com:

machine = box01.example.com
cluster = site_mia1 operations production
disk = WD5000YS(500B) WD5000YS(500GB) WD5000YS(500B) WD5000YS(500GB)
os = Centos 5.1
services = NTP1
services = APACHEINT SUGARCRM TWIKI_DEVELOPMENT
uses = RAID3WARE_8006

So we know that box01 was:

• Running one of the top level NTP servers (the name (NTP1) indicates that it has
redundant backups at NTP2, NTP3. We can verify this by searching the database.)

• Run apache whch supplies

– the Sugar CRM application used by sales

– the TWiki instance used by development

How do we know this information is up to date? Well this information controls the deployment
and verification of the configuration.
DACS closes the loop between documentation and continual validation of that documentation. If
it is out of date you have a report that is it out of date and can bring the installation in line with
the documentation (or vice versa). Box01.example.com didn’t have any anomalies in the
overnight report, so the data is correct.
Also we know that to rebuild this we want to use the CentOS 5.1 operating system. We also know
that the disks on the system are controlled/formatted using a 3ware raid controller model 8006.
Now notify the help desk that the server is down and the Sugar and Twiki instances are
impacted. Tell them we are working to restore functionality. This way they aren’t surprised and
without information when the calls come in. Fortunately nobody has noticed yet, but it’s only
been 5 minutes.
So we know that we have two critical applications: Sugar CRM and TWiki that need to be
restored, and one (NTP1) that can wait a bit. First thing is do we have another machine that can
be used to do a disk swap? I need a 4 disk system with an 8006 (or at least an 8000 series
controller). So I search the database using ’dbreport’ for a development system that uses
RAID3WARE 8006. No luck. We do have some other systems with the same card but they are
production and they are running equally critical services.
As we look through the DACS tree we realize that Sugar CRM’s data is all stored on a database
server, so all we need is to reinstall the web interface and configure it.
So we look through the database for another server to take this interface. We find
box21.example.com that can take the load.

21

We move the service SUGARCRM from the box01.example.com entry to the box21.example.com
entry, and maybe move the alias crm.example.com to box21.example.com and commit the
database change.
Then we push the change using:

sudo /config/Rdist -m box21.example.com

The instructions for establishing the SUGARCRM service:

• install the Sugar CRM package

• push the apache configuration file needed to access Sugar

• install the configuration file for the Sugar software (that connects to the database ...)

• do the other fiddly bits needed to make it work: change dns for crm.example.com to point
to box21.example.com etc.

All of this is done by DACS. No out of date documentation or missed steps. Since these files were
running on box01.example.com until its demise you have a high degree of confidence that they
will work on the new system
You run the distribution command twice to make sure that all the updates are in place. Then you
run the distribution command to push the dns changes. Maybe one more run to detect any other
cascading changes from the service move. While the last distribution is running, you try
http://crm.example.com and you log in using the administrator account and password and it
looks like it’s working.
Meantime you get a report from the hardware tech who says that the mother board failed and
they will have to replace the system. So that will be a couple of hours or so at least.
Then you work on getting the TWiki development installation set up. So within 45 minutes you
have replaced one critical piece of software and you are starting on the second.
Now how does this change without DACS?
Well the written documentation you have doesn’t mention that Sugar CRM was deployed there.
Indeed you spend a fair amount of time poking at the system so you can try to get the
configuration info off the box.. Finally you transplant the disks to another system, but it’s a
different controller and can’t make sense of the raid format on the disks. By this time 45 minutes
has gone past.
Meanwhile, the help desk was notified that Sugar was dowe, and they found somebody else to
work on it. After having gone to the box where Sugar was documented to be deployed (and
taking 25 minutes to figure out that the remnants deployed there have not been operational for
months), he is looking at DNS to try to figure out what box really provides crm.example.com.
Ok, he finally finds it and goes to the system. He finds the hardware tech there who mentions
that you are working on it.
So finally the two of you are working on gettng the prior night’s backups restored somewhere so
you can pull the files you need to set up the services somewhere else.
You do get things restored — finally.

22

2.3 Use case modifying a managed resolv.conf

This section discusses manually maintaining a resolv.conf file using a subversion based DACS
installation.
The first thing to do is to check out the DACS tree. Usually this is done once when you get
started with DACS and you maintain an up to date working using svn update from then on.
However for now we do the initial checkout using a command that looks something like:

svn checkout svn+ssh://dacsuser@dacsmaster/repo/Config/work DACS

where the svn+ssh... says to connect using ssh to the machine dacsmaster using the user
dacsuser and check out a copy of the /Config/work tree to a subdirectory called DACS in your
current directory.
The next thing to do is to find the resolv.conf file in the DACS CCM tree. Looking at the
directory listing of the DACS directory you see a directory called dns. Changing to DACS/dns you
see the file resolv.conf.
Invoking an editor on it, you see it is a copy of /etc/resolv.conf so you feel confident that you
have the right file. (You could also consult the files-report section 6.7.2 to get a mapping between
the DACS work tree and the destination file/host.) You add a new nameserver line.
Now you commit the change to the file using svn commit resolv.conf. This will start an editor
for you to add comments on what the change was made and which ticket/request needed this
change. These comments form the basis of discovering why the change was made (the ticket
information) and details about the change. In this case the following should suffice:

ticket:2345 brought up a new dns server for redundancy at the lax1
site. Adding it to the site-wide resolv.conf so systems can use it.

save the change and exit the editor finishing the commit.
Now you want to push that change to all your hosts. You do this using the Rdist command. A
simple command line summary for the Rdist distribution script is:

sudo /config/Rdist label

which invokes the rules in the Distfile (the file that controls how files are distributed using Rdist)
that have the label ”label”. Now how do you know what label to use? By convention the label
name is the same as the name of the directory under the root of the CCM tree.
(Note: there can be multiple independent DACS CCM trees, by specifying /config/Rdist we
specify that the tree under /config will be updated and used to manage the systems. Why do you
want multiple trees? See ”Using multiple DACS master trees” section 8.1. It won’t be discussed
further at this point.)
In this case you are in the dns directory, so you expect the label is dns. So you could run
sudo /config/Rdist dns to push the changes under the dns directory to all the hosts. Since
resolv.conf is under that directory it’s change will be pushed.
But suppose you wanted to verify that only resolv.conf would be updated, since there are other
files in the dns directory. Running sudo /config/Rdist -S c -v dns would give you a
condensed summary (-S summary c condensed) of the changes.
After running the verify you see that the machine a.example.com was getting a zone file pushed
as well. Well you don’t want to update that, so you decide to not update a.example.com just yet.

23

Running /config/Rdist -S c --exclude a.example.com dns would push the dns
label/directory to all your hosts except a.example.com.
If there are no errors or hosts down, that’s pretty much it. If there are hosts down, a future verify
run (using -v) will report that the file needs to be pushed and it can be done at that time. Also
the future verify run (which is often run daily and sent as email to administrators) will show
resolv.conf out of date on a.example.com so you don’t have to remember that a host still needs
an update. It will be automatically remembered for you.

2.4 Use case setting up to manage sudoers file

The prior use case was just pushing an already exiting file. It was already managed by DACS.
Now we are going to look at establishing a file under management.
Things start like before by checking out a copy of the DACS CCM tree using svn checkout. Now
we have to choose a subdirectory in which to store the file. We have a few choices:

• the file lives at /etc/sudoers, so somewhere under the etc directory makes sense.

• there is also a users directory with configuration files for particular users, and since sudoers
configures users to do certain tasks with elevated privileges this may be a good spot.

Oh decisions decisions. The nice part is that you can rearrange it later if it seems that your
placement isn’t very good. So we decide to put it under etc/sudoers/sudoers. We make the
new etc/sudoers directory (etc exists already) and create the sudoers file. Then we use
subversion to add the new directory (and file), set the more restrictive permissions on the file
when it is checked out, and commit the changes using:

svn add etc/sudoers
svn propset svn:unix-mode 400 etc/sudoers/sudoers
svn commit etc/sudoers

we add the comments for the commit as in prior use cases.
Now we have to define where to install the sudoers file we just committed. To do so we change to
the directory Config/distfile under the DACS CCM root. Edit distfile.base and look for etc:,
which is the way to specify the label etc in a distfile. Because we placed the file under
etc/sudoers/sudoers, etc is the appropriate label for distributing this file. Once we find this
section we add a couple of new distribution rules:

etc:
$C/etc/sudoers/sudoers -> ${ALL_HOSTS}

SAVEINSTALL(/etc/sudoers, 3);

etc.sudoers:
etc:
$C/etc/sudoers/sudoers -> ${ALL_HOSTS}

SAVEINSTALL(/etc/sudoers, 3);

Note that we have duplicated the same rule but with two different labels. In one case we used the
label etc in the other we used the label etc.sudoers. Remember in the first use case we

24

excluded a.example.com from the update because we were pushing multiple files using the label
dns? Well the etc directory has a lot of files in it and because sudoers is a security related file,
delaying it’s distribution is something to avoid. By creating the label etc.sudoers, we can push
just the sudoers file without the rest of the files in the etc directory tree.
The etc target is used for automatic update and verification of the sudoers file. When Rdist is
run without a label, the etc label is automatically selected and the sudoers file is automatically
updated or verified on all managed hosts.
In both cases the rule is the same:

• it pushes the file located at $C/etc/sudoers/sudoers, (i.e. the file you just created under
the CCM that Rdist is running from. $C stands for the current configuration root).

• to (->) some hosts. In this case is pushes it to the predefined class ALL HOSTS which
includes all the DACS managed hosts.

• SAVEINSTALL installs the file at /etc/sudoers on each host saving the 3 prior copies of
the file.

Check-in distfile.base using svn commit distfile.base and add a log message.
Now when pushing the sudoers file you have two choices:
sudo /config/Rdist -S c etc.sudoers

or sudo /config/Rdist -S c etc.
While both will do the job, using the etc label may also push some other files, so run the first
alternative.
sudo /config/Rdist -S c etc.sudoers

You are done adding a new file to DACS control and distributing it to all your hosts.

2.5 Use case set up to manage ntp.conf on all hosts from
database

This is covered in detail in the Setting up a database driven ntp configuration section 7.5, but this
introduces the basic steps.

2.5.1 Planning the network time protocol setup

NTP distributes time from server to server. A usual setup for a site it to have three machines on
the network that talk to server external to the network. Then all the hosts on the network talk to
all three of those servers.
In the database you specify:

• the services a host supplies section 3.2.2

and the

• services the host uses section 3.2.2

25

So we will define in the database three service values indicating that the service with that value is
one of these externally talking servers. The service names will be NTP1, NTP2, NTP3. Also we will
create a uses value that indicates that a host should talk to these three servers. The uses value
will be NTPCLIENT.
Now that the structure is established, we edit the dbreport script to define the service values
NTP1, NTP2 and NTP3 as well as the uses value NTPCLIENT. In the DACS database we assign
the service NTP1 to one host, NTP2 to another host and NTP3 to a third host. Then we assign
NTPCLIENT to all the machines that need time synchronization (excluding the three NTPx
servers).
Once this is done:

1. create a new directory ntp

2. in the ntp directory create a subdirectory dist that will hold the generated files that are to
be distributed

3. create a Makefile that will query the database (using dbreport) and extract the IP addresses
of the three NTPx servers to include in an ntp.conf file that is sent to the NTPCLIENT
machines. This file will be located in dist/clients.conf.

4. manually create the files ntp root.conf that will be used to generate the files:
dist/ntp root1.conf, dist/ntp root2.conf, dist/ntp root3.conf to be pushed to the three top
level servers.

5. modify Config/distfile/distfile.base to push the three dist/ntp rootX.conf files to the hosts
in the NTP1 HOSTS, NTP2 HOSTS and NTP3 HOSTS classes. (Note: all services values
generate classes ending in HOSTS.)

6. modify Config/distfile/distfile.base to push the dist/clients.conf file generated by the
Makefile to the hosts in the NTPCLIENT SLAVES class. (Note: all uses values generate
classes ending in SLAVES.)

Check in the changes and push using sudo /config/Rdist ntp. Now this seems like a lot of
work, and it is. This is just the basic layout and leaves out a lot of steps (which are covered in the
DacsExamples section).
But what does it gain us? Well if you move the NTP1 service from one host to another it keeps
all the clients (and the other NTPx servers) in sync automatically. You never have to worry
about editing the ntp.conf file that is distributed because you moved an NTP server. The
Makefile will discover that the database has changed and it will regenerate the list of NTPx IP
addresses and then rebuild all the ntp configuration files using the new information.
How many times have you logged into a system and found out that the configuration of some
service no longer matched reality? It was correct when deployed, but over time it became
incorrect.
Automatic mechanisms like this prevent the configurations from diverging. They can also deploy
other changes such as modify firewall configurations (to allow ntp traffic to/from the new ntp
servers) and eliminates the manual steps required to keep all the info in sync.
Whether your site needs this level of automation is up to you to decide. Simply having all the files
managed manually may be enough as they are all in one location, so when you change the NTP

26

configuration you can manually search all the files in the DACS CCM for the old IP address (or
hostname) and change it. Imaging trying to do that if all the files exist only on the end machines:

• login to each machine and a manually edit the file

• run some remote command from a master machine that loops over all the hosts. Have the
command edit the configuration on each machine. You hope the command script is robust
enough to not get confused on some variant of the config file that leaves the system broken.

I am sure you can come up with more scenarios, but these sorts of problem are what any CCM
system is designed to handle.

27

Chapter 3

The ”database” system

There are two components to the system:

• the database file

• the db report command that verifies and quieries the database

3.1 What does the database provide

The database is intended to be the authoritative inventory of information for all systems. By
extracting this information from the database and including it in configuration files, you prevent
having to specify and later update the same information in multiple locations. Having all the
information in the database also makes obtaining a consistant view of your system configuration
much easier.
Each host under DACS control MUST have an entry in the database. You can also inventory
hosts not under DACS management in the database. Then you can use it to quickly identify a
machine with a particular Ethernet address section 3.4.2.6, or generate a report of all your assets
section 3.6.1.

3.2 The database file

The term ”database” is somewhat of a misnomer. It is not a SQL database or even a binary file.
It is one or more hand editable text file(s) using a keyword=value syntax.
The database file is a simple text file. All database entries start with the keyword machine and
continue to the next machine keyword or end of file. The value of the machine keyword MUST be
the same as returned by the hostname command run on that host. Duplicate machine names are
not allowed in the database. Hence using a FQDN (fully qualified domain name) or other unique
name for you hosts is important. A sample entry is:

machine = host1.example.com (*)
alias = host1
arch = i686
cluster = site_lax1 host_dev host_qa (*)
comment = this is an old machine and should go away

28

contact = steve@example.com
cpu = intel
disk = WD2500AB(250GB) WD5000YS(500GB)
enet = 00:00:34:02:00:ab
enet_card = forcedeth
enet_if = eth0
hostid = 667154
hub = switch1
hub_port = 10
ip = 192.168.4.3/24 (*)
location = LAX rack 105.4 U 23-26
maint_info = support contract A40560 till 12/01/2007
model = AS1445
os = CENTOS 5.2 (*)
patches = forecedeth
pmemory = 16G
purpose = generic dev/qa box
rdist = yes (*)
services = APACHE TOMCAT (*)
services = SSHD (*)
sn = 667154
tag = A0112
uses = 3WARE NTP (*)
wall_plug = cable 5

The *’ed items above are required. A minimal configuration entry for the same host would be:

machine = host1.example.com
cluster = site_lax1 host_dev host_qa
ip = 192.168.4.3/24
os = CENTOS 5.2
rdist = yes
services = APACHE TOMCAT
services = SSHD
uses = 3WARE NTP

This entry would provide basic functionality. However when generating a wiring report
section 3.6.3, the host would be missing since there is no wiring information in the minimal entry.
Also, if you wanted to find all your hosts with 16GB or more of memory, host1 wouldn’t show up
if entered using the minimal configuration. Fortunately it would show up if you were searching for
hosts that are missing memory info.
The services entry occurs multiple times. Declaring certain keywords multiple times concatenates
the contents. So in this case I could also have specified:

services = APACHE SSHD TOMCAT

however if certain groups of services are deployed together (like Apache when it acts as a front
end to tomcat), they can be grouped together on one line in the specification to make the
dependency more obvious and make deleting the configuration easier.
I have been asked why DACS doesn’t use a real database like postgres or mysql. Well there are a
few reasons:

29

• DACS should operate with minimal resources. It is possible to override most of the safety
checks and distribute files even if things are very broken.

• For redundancy you can have multiple DACS master hosts. Each must be able to work
independently. Using a real database would require multiple synchronized db setups and
further raises the requirements.

• How do you version control a database? If somebody makes and commits a mistake in the
database, how do you get back the prior configuration? The mysql database files aren’t
under version control, so what mechanism would allow a rollback to a known good
configuration?

• Some file based mechanism like SQLite may work, but there is still the problem of defining
a normalized schema.

At least one site did use a SQL database back end, and they found that they were doing a lot of
multiple joins to extract the info they needed for build/deployment, and it was taking a long
time. So they used the database as a front end to restrict who can change host configurations.
Then they exported dbreport (at the time class gen) compatible files on any change. These
exported files were checked in and the database could be reloaded from the files to allow rollback.
The update time on the exported file was used to trigger builds when the data changed.
As mentioned above, the database has a number of keywords which are defined in the following
section.

3.2.1 Keyword definitions

A full description of each database field is given below: The following table describes the
keywords. In the table are:

• the keyword name

• whether the keyword can be used multiple times. If so then the values are concatenated.

• the format of the value

• a description of when it’s used

Table 3.1: Keyword fields defined for use in the DACS
database

keyword multiple format description
alias yes space separated aliases

as in /etc/hosts
hostname aliases

arch (3.3.1.4) no text base architecture (i586, microsparc)
base no text set to machine name of complete host.

If not specified, set to the ”machine”
name. See below for further info.

30

cluster (3.3.1.1) yes enumerated What group is the host in. Can be
site, device role (production develop-
ment, test)... defined in dbreport.

comment yes text comments about machine
contact yes text or email address space separated set of email addresses

(main users of machine)
cpu yes text type of cpu (sparc, intel, mips)
disk yes separate list of disk

types/sizes
disks space

domain no text domain of system
enet no : separated lower

case hex characters
0a:ff:ec:32:df:ff

the interfaces Ethernet address in low-
ercase

enet card no text the network interface type, 3com...
enet if no native form of Ether-

net interface on system
Ethernet interface identifier. E.G.
eth0, eth1.1, eth0:1, nge0, lo:2

fqdn no FQDN fully qualified domain name automat-
ically set by machine keyword. Name
of field used for -f fqdn output.

hostid no text software accessible unique identifier
hub yes machine name for hub hub/switch for device
hub port yes text usually number port on hub
ip no text ip address in CIDR notation w/ op-

tional network prefix
karch (3.3.1.4) no text kernel architecture (a cpu/arch mix)

used on Solaris for example sun4 is the
base arch, but sun4m is the cpu. For
pc based this could be amd64 where
the base is x86 64

location no text, usually site, rack,
numbered shelf/U
measurement

location of the computer

monitored no monitored service list text list/description of monitoring of
machine

machine no text the FQDN, or base name of the ma-
chine

maint info no text maintenance info, contracts, contact
info etc.

model no text manufacturer model identifier
os (3.3.1.4) no enumerated value and

version string
the name and version of the operating
system.

patches yes text with comma and
space between patch
identifiers

list of patches to apply

31

pmemory no number suffix (M,G) amount of physical memory
purpose yes text free form text of purpose of machine
rdist no yes/other/request/no value yes if under normal rdist main-

tenance, request if only manual spec-
ification of host should push files, no
if not to be pushed by rdist. Other
for alternate file distribution method .
Default no.

services (3.3.1.2) yes enumerated ”, space”
separated list

the services a host provides. (e.g. runs
LDAP server)

sn no text serial number of device
tag no text asset tag number
uses (3.3.1.3) yes enumerated ”, space”

separated list
the services a host uses or local con-
figuration info (e.g. configured to use
LDAP servers)

wall plug no text identifier for wall plug device is con-
nected to, or cable label for direct
patch connect.

Internally the following keywords are defined and can be used for searching, but are not specified
in the configuration.

subnetmask specified with the ip keyword by using a CIDR or netmask format. For example
1.2.3.4/24. Be consistent and choose only one way of specifying the mask. Otherwise
searching on the netmask will be a pain. No conversion between forms (CIDR/netmask) is
done.

isbase set to yes if the machine definition does not include the base keyword. Set to no
otherwise. Note that the base keyword is always set section 3.2.3 even if base is not
specified.

3.2.2 Further comments on the service, users, cluster and os keywords

The file Config/database/db section 3 file has 4 keywords that are used to put hosts into classes.
The keywords correspond to each class type section 3.3 and are:

services section 3.3.1.2 the list of services provided by this host. Usually involved running a
daemon of some sort.

uses section 3.3.1.3 the list of services that a host uses or local configuration information
about the system.

cluster section 3.3.1.1 Other info about a host such as site info, system role (production vs.
development vs. test). Basically anything you want to classify that doesn’t fit into the
uses/service or os keywords.

os section 3.3.1.4 The os and version of the OS running on this machine.

32

To decide what keyword a particular configuration option should use ask the following questions:

1. If the system with this configuration value dies, will you need to replicate the configuration
bound to the token on another host?

2. Is this something that describes the system hardware or software?

3. Is this an administrative or other external to system configuration item (e.g. location)?

If you answered yes to question 1 then it’s a services value. If you answered yes to question 2,
then it’s a uses value. If you answered yes to question 3 then it’s a cluster value. If you
answered no to all of them, well it’s a cluster value and I would like to know what it is as it’s a
new use case.
Examples:

• The configuration of an LDAP or NIS server is a service. You will need to bring up a
replacement server/service if the host running it dies.

• If a host needs a particular script run to set up autoverify on its 3ware card, then the token
identifying the system as running a 3ware controller belongs to the uses keyword.

• If the machine is located in Los Angeles and is used by development, these tokens are part
of the cluster keyword.

These aren’t hard and fast rules, e.g. SSHD is defined as a service which probably doesn’t matter
if the host goes down, but ssh is used as transport/access method for other services (e.g. DACS
management) and any replacement box will probably have to run it as well so it is probably best
defined as a service.
Uses and service tokens consist of capital letters, numbers and underscores ’ ’. The cluster
keyword adds lower case letters. This is a historic artifact that may be relaxed in the future
allowing mixed case for uses and services.
Note that underscores ’ ’ in uses and services have a special meaning. See the Database
output/Services section 3.3.1.2 section below.

3.2.3 Inheriting information from another host (creating child host)

Using the base keyword allows a new machine entry to be based on a prior entry. The following
entry for an alternate interface uses the base keyword:

Machine = tiger-if2.example.com
base = tiger.example.com
enet = 00:07:e9:e6:e4:85
hub = sc02_mht1
hub_port = 15
ip = 138.84.130.136/26
rdist = no
wall_plug = (cable unlabeled)

33

This looks at the (preceding) entry for machine=tiger.example.com and copies/inherits any
undefined values from the base machine. The only keyword not copied is rdist since there is
(generally) no sense in distributing to a given machine more than once, and the default value for
rdist is no. (Note that you can explicitly specify rdist=request in the entry to make rdist use
this machine name if you need to distribute using both machine names).
The base keyword is always set to the value of the machine entry where a base value is not set.
For example:

machine = a.example.com
...
[no base keyword is used]

machine = a-if1.example.com
...
base = a.example.com
...

machine = a-if1-1.example.com
...
base = a.if1.example.com

The value of base for both a-if1-1.example.com and a-if1.example.com would be
a.example.com since the machine entry for a.example.com does not specify a base keyword.
The entry referenced by the base keyword is expected to be the host that is used for rdist access,
if the system is maintained by rdist. There is nothing that enforces this requirement on base (i.e.
the base need not be an rdist host), but it is a useful convention.
The base keyword is evaluated when a host is seen in the config file. Thus the machine referenced
by base must be defined before the reference (this also eliminates the possibility of circular
references).
Any database entry that does not have an explicit base keyword has the base keyword set to the
value of machine. This makes it easy to select the base host and all of the systems derived from
it. If you want to select a host that is not a base host (i.e. that has the base parameter):

• use the dbreport option -s ’isbase:/no/’

You can do the same operation differently by not selecting a host without the base parameter:

• use the dbreport option -n ’isbase:/yes/’

See the dbreport documentation section 3.4 for more information and examples.
For example, suppose you have a host ftp.example.com that can be moved between systems.
Currently it is assigned to server.example.com. If the base keyword for ftp.example.com
points to the rdist identity of the actual machine, then

dbreport -f base -s ’machine:/ftp.example.com/’

will generate server.example.com the name of the host that will get the files to install/activate
ftp.example.com. The dbreport command line

dbreport -f machine -s ’machine:/server.example.com/|isbase:/no/’

will return the list of machines that have server.example.com as their base but it will not return
server.example.com itself.

34

3.2.4 Representing multiple IP addresses for a host

A DACS database entry only allows for one network interface. To support multiple network
connections on a single host, use the base keyword to link a new host entry with just IP/Ethernet
info to its parent entry. A sample entry looks like:

Machine = tiger-if1.example.com
base = tiger.example.com
enet = 00:07:e9:e6:e3:85
hub = sc02
hub_port = 15
ip = 227.136.10.23/26
rdist = no
wall_plug = (cable unlabeled)

tiger-if1.example.com will inherit the unspecified values (such as os, services, uses ...) from the
entry for tiger.example.com which MUST be defined before this entry is seen in the database.
You can optionally use services=NONE and uses=NONE if you want to prevent the new host from
inheriting the services or uses list from the base host.

3.2.5 Using a unique IP address for a service (e.g. DNS)

In many networks certain well known services are bound to a specific IP address. For example,
the DNS server should always be at the x.x.x.23 address on the network.
To set this up use two machine entries. The first machine entry is used by the rdist system to
push needed files. The second entry is used to identify the specific IP (and other info) that needs
to be associated with the service.
For example, the machine ’server.example.com’ runs a DNS server bound to the IP of the
machine ’dns.example.com’.
To set this up we:

1. Define the service DNS in dbreport

2. Add the service (e.g. services=SSHD ... DNS ...) to ’server.example.com’, which will be
the base host for ’dns’. ’server.example.com’ will have ’rdist=yes’ set in its database entry.

3. Define a new machine with a new name (e.g. ’dns.example.com’) and set its ip parameter
to the IP address for the service (e.g. 192.168.1.23). Set its base parameter to the base host
(e.g. base=server.example.com) and set the single service it provides (e.g. services=DNS).

You may want to extract the IP address for the ’dns’ machine. We will discuss two ways to do it.
They may be other ways to do it depending on how the database is set up. Here are two ways.
Use dbreport to select hosts that have only the DNS service defined:
dbreport -f ip -s "services:/^DNS$/". The regular expression matches DNS and only DNS.
So it will not match the service.example.com entry that probably include SSHD and other
services. Using a slightly more complex dbreport command:
dbreport -f ip -s ’services:/^DNS$/|isbase:/no/’ will work even if the base host
server.example.com has only the single DNS service on it.

35

A second way to do this is to generate a list of all hosts that are being distributed to (rdist=yes)
that have the DNS service (in this example that is only ’service.example.com’, but in general may
be multiple hosts) using:

dbreport -l -s ’services:/DNS/|rdist:/yes/’

For each host in that list, report the IP address using the base parameter to match all instances
of the given host.

for host in ‘dbreport -l -s ’services:/DNS/|rdist:/yes/’‘
do
dbreport -f ip -s "base:/$host/|services:/DNS/’ -n ’isbase:/yes/’

done

this command will return the IP address associated with the DNS server that is not a base server
(i.e. dns.example.com). Note this second way fails if there are multiple child entries for the base
host that inherit the services list. To prevent this explicitly assign the services keyword for the
child entries. For example using services=NONE will solve the problem.

3.3 Database output (class definitions)

The output from the database is done by dbreport. Dbreports default output mode generates a
list of rdist class variable definitions for all the selected hosts. The build system produces an
identical list of class definitions for use by filepp. These classes can be combined using filepp and
rdist commands to implement the standard operations on sets including:

• intersection

• difference

• union

To select a host that runs Solaris and is in Los Angeles, intersect the two classes LAX1 C HOSTS
and SOLARIS HOSTS. The mechanics of this will be deferred to later (in Dacs distribution
section 6.4.4 and DACS Build/Using filepp section 5.6.3), but this provides a powerful way of
selecting hosts that receive specific configurations.
One thing to look out for is not to combine separate items in a single keyword. For example, don’t
define a service APACHECENTOS5 that describes a Centos 5 host that runs Apache, instead
intersect the CENTOS5 and APACHE classes of hosts. This simplifies configuration as it reduces
the number of unique services to select from as well as improving database accuracy as some items
(such as OS type) are verified by the DACS system and you are notified if they are incorrectly set.

3.3.1 Class Types

There are 4 types of classes:

1. clusters section 3.3.1.1 - groupings by location, device purpose (e.g. network, external)

36

2. services section 3.3.1.2 - configuration of the box that is meant to be used by other
software/systems or users.

3. uses section 3.3.1.3 - a local configuration option for the system, or a service that is used by
the host.

4. operating system section 3.3.1.4 - classes per operating system and version and optionally
arch and kernel arch.

(Note: there is also a patches class, but it is not used much although it will continue to be
supported. Understanding the classes above should allow you to use the patches class if you find a
need. If you do use the patches class, please let me know.)
Note that the services and uses classes use the underscore character to provide a very simple class
inheritance like feature that is discussed later. None of the other classes do this.
The values for the classes are defined in an associative array in the dbreport script. See
Config/bin/dbreport for the list of service, uses, os and cluster values that are defined for your
site. If your site uses robodoc and generates documentation from DACS, you may have a
document to look at rather than reading the dbreport script.
If you need to add/change the classes, see Changing dbreport section 3.4.3.

3.3.1.1 Clusters

The cluster_list associative array contains the names of all the valid items for the cluster
keyword. If a host is put in the cluster, it is added to the class X_C_HOSTS (and filepp macro
=FILEPP X C HOSTS=) where X is the key (where case is preserved) in the cluster_list.

3.3.1.2 Services

The service_list associative array contains the names of all the valid items for the services
keyword. When a service is added to a host, it is added to the X_HOSTS class and corresponding
FILEPP_X_HOSTS filepp macro.
If the token includes an underscore, e.g. FIREWALL MANUAL the host is added to multiple
classes including: FIREWALL HOSTS and FIREWALL MANUAL HOSTS for rdist and the
corresponding filepp classes.
This is an attempt to support variations within a service definition. So FIREWALL MANUAL
can get all the settings of FIREWALL and the addition settings associated with
FIREWALL MANUAL. Note that only the last component is removed, so
FIREWALL MANUAL FOO would add to the classes FIREWALL MANUAL HOSTS and
FIREWALL MANUAL FOO HOSTS but not FIREWALL HOSTS. This is an area that is
targeted for further improvement.

3.3.1.3 Uses

The uses_list associative array contains the names of all the valid items for the uses keyword.
When a use is added to a host, it is added to the X_SLAVES class and corresponding
FILEPP_X_SLAVES filepp macro.

37

As with services, using an underscore adds the hosts to multiple classes: e.g. DNS FULL uses
keyword will add the host to the classes DNS SLAVES and DNS FULL SLAVES for rdist and the
corresponding filepp classes.
This is an attempt to support variations within a uses definition. So DNS FULL can get all the
settings of DNS and the addition settings associated with DNS FULL. Note that only the last
component is removed, so DNS FULL FOO would add to the classes DNS FULL SLAVES and
DNS FULL FOO SLAVES but not DNS SLAVES. This is an area that is targeted for further
improvement.

3.3.1.4 OS/Arch/Karch

The os_type_list associative array contains the names of all the valid os types for the os
keyword. It can also includes os declarations like ”SMC” which is the ”operating system” for an
SMC switch. When the os keyword is defined for a host you specify a version for the os as well as
the type. Then a series of classes are created. E.G. if the OS is centos 4.3 the host is part of the
following classes and corresponding filepp (named by prepending FILEPP_) macros:

CENTOS_4.3
CENTOS_4.X
CENTOS_HOSTS

Basically a macro is created for the os type and for each component of the version string. So to
get a list of all CENTOS hosts running any version 4 of Centos, you would use the CENTOS 4.X
class. The CENTOS HOSTS class would have Centos version 4, 5, 3 etc. hosts in it.
If arch or karch is defined for a host you get some supplementary OS classes. There are two
versions of arch support. Legacy (where arch is separated from the OS name by a dash. E.G.
CENTOS-x86 64 or SINIX-D) and normal where the arch keyword is explicitly defined. I suggest
you stick to the normal form.
If the arch keyword is specified and the OS includes a legacy arch (e.g. CENTOS-x86 64) a
warning is generated and the OS supplied arch is used. This is a legacy support mechanism that
requires disabling the arch validation mechanism in HOSTVERIFY. If you are converting from
DACS, it is recommended that you remove the legacy arch OS types and use the arch keyword
instead.
The arches are combined with the operating system classes since the usual use of these classes is
to push files to a specific arch running a specific OS. Arch is usually the output of ”uname -m”
which is used by HOSTVERIFY to verify the arch of the host in the database.
Sample classes:

CENTOS_Ax86_64_5.1 - 64 bit hosts running centos 5.1

CENTOS_Ax86_64_5.2 - 64 bit hosts running centos 5.2

CENTOS_Ax86_64_5.X - 64 bit hosts running any version of centos 5

CENTOS_Ax86_64_HOSTS - 64 bit hosts running any version of centos

FEDORA_Ai686_2.0 - 32 bit host running fedora 2.0

SOLARIS_Ai86pc_5.10 - Solaris box running Solaris 5.10 (I assume 64 bit)

38

It is an error to define a host in the database without an os value, so a host will always exist in
some set of OS classes. A host will be listed in an arch class only if the arch is defined. So a host
running Centos 5.1 on an x86 64 platform will be in the classes:

CENTOS_5.1 - all hosts running Centos 5.1
CENTOS_5.X - all hosts running any version of Centos 5
CENTOS_HOSTS - all hosts running any version of Centos

CENTOS_Ax86_64_5.1 - 64 bit hosts running Centos 5.1
CENTOS_Ax86_64_5.X - 64 bit hosts running any version of Centos 5
CENTOS_Ax86_64_HOSTS - 64 bit hosts running any version of Centos

But a host without an arch value will be in only the first three classes.
Note there is no class of all x86 64 hosts. In past experience it isn’t very useful as these classes
are used for kernel modules and other lower level stuff that is usually tied to both the OS and the
system or kernel architecture.
Speaking of kernel architecture similar classes are defined:

CENTOS_Kx86_64.opteron_5.1 - 64 bit hosts with karch of x86_64.opteron
(i.e. opteron processor) running centos 5.1

CENTOS_Ki386.xeon_5.X - 32 bit hosts running xeon processor

The arch and karch identifiers are very flexible. Neither is coded in dbreport like an os or services
value. The data verification occurs in HOSTVERIFY so verifcation can be a more complex
procedure if needed. This can be changed if it seems warranted.
The karch id is not verified by HOSTVERIFY at this point. If you want this, I recommend
modifying HOSTVERIFY to use something like
‘uname -m‘.processor name
on Linux and just ‘uname -m‘ for Solaris (if you are using a sparc chip, uname -m returns things
like sun4m, set the arch to sun4 when the karch is sun4m, sun4u etc).

3.4 dbreport

Dbreport is a Perl script that queries a simple keyword=value style database where each new
entry starts with the machine keyword. It also implements the schema and validates data entered
in the database.

3.4.1 The command line

/config/Config/bin/dbreport: [-l | h | r | f field[:field]]
[-d "string"] [-D "string"] [-GH]
[-F "format"] [-[sn] <field>:/pattern/[|field:/pattern/]*]
[database_file(s)]

Output type selectors
r - rdist group style output (default)
l - list of host names
h - /etc/hosts style output.

39

f - output the values for a list of colon separated fields.

Output format selectors with -f flag.
d - delimiter between fields in f style output
D - delimiter at end of line for f style output
F - format string with %f replaced by field name and %v replaced by value.

E.G. ’<tr><th>%f</th><td>%k</td></tr>’ will create a single row in
a HTML table.

H - make first line a header line

Misc
G - enable debugging output

Machine selectors
n - select machines with field(s) not matching pattern(s).
s - select machines with field(s) matching pattern(s).

Patterns are Perl regular expressions. A | (alternation) can be used
in a regexp provided it is not preceded with a /. If you need to
match /| in a pattern use [/]| instead. Multiple field:/pattern/
pairs are and’ed together so the machine MUST have all patterns pass.

Use -? to get this help.

There are many example command lines scattered throughout the documentation and there is a
computer based training module in the file CbtDacsDbreport.txt that will lead you though the
basics. More examples are present in the report shell scripts in Config/database/reports. You can
also read the examples below.

3.4.2 Examples of dbreport usage

Dbreport takes a number of arguments, by default, it will use /config/Config/database/db on the
local machine as its database. If you use it on a system that is not a DACS master, you need to
supply the database file name.

3.4.2.1 Query selection tips

The -n and -s options are used to exclude/include (Not select/Select) host records from reporting
if their criteria match.
Both take a series of <keyword>:/<pattern>/ sequences separated with a |. So to select hosts
that are at the first Los Angeles site (in cluster site lax1) and runs any version of Centos 5, you
specify:

-s ’os:/(?i)centos\s+5/|cluster:/site_lax1/’

All the | separated portions sequence must match. So the host must match both the os and the
cluster selectors. (Arguably rather then using |, & should have been chosen to separate the
elements indicating that they are and’ed together but....)
Because of this and’ing, you can’t select hosts in Los Angeles and Miami using:

40

-s ’cluster:/site_lax1/|cluster:/site_mia1/’

because a host can’t be in both Miami and Los Angeles (quantum mechanics not withstanding).
This is done using the appropriate regular expression:

-s ’cluster:/site_lax1|site_mia1/’

so cluster matches site_lax1 or site_mia1 and returns the desired result.
Want to select all Centos and Solaris hosts? Perform a case insensitive match by starting the
regular expressions with =(?i)=:

-s ’os:/(?i)centos|solaris/’

Want all Centos and Solaris hosts excluding Solaris 10 hosts? This works by selecting all hosts
and excluding the Solaris 10 hosts:

-s ’os:/(?i)centos|solaris/’ -n ’os:/(?i)solaris\s+10/’

This creates the same output (assuming you only have solaris 9 and 10 hosts) by explicitly
selecting only Solaris 9 hosts:

-s ’os:/(?i)centos|solaris\s+9\./’

Note that you can’t search for an alternative string ending in a / because:

ip:/2.21/|2.220/

is mistakenly parsed as the /| character string that is meant to separate alternate
<keyword>:/<pattern>/ sequences, and not as find: ’2.21/’ or ’2.220’. So use:

ip:/2.21[/]|2.220/

instead.

3.4.2.2 Get a list of all machines in database

To generate a space seperated list of all machines in the database:

• /config/Config/bin/dbreport -l

a.example.com androscoggin.example.com b.lax1.example.com ...

3.4.2.3 Get a list of all our machines in database

There are a couple of ways of doing this:
Select all machines that contain .example.com assuming you are using FQDN’s for the machine
keyword:

• /config/Config/bin/dbreport -l -s ’machine:/\.example\.com$/’

this may miss some equipment like unmanaged hubs if they aren’t assigned a (dummy) FQDN
dns name.
Another way is to assign external equipment to the external cluster and run:

• /config/Config/bin/dbreport -l -n ’cluster:/external/’

to report all equipment without any equipment in the external cluster.
These commands also include machines that inherit from other machines. If you want just base
machines you can add/use the selector isbase:/yes/ as well.

41

3.4.2.4 List hosts with a particular OS

Find all Centos 4.5 hosts by searching the os keyword for a case insensitive ”centos” separated by
space from ”4.5”:

• /config/Config/bin/dbreport -l -s ’os:/(?i)centos\s+4\.5/’

produces:

dns.lax1.example.com s2-e1.lax1.example.com s2.lax1.example.com

3.4.2.5 Find all entries/interfaces/IP addresses for a given host

To find all IP addresses for the host known as s1.example.com use:

• /config/Config/bin/dbreport -f ip -s ’base:/s1.lax1.example.com/’

which returns:

192.168.2.1
192.168.2.23
192.0.2.72

if you want the IP address followed by a space and the machine use:

/config/Config/bin/dbreport -f ip:machine -d" " -s ’base:/s1.lax1.example.com/’</verbatim
to produce:
{\small \begin{verbatim}
192.168.2.1 s1.lax1.example.com
192.168.2.23 ldap.lax1.example.com
192.0.2.72 ftp.example.com

Also you can use the -h option to get hosts style output with aliases:

• /config/Config/bin/dbreport -h -s ’base:/s1.lax1.example.com/’

to get:

192.0.2.72 ftp.example.com s1
192.168.2.23 ldap.lax1.example.com ldap.lax1
192.168.2.1 s1.lax1.example.com s1

3.4.2.6 Finding a host with a given Ethernet or ip address

Use the search capabilities of dbreport to list a host with a specific IP address:

• /config/Config/bin/dbreport -l -s ’ip:/192.0.2.72/’

to get ftp.example.com. To search by Ethernet address:

• /config/Config/bin/dbreport -l -s ’enet:/^00:30:84/’

you get b.lax1.example.com ftp.example.com. We can also select with a full Ethernet address,
but searching using the prefix can tell us how many cards we have from a given manufacturer as
well.

42

3.4.2.7 Getting only the primary machine name

When selecting by os, we see duplicates:

% /config/Config/bin/dbreport -f machine -s ’os:/(?i)centos\s+5\.3/’
s2.lax1.example.com
dns.lax1.example.com
s2-e1.lax1.example.com

This makes sense since many of the hostnames are the same host so if one is running Centos 5.3
the others must as well. However we often want to de-duplicate this. To do this we can rely on the
convention of setting the ”rdist” keyword to ”yes” only in the primary machine. So we simply put:

rdist:/yes/

in a -s statement

%/config/Config/bin/dbreport -l -s ’os:/(?i)centos\s+5\.3/|rdist:/yes/’
s2.lax1.example.com

or use -n ’rdist:/no/’.

% /config/Config/bin/dbreport -l -s ’os:/(?i)centos\s+5\.3/’ -n "rdist:/no/"
s2.lax1.example.com

to select the one true name/entry for a host.
This sometimes does not work (e.g. there may be more than one entry for a host with the rdist
value set to yes). In this case use: -s ’isbase:/yes/’ or -n ’isbase:/no/’ to select the base
entry for the host.

% /config/Config/bin/dbreport -l -s ’os:/(?i)centos\s+5\.3/|isbase:/yes/’
s2.lax1.example.com
% /config/Config/bin/dbreport -l -s ’os:/(?i)centos\s+5\.3/’ -n "isbase:/no/"
s2.lax1.example.com

3.4.3 Changing dbreport

Often there is a class or keyword already defined that you can use or combine with other classes
(using set operations) to define the proper set of hosts. However when there isn’t you need to add
a new class.
Dbreport not only generates reports from the ’database’ it also implements the schema and
validates the data. So adding new fields, changing enumerations like services or uses etc. requires
changing the Perl script.
One question I often get is why not have an external configuration file(s) for the schema. Dbreport
is run many times during a typical DACS push and I don’t believe I can implement a faster parser
for the schema than what Perl provides. So implementing an external config file would slow down
the execution of dbreport. One possibility is to extract the schema defining components to an
external library file and use the Perl library mechanism to include and parse it. Then the external
file can be edited rather than editing the whole script. I haven’t gotten around to testing that
and don’t see that it would be dramatically better than editing the dbreport file itself.
There are 2 types of changes you will typically do in dbreport:

43

1. changes to the clusters, services, uses, patches or os value lists

2. changes to the keywords defined in the database

but before we discuss making changes, you need to decide what changes you want to make.
Usually deciding what service to add is easy, however when running multiple redundant servers or
master/slave services a little thought it needed. See Special Circumstances section 3.5 for a
discussion and references to how to set up the database for linked services.

3.4.3.1 Adding/changing cluster, services etc

When you change the cluster, service, os, or uses values you modifying a Perl associative array.
The array names for each keyword are:

Keyword Associative Array
cluster cluster list
os os type list
patches patch list
service service list
uses uses list

Table 3.2: The associative array that defines a keword’s values

To change these edit Config/bin/dbreport and search for ’(%[arrayname])’. E.G. to find the start
of the service list array you would search for (%service_list). Once you have found that the
syntax is very easy. A sample entry looks like:

#****d* service_list/SSHDEXT
#* NAME
#* SSHDEXT - Runs ssh server with external interface
#* DESCRIPTION
#* Runs the ssh server and allows access from the Internet. Modifies
#* services list, firewall rules and ssh configurations.
#******

’SSHDEXT’ => ’’,

There is only one active line here ’SSHDEXT’ => ’’,, all the rest start with a ’#’ sign and a are
Perl comments. This defines a new service called SSHDEXT. You can add new lines similar to
the SSHDEXT definition and change SSHDEXT to some other value. Add the new line after any
comma in the list.
The comment lines are robodoc documentation lines that describe what the service keyword
(SSHDEXT in this case) is to be used for. These comments can be extracted and turned into
HTML or printable documentation for use by others, and you are strongly encouraged to
document your additions. See the robodoc manual at:
http://www.xs4all.nl/∼rfsber/Robo/manuals.html.
The same format works for all the other arrays with the exception of the robodoc strings (the
services list turns into uses list for uses for example). There are example entries for each of the
arrays, and you can use those as templates for your robodoc comments.

44

http://www.xs4all.nl/~rfsber/Robo/manuals.html

To delete a keyword, simply delete the active line and its documentation. There are a helper
programs in Config/bin that can be used to search for old values so you can clean up your files.
Use Config/bin/cleangrep to look for instances of the keyword in just the subversion controlled
files.

3.4.3.2 Adding a new keyword to the schema or change its verifier pattern

To add a new keyword to the schema chane the keyword list associative array. An entry looks like:

’alias’ => ’0’,

and is composed of a key and value. In this case the key is ’alias’ and the value is ’0’. If the value
is 1, the keyword can be used only once per host definition in the database. If the value is 0, it
can be used multiple times and the values are concatenated.
You can also define a verification mask that restricts the value of the data that is entered for this
keyword. The mask is a Perl regular expression. If you aren’t familiar with them there are
numerous tutorials on the Internet. The ip keyword uses a mask to catch simple typos, its
definition is:

’ip’ => ’1|[0-9.X]+(/[0-9]{1,2})?’,

the parts of the value are separated with a |. The initial 1 means that ip is a single use only
keyword. Then comes the validation expression(s). Every | separated regular expression is
matched against the value of the keyword and if any of them pass, the value is validated. In this
case there is only one validation expression that is explained as:

[0-9.X +] Allow any sequence with one or more digits 0-9, periods and the letter X. So an ip
could be 192.168.X.X, or 173.34.56.78. The regular expression could be better written as it
also allows 123456789 and 999.999.999.999 which are obviously invalid but it catches most
typos.

(/[0-9 1,2)?] Allow 0 or 1 copies (i.e. it’s optional) of a ’/’ followed by 1 or 2 digits. Again this
allows /44 which is invalid, but it catches most cases.

Using multiple | separated regular expressions additional valid values can be specified. E.G. to
validate enumerated keywords we have:

’rdist’ => ’1|yes|other|request|no’

which allows only the 4 values: yes, other, request and no.
Similarly to add the ’eri’ Ethernet interface name, change:

’enet_if’ => ’1|eth[0-9](?:[:.][0-9])?|nge[0-9]|lo:[0-9]+’,
the name for the ethernet interface. eth0, eth1:1, lo:0 nge0 for Solaris.

to

’enet_if’ => ’1|eth[0-9](?:[:.][0-9])?|nge[0-9]|lo:[0-9]+|eri[0-9]+’,
the name for the ethernet interface. eth0, eth1:1, lo:0 nge0 for Solaris.

45

3.5 Special circumstances and configurations

There are some configurations that require a little care when defining them in DACS.
For a discussion of master and standy services see Configuring MASTER/STANDBY services
section 7.9. For a discussion on configuring VMware hosts or Solaris Zones see Configuring Solaris
Zones or VMware guest OS section 7.8.

3.5.1 Deploying multiple redundant servers

If you have multiple hosts that duplicate a service for redundancy, e.g. multiple primary NTP
servers, or primary and backup mail delivery hosts you may need unique configurations for those
hosts. To do this don’t define an ’NTP’ service, instead define numbered services: NTP1, NTP2,
NTP3. Then the hosts associated with these services can be extracted using dbreport for
generating configuration files.
This is particularly useful when you have multiple servers with different configurations and the
configurations can run on any server. This also works well if it doesn’t matter what client uses
what server, or if the client will use all the servers.
If you have a single server at a site, and clients must use that site’s server, using numbered service
definitions can still be useful. But you may be better off defining a single service (E.G. NTP) and
using class operations in rdist to select the service that is located at a particular site. So instead
of NTP1 you would use the class of NTP HOSTS intersected with site lax1 C HOSTS to identify
the site specific ntp server. Now if there were two site specific NTP servers you could use:

• NTP1 HOSTS intersected with site lax1 C HOSTS and

• NTP2 HOSTS intersected with site lax1 C HOSTS

to distinguish between the two unique NTP servers at a site.

3.6 Standard database reports: wiring, asset, labels

DACS comes with a set of standard reports that you can access from the Config/database
directory. The inline documention is shown below. See the online html documentation in
Config/docs/database/Makefile.html for other information.

3.6.1 Obtain a report of all your assets in the database

assets - series of targets for generating asset reports
SYNOPSIS
cd Config/database; make assets.csv assets.html assets.print

PURPOSE
This target generates asset listings in different
formats. For print, it generates latex that is converted
into postscript output suitable for sending to a
postscript printer. HTML output is in a tabular
format. CSV format can be imported into excel or other
spreadsheet program for analysis.

46

It lists the following fields in a table:

• Tag (inventory) number

• Name (sort field)

• Description

• Location

You can add more fields by editing the report/report_assets shell script.

3.6.2 Print labels to apply to hosts

NAME
label - a target for generating host labels.

SYNOPSIS
cd Config/database; make labels.print

PURPOSE
This target generates labels for placing on equipment.
It generates latex that is converted into postscript
output suitable for sending to a postscript printer.

3.6.3 Obtain a report of the wiring layout for your systems

NAME
wiring - series of targets for generating wiring reports

SYNOPSIS
cd Config/database; make wiring.csv wiring.html wiring.print

PURPOSE
This target generates a wiring report in different
formats. For print, it generates latex that is converted
into postscript output suitable for sending to a
postscript printer. HTML output is in a tabular
format. CSV format can be imported into excel or other
spreadsheet program for analysis.

It produces three tables listing:

• machine name

• contact person

• location

• wall plug

• hub

• hub port

for every machine. One table is sorted by machine name, another by hub/hub port and the last
by wall plug (which is also used for specifying the label on a cable in a wiring closet or rack).

47

Chapter 4

The Version Control System (VCS)

DACS should be able to work with both subversion and CVS, however the CVS support has not
been tested. The original version of DACS (known as Config) used only CVS. DACS changed to
subversion (svn) because it was difficult to change the directory structure of the CCM repository
with CVS. As a result reorganizing the repository to improve workflow is easier using subversion.
There are some issues with subversion if you plan to implementing separate work and production
CCM trees. The existing workarounds will be discussed below. Using subversion also complicates
vendor version handling if you wish to track the vendor’s original files. For most sites however,
these advanced operations will not be used and subversion will work just fine.

4.1 What does the VCS provide

DACS incorporates a VCS into it’s workflow to allow:

• recovery from bad configuration changes. Since it records every known state of the
configuration tree, it is possible to roll back to a prior working state.

While it is possible in an emergency to distribute a configuration tree that is not stored in
the VCS, a number of features in the Rdist script have to be explicitly bypassed.

• validation of files before check-in. This helps prevent incorrect files, which would break
working systems, from being checked into the VCS.

• collection and review of documentation on configuration changes. In addition the
documentation (change log notes) can be validated. For example you can require a trouble
ticket identifier to be included in the log to link the change back to the requirements that
made the change necessary. It can forward the log message from a check-in messages into
the associated ticket(s) to reduce the documentation burden. Also it can notify other
admins by forwarding the log and and difference report to a mailing list. This allows post
check-in peer review of changes.

• delegation of access to files in the VCS. Specific users can do their jobs more efficiently by
having change access to specific files.

Also as an option it provides support for:

48

• separate production and work trees to enforce a process for deploying changes. This
prevents un-reviewed changes from being pushed to production.

• tracking changes to vendor supplied files. This makes upgrading to new OS releases or
newer versions of software easier and less prone to error.

4.2 Which VCS

There are currently two supported version control systems:

• subversion

– makes moving directories and other restructuring of the CCM tree easier as it also
preserves history.

– is currently tested and deployed in a working DACS installation

– is more secure access model using ssh

– allows easy replication of ssh repository for redundancy (using svnsync with svn 1.4
and newer)

– is a newer VCS and is still under active development

– makes a split test/production tree a little more difficult to implement. This is still an
area where work is being done in DACS.

– makes tracking vendor copies of files different (some say more difficult) than in CVS.

• CVS (concurrent versions system)

– makes implementing a split work/production tree is easier and allows easy access to a
full history of changes.

– provides better support for tracking releases of vendor files

– is a mature VCS that has been heavily used

– makes it difficult to move directories and preserve history.

– is currently untested in DACS

– has a less secure access model

– has no direct support for maintaining redundant repositories

You may want to read Tracking vendor releases section 4.5.3 and Workflow in a split
work/production implementation section 4.5.1 located below before selecting a VCS. If you don’t
plan on using split work/production or using vendor branches svn should be your preferred choice.

4.3 VCS anatomy

When discussing a VCS there are some terms you should know.

repository the directory where the VCS stores it’s files. These files have a special format that
allows the VCS to locate prior revisions of a file and track changes to the file structure.

49

working copy when you modify a file, you create a copy of the files in the repository as they
exist at some point in time. Usually this time is the present. This copy of the files is called
a working copy and is where you will perform your changes and testing before checking the
changes into the repository. The CCM working copy is subdirectory of the repository tree.
The working copy is a copy of the /Config/work tree hierarchy in the repository.

revision the recorded copy of a file or files at a given time

check-in the act of telling the VCS to store a copy of changed file(s) in your working copy as a
new revision of the file(s) in the repository.

hook scripts these are scripts that are run by the VCS in response to user actions such as file
check-in. They can validate changes to files (e.g. verify syntax), make sure that the log
message has the proper information in it (e.g. a reference to a ticket) and other tasks.

These terms will be used throughout the rest of the documentation.

4.4 VCS setup

Because a CVS repository has not been tested in DACS, this section deals with the configuration
and setup for subversion. But the issues discussed apply to both VCS’s so you should read it and
adapt the svn configurations to CVS (and send them to me) if you are going to use CVS.
This is not a primer on how to run svn or CVS. Many good primers and extensive documentation
on your chosen VCS can be found on the Internet. See ”Importing the DACS repository tree”
section 9.1 for more details and examples to get started with a test DACS repository.
I suggest using subversion over ssh access with public key authentication. Also use a dedicated
user to access the svn repository. This makes delegating access to files much easier as well as
providing secure encrypted access to the repository. Setting up svn over ssh access is less
complicated than other access mechanisms that provide the same security and delegation ability.
The hook scripts that are provided in the DACS distribution assume you are using a subversion
tunneled over ssh access method to a user account dedicated to subversion maintenance.
I strongly suggest making a separate DACS/operations subversion repository. Since sensitive
items can be stored in the repository, ssh keys, passwords, community strings etc. maintaining a
separate restricted access repository dedicated to DACS or system administration use is prudent.

4.4.1 Repository file structure

This is the repository setup that is supplied in the distribution.
The Config/work and Config/production must be self contained and (except for programs) not
rely on any files from outside the tree. These trees can be checked out at any location and permit:

• rollback of changes to a prior working state

• testing changes in a working copy before check-in

• multiple independent copies of the DACS system for redundancy and load balancing

50

svn_root/Config/work -+- Distfile
+- Rdist (link to Config/bin/Rdist)
+- Config +- bin - Rdist, dbreport, filepp

+- database (replaces Database in Config)
+- distfile (replaces Dist in Config)
+- lib/config/* - support files

svn_root/Config/production - same structure as work. This is actually
a branch of the work tree that is used to
push tested and reviewed files to
production.

svn_root/Config/vendor/vendor_dir - each vendor_dir has a similar
format to the work tree. This tree is used to
enter new vendor copies of files into config
with a history. E.G. we need to change
=/etc/rc.d/init.d/sendmail=. We define a path
in work to hold this file
(=work/rc/sendmail=). Then we define the same
path under the vendor branch for that release
(=vendor/centos_4.2/rc/sendmail=) for example
and check-in the unmodified vendor file. Then
when a 4.3 release of the file is installed,
we check the 4.3 version into
=vendor/centos_4.3/rc/sendmail= and then
merger the changes between 4.2 and 4.3 into
the work copy. (See subversion docs for
more information on vendor branches.)

svn_root/SVN - a directory containing hook and conf files for the
DACS repository. Once the hook scripts are deployed,
they will be automatically updated upon subsequent
check-ins to this directory.

Figure 4.1: Tree diagram of the subversion repository structure.

Under the Config/work and Config/production trees you will set up directories that group files by
task or relationship. The top level directory structure is replicated through to the distribution
system. For example, the ntp directory can include all the files needed to deploy NTP across the
enterprise. Because the ntp directory exists, there should be an ntp label in the distribution
system that is used to allow selective update/distribution of just this directory when pushing files.
The structure within the ntp directory is totally under your control. There may be subdirectories
on the remote site receiving the files: site/lax1, site/mia1, or it can be a flat directory structure.
As another example, you may have an ssh directory that includes all the ssh configuration files
and an etc directory that includes random single files that live under /etc. The files in these
directories would be pushed by passing the ssh and etc labels to the distribution command Rdist.
Because of this coupling between the directory names and the labels in Rdist that select
subgroups of files to push, the repository layout affects how your work is done. As time progresses

51

you often want to move files and directories around to put files that get changed as a group under
the same directory hierarchy to make editing and distribution easier and faster. This is the
primary reason subversion was chosen as the main VCS for DACS.
In the DACS distribution the following directories are supplied:

config bin scripts used by the DACS system

cron sample cron scripts for various purposes

etc build system for individual host files, other assorted files

firewalls system to build an iptables based firewall system

ntp system to build ntp configurations for all hosts

pkgs system for software installation in a yum environment

services system for building a services auditing and enabling under Linux

ssh system for recording ssh keys and generating known hosts file for distribution

users files for managing files associated with users

Some of these directories are used in the DacsExamples chapter and are referenced in examples
throughout this documentation. Additional documentation on these directories and files are in
the DACS repository distribution.

4.4.2 Sample SVN configuration and hook files

In the distribution there is a directory called SVN that includes the hook scripts and sample
config files for an SVN based DACS release. These hooks scripts implement repository replication
(if using subversion 1.4 or newer) as well as serving as an example of file and commit log
verification. The hooks scripts include:

• a pre-commit script that

– allows access if the check is a replication request

– checks to see if the repository is locked from commits

– checks to verify a non-blank commit comment that includes a reference to an RT ticket
number (specified as RT:3452)

– checks to verify the syntax of the users/sudoers/sudoers config file

– checks to verify the syntax of executable scripts

• post-commit script to perform actions on the newly checked in files that:

– updates the subversion control files for the repository (which are maintained under
svn) and installs a new authorized keys file for the repository owner/account from the
subversion update

– saves a commit log entry in the commit-log

52

– exits the script if this check-in was due to a replication request

– sends email about the commit to users

– synchronizes the repository to its replicas if it is run on a master repository

• pre-revprop files that controls values of meta information (e.g. author, date) assigned to a
check-in that

– allows the change if it was called as a result of replication

– allows addition of new values, but prevents changing of old values

• post-revprop file that handles completed value changes that

– records property changes in the commit-log

– synchronizes the repository to its replicas if it is run on a master repository

There is only one subversion configuration file that is used with the normal svn+ssh:// access
mechanism:

• conf/authzfile that defines default access rights compatible with DACS and includes
authorization for the dacsuser repository owner.

and two configuration files specific to the hook scripts:

• slave urls - contains the urls (svn+ssh://...) to one or more subversion repositories that
should be kept in sync with the master repository

• authorized keys - this is a copy of the authorized keys file for the owner of the repository.
The hook scripts will install this file in ~/.ssh/authorized_keys so you can track changes
to this file. The distributed copy of this file has invalid sanitized public keys, but it
demonstrates the basic format and settings for the file.

To use these scripts, you replace the repository’s conf and hooks directories with checked out
copies of SVN/hooks and SVN/conf. See Importing the DACS repository tree/Subversion hook
scripts section 9.1.1 for details on doing this.

4.4.3 SVN Access controls

For SVN versions greater then 1.3, the svn server (which is used when accessing the repository via
ssh) can use access control lists. Before then only the svn Apache (HTTP protocol) module
provided access controls. Because of this DACS supports only subversion releases newer than 1.3.
If you must use a pre 1.3 release of subversion don’t use delegation. There is no way to restrict
read access to the files (using the ssh transport mechanism) in the repository. Pre-commit hook
scripts can only prevent writing/updating of changes and don’t restrict checkouts. Because of the
sensitive nature of the data (e.g. passwords in config files, ssh keys etc) the ability to restrict read
access is required. You could try setting up https access, but I consider that less secure tha using
ssh access and given the nature of the files stored in DACS, I consider using https too much of a
risk.

53

Access restrictions can be set up in any version of CVS using standard file/directory permissions
in the CVS repository tree, but the restriction are not as easily controlled/audited as the
subversion implementation.
The subversion access control file for a repository is located in the file conf/authzfile under the
root of the svn repository.
If you are using the sample SVN files from the DACS distribution, the conf directory should be a
working copy of the SVN/conf directory supplied in the DACS distribution.
The authzfile in the DACS distribution provides read/write capability to admins by default. A
sample authzfile looks like:

[groups]
admins = you
others = somebodyelse

[/]
@others =
@admins = rw

[/Config]
root = r
@admins = rw

[/Config/work/mail/address]
others = rw

People in the admin group can read/write everything (including the SVN control files). Root has
read only access to the entire /Config tree so it can retrieve updates using Rdist. Because root is
not a real person it does not have write access. Users in the others group are delegated read and
write access to files under the mail/address directory, see below for further info on delegation.
To add a new admin, you add the user name of the admin to the admins line changing:

admins = you

into

admins = you, me

For details on the format of this file I refer you to the subversion documentation at:
http://svnbook.red-bean.com/

4.4.4 Delegation of access to a non-admin user

A feature of DACS is the ability to delegate system changes to other people. For example a
developer may need to change the hosts file on his system.
It would be efficient for him to change this file without having to involve the administrators. Yet
if something goes wrong, the administrators want to be able to see what was changed and have an
easy way to roll back the change.
Delegating access to this file to the user, produces exactly this effect. The user can change (and
deploy using sudo /config/Rdist) the hosts file for his system. The VCS underlying DACS
provides the ability to see what changed and roll the change back. The administrators control the

54

http://svnbook.red-bean.com/

file generation and distribution mechanisms/rules so they have the ultimate authority on what
changes the user can perform.
To allow non-admin users to use DACS, you have to allow the user access to a portion of the
DACS tree. SVN access controls are directory based, you can’t set access controls on a single file
(well you can, but it makes things a bit tricky). Instead create a portion of the tree for the user to
work in. E.G. create the directory etc/hosts/fredchanges, where etc/ is at the top level of the
DACS work tree.
Then add:

allow fred access to modify the hosts file
note that this is a directory with a single file (hosts) in it
that is validated by the build system and merged into hosts files.
[/Config/work/etc/hosts/fredchanges]
fred = rw

(Note that /Config/work is the location of the DACS tree in subversion and the working copy
that is checked out is the tree starting at /Config/work.)
Fred will be restricted to reading and writing files under the fredchanges directory. Note do not
allow fred to change files in <svn_root>/Config/work/etc because the presence of a Makefile in
that directory will execute the Makefile commands as root (see DacsBuild for details on the
build/make mechanism). If you delegate access to any top level directory under /Config/work you
have given the delegated user the ability to run any program as root on your DACS server. As
long as the users have access to a directory two levels down from the root, you control what will
run by properly constructing the Makefile that triggers the build system.
If the user changes a file that needs to be processed, a DACS administrator will have to create the
Makefile to generate files on behalf of the delegated users. This is a good way to delegate access
to a portion of a configuration file. The user edits a file and the contents of that file are processed
into a larger configuration file.
The administrator is responsible for vetting any files delegated to a user before processing them.
Using su or sudo -u you can generate files as the delegated user if you wish. However the safest
course is to have the file generation mechanisms controlled by the admin and only allow the user
to generate input data. Note that the same warnings apply to any check or other validation
scripts that run as part of the VCS hooks.
Once the delegated file is in place, it can be used just like any other file. It should have entries
placed in distfile.base that push the delegated file when it changes.

4.4.5 Setting owners, groups and permissions

Neither CVS nor subversion preserve owner/group or mode information. Both require external
support to modify the CCM tree to set these. The build system performs the operations required
to do this.
Under CVS, the commands run by the build system are in a shell script that is managed like any
other file under CVS. It is invoked by the Makefile in the build system and sets the permissions.
Subversion allows you to set properties on files which stay with the file if it is moved. Using svn
properties, you can store the information with the file and use the build system to extract and
apply this information. Since the properties move with the file, you don’t need to update a script
to keep the permissions after renaming a file. The DACS build system uses the svn properties:

55

• svn:owner

• svn:group

• svn:unix-mode

that was proposed on one of the subversion mailing lists to store the properties. The value of
these properties is passed to chown, chgrp or chmod respectively. So using
svn propset svn:owner bin thisfile and then checking in the change will allow the command
in the build system to execute a ’chown bin thisfile’. Since the arguments are passed to the
underlying tools, you can also use numeric values (uid/gid) in case the user doesn’t exist in the
password file on the DACS master host.
See Setting modes, owner and groups section 5.4 in the DACS build chapter for the details on
creating a Makefile that sets file access from subversion properties.

4.5 Workflow under the two VCS

With either VCS’s a typical update cycle consists of:

• perform a checkout of the portion (or whole) CCM work tree.

• update the files using the editor

• verify your update

• check the files into the VCS with a log message

• run Rdist to pull the changes from the work tree and distribute

This is the simplest mode of operation where there is only one tree that operates as both the
work and production tree and is pushed to all hosts. This works well for development sites or
other sites where the overhead of a review isn’t needed.
It also work well when you have a group of senior admins who rarely if ever screw up and can
quickly minimize the effect of the failure by reverting the change. Also this works well at
educational sites as messing up 100+ workstations is a really good lesson, and the consequences
can be reversed quickly by rolling back the change and redistributing.
However for some sites this is insufficient and they want to implement a more formal process.
One such process uses two different checked out trees:

work this tree is where all the changes occur. When it is checked out to make a master tree, the
Rdist command recognizes the location and will restrict the hosts that can be updated from
the tree. This is also called the test tree as it is used for testing changes to the configuration.

production this tree gets copies of files taken from the work tree that have passed some
validation mechanism/process to be promoted to production status. The Rdist command
recognizes this tree and permits it to update all the hosts that are defined.

56

4.5.1 Workflow in a split work/production implementation

This implementation defines two separate DACS master trees. The work tree and the production
tree. The work tree is used to make operational updates to a test network or set of test hosts.
The production tree makes updates to systems that are in production. Files must be promoted
from the work tree to the production tree.
All changes are committed to the work tree, so you start by having a working copy of the work
tree checked out, making a change to the work tree and checking the change in. In this respect it
is identical to the simple operation mode.
When you run Rdist, it will not be from /config/Rdist, but instead from an alternate master tree:
/config.test/Rdist. The /config.test tree is set up (via settings in Rdist) to only allow updates to
hosts that have the TESTHOST service defined in the database.
/config.test/Rdist will:

• update the test distribution tree

• generate new copies of any files needed by the target hosts

• push the changes to the test hosts

When you are satisfied that your changes are correct. The changes are reviewed and promoted
into the production tree. Then the production master tree (under /config) is used to Rdist the
changes to all servers. If the promotion isn’t done, no change occurs to the production tree.
The split of workflow across work (or test) and production distribution trees is useful since it
allows for the enforcement (via svn hooks or external script) of particular conditions before the
files are pushed to production. For example:

• the person who checked the changes into the work/test tree can not promote the changes to
the production tree

• only a subset of people can promote files to the production tree

This allows the person doing the promotion to verify the changes before they are placed in
production.

4.5.2 Promoting from work to production

I will describe the split work/production setup under CVS first as it is more straight forward.
Then I will describe this operation using subversion for the repository.
CVS has what is known as floating tags. These tags mark a point in time for a file under the CVS
system. They can be assigned to different versions of different files to bring them all together as a
single named entity. So revision 1.6 of one file can be tagged the same as revision 1.49 of another
file. By moving the ”PRODUCTION” tag to specific revisions of files you mark the promoted
files. To implement this you need:

• a CCM working tree (/config) that is stuck (a ”sticky tag”) to the PRODUCTION tag
(cvs co -r PRODUCTION configtree)

then you execute the following command sequence:

57

• tag the files in the work tree that are to go into production with two tags (using cvs rtag):
PRODUCTION and PRODUCTION_uniqueid
where uniqueid may be a datestamp or some other unique identifier.

• note that this tagging occurs in the repository with no working copy. So there is no way of
getting a file that wasn’t checked into the work tree. Hence you should always be able to
revert production to a known prior tested state.

• then a cvs update (done by Rdist) of the production tree will install the newly tagged
PRODUCTION files and distribute them.

using this method you have:

• a history of all the files/changes moved into production identified by the
PRODUCTION uniqueid tag on the files.

• the ability to see the entire history of the current files in production by using cvs log on the
file in the checked out production tree.

• the ability to rollback a change by finding the prior PRODUCTION uniqueid tag and
re-tagging that revision with the PRODUCTION tag.

This works the way it does because tags in CVS exist only on the revision axis of the repository.
They mark points in time of a single file.
There are two different ways to do this under subversion. The preferred way is discussed first.

4.5.2.1 Promoting from work to production (svn method 1)

In contrast to CVS tags, subversion (svn) tags are not based in time, they are based on copying
the files at a point in time to a new name. So promoting a file to production in svn requires:

• a CCM tree checked out that is stuck to the most recent (HEAD) of the PRODUCTION
copy of the files (svn co svn+ssh://dacsuser@dacsmaster/repo/Config/production
rather than the work tree located at:
svn co svn+ssh://dacsuser@dacsmaster/repo/Config/work)

then you have promote a file by:

• deleting the current copy of the file in the production tree and coping in a replacement file
from the development tree that you want to promote to production. Note that all these
operations are strictly in the repository

– svn rm svn+ssh://dacsuser@dacsmaster/repo/Config/production/example/file

– svn cp \
svn+ssh://dacsuser@dacsmaster/repo/Config/work/example/file@version \
svn+ssh://dacsuser@dacsmaster/repo/Config/production/example/file

– this creates two separate revisions in the repository (one remove and one copy) unless
you use a tool such as mucc to make it into a single atomic revision/transaction.

58

– since these operations are all in the repository, there is no way to promote a file that
wasn’t recorded in the repository, which is a good thing.

Performing an svn log on the file under /config (i.e. the production tree) displays the history of
the file and because of the copy operation it also includes all the log information from the file
when it existed on the development tree. So you can see the history of the file in production. So
far so good, but what happens when we want to find out what the prior production release was
and roll back to it?
Now we have an issue. We had to delete the prior copy in the production tree otherwise the copy
would fail. We can view the history of the current file in the production tree, but we lose the
ability to tell what the prior revisions were that went into production. We can retrieve this info
by specify peg revisions on the fils in the production tree, but it is not straight forward since prior
production releases have been deleted from the history accessible from the head of the production
tree. Hence there is currently no simple way of seeing all the prior revisions of the production
tree. In theory we can rollback just the last few commits to restore the production tree to the
earlier state.
However we have done multiple remove/copy cycles for all the files being promoted (unless mucc
was used) and each one is a new revision in the tree. Plus there may be other promotions that
have occurred that we don’t want to delete, so undoing just a few promotions is more complicated
that it may seem.
So this method isn’t as clean as one would hope. There is work in progress on promoting files
using this method with mucc to provide a single commit promotion of multiple files. There is also
a prototype of a tool that can scan backwards in the production history to ease recovery. But the
tools aren’t ready yet.

4.5.2.1.1 The manual subversion steps to promote a file If the production config tree
(at /config) is setup to sync to the production branch, you need to get the copy in the work
branch moved (promoted) to the production branch. Before doing this identify the version of the
file(s) that you want to promote using svn list. In this example we will promote a new Rdist
command:

svn list -v svn+ssh://dacsuser@dacsmaster:/repo/Config/work/users/sudoers/sudoers
628 rouilj 28299 Jun 01 18:35 sudoers

This is the sudoers file that exists at version 628 of the repository. Remove the old sudoers file in
the production tree and copy in the new file with:

svn rm svn+ssh://dacsuser@dacsmaster:/repo/Config/production/users/sudoers/sudoers

svn copy svn+ssh://dacsuser@dacsmaster:/repo/Config/work/users/sudoers/sudoers@628 \
svn+ssh://dacsuser@dacsmaster:/repo/Config/production/users/sudoers/sudoers

Once this is done using /config/Rdist will pull the new sudoers file and distribute it. The
person doing the copy is expected to verify that the new Rdist file has valid approved changes and
is suitable for production use.
Some sites prefer the person who committed the file to be promoted (rouilj in this case) shouldn’t
be able to promote it to production. This should be enforceable using pre-commit hooks, but I
have not yet attempted to do this using subversion, but some combination of:

59

• svnlook changed --copy info to find the source path and version of the files in the work
tree

• svnlook history source_file to find the revision the source file was changed in prior to
the copy operation

• svnlook author revision to find the author of the last change

should allow the hook script to verify this info. However this may be more easily done using an
external script.
In this scenario you may also want to set up separate permissions for the production and work
trees as in this example:

[groups]
admins = you, somebody
promoters = boss, you

[/]
@others =
@admins = rw

[/Config]
root = r
@admins =

[/Config/work]
@admins = rw

[/Config/production]
@promoters = rw

You can check into the work tree and promote to the production tree, but somebody can only
change the work tree and boss can only promote things to production.

4.5.2.2 Promoting from work to production (svn method 2)

The second way of moving changes from the work tree to the production tree preserves the
production history allowing a fast rollback, but makes accessing the log information associated
with the work tree more difficult. Plus it introduces the possibility that a production release may
not consist totally of files from the work tree in the repository. In addition it requires a working
copy of the tree to be checked out. Because it is not a recommended mechanism, it’s not
discussed in as much detail as the first method.
When using this method, we still have our CCM master tree (/config) that is following the
production tree. We do the following:

• check out a local working copy of the production tree

• perform an svn merge from the revisions on the work tree to get the changes between the
version in the production tree and the version you want to promote to production.

60

• check-in the new file version to the production tree.

Now svn log provides you with a list of versions on the production tree, so you can perform a
reverse merge and get back to a working configuration, but you don’t have access to the change
log info that was recorded in the work tree without manually tracking revisions. Because this
mechanism requires a working copy, it is possible to check-in a file that never existed in the
development repository tree (and was therefore never tested). However all the promotions are
committed as a single revision which makes rolling back a promotion easier.

4.5.3 Tracking vendor releases

Similar to the issues with a split work and production CCM tree, tracking vendor releases of files
is also a little trickier in svn than CVS. This method is used to track changes to the vendor
supplied files that are DACS managed. By tracking the changes, you can generate differences
between the prior and current vendor files and apply these differences to your working trees to get
updated configuration file settings, options etc.
As we did when discussing a split work/production tree, an example using CVS will be discussed
first followed by a subversion example.
In CVS a branch is not a separate file/location in the repository. It is an alternate time sequence
for a file. So when you move the file in CVS, you also move the vendor branches. (footnote:
CVS’s standard rename/restructure mechanism causes problems when checking out prior
revisions of a tree as the original and new locations for a file would often be checked out so CVS
was not without issues in this regard either). Consider this scenario under CVS:
You create a copy of the original file in the centos 4 vendor branch. This stores the virgin copy of
the file as shipped by the OS vendor at release 4.3. You also tag this file so you can find it later.
Then you check out this file and use it as the base file in your work tree. You modify the file to
work at your site and push it to all the hosts. Then you do a little restructuring moving the file
from the etc directory to the dns directory.
Now you have a new OS release. Let’s assume you started at OS version 4.3 and now move to 4.5.
This file in the distribution has changed between releases 4.3 and release 4.5.
So you check out the centos 4 vendor branch and copy all the files from the 4.5 OS release to their
corresponding location in the centos 4 vendor tree. Then you check-in the new 4.5 populated
vendor tree and tag the changes as the centos 4.5 release. You can now use cvs diff between the
4.3 and 4.5 vendor branches to review the differences between them. Also you can merge these
differences into your working copies. So far so good.
In subversion you would do much the same except a subversion branch is a separate file path. So
moving the working copy of the file doesn’t move the files within the branch, that must be tracked
manually for each vendor branch. Initially:

• the vendor branch/tag would live in vendor/centos 4.3/etc/file

• the distribution copy would live in work/etc/file

then you move the distribution copy to work/dns/file, where is the vendor copy? You guessed it,
still at etc/file. Sadly it’s very easy to forget where things are stashed, and it’s made more
difficult because your dns/file may have many ancestors:

61

• changes from the vendor/centos 4/etc/file

• changes from the vendor/centos 5/etc/file

• changes from the vendor/solaris 10/etc/file

etc. depending on how universal the file is (e.g. think of the /etc/resolv.conf template file that
incorporates changes from a number of systems). In CVS all the vendor tags/vendor branches
move along with the base file so it makes locating the branches easier.
In subversion you create a copy of the original file in the centos 4.3 vendor tag which stores the
virgin copy of the file as shipped by the OS vendor at release 4.3. Then you copy this virgin file
(using the svn copy command) into the work tree. This copy operation records the origin of the
copied file telling you where it came from. So you can get a mapping between the work and
vendor trees by viewing the history of the first revision of the work file. You modify the work file
as needed for your site and push it to all the hosts. Then you do a little restructuring moving the
file from the etc directory to the dns directory.
Now you have a new OS release. Let’s assume you started at OS version 4.3 and now move to 4.5.
This file in the distribution has changed between releases 4.3 and release 4.5.
So you check out the 4.3 vendor tree and copy all the files from the 4.5 OS release to their
corresponding location in the 4.3 vendor tree Then you check-in the new 4.5 populated vendor
tree as the centos 4.5 tag preserving the original copies of all the files as they exist in the 4.5 OS
release. You can now use svn diff to generate a list of differences and merge these differences
into your working copies. So far so good. Except you see a diff for etc/file, where does that file
reside now? You have to search the work tree looking at the first revision of each file (or have
recorded this information) to find the mapping from the vendor branch to the working branch.
Note there is no mapping from the vendor branch to the work branch, the mapping is from the
work file to the vendor file.
Regardless of whether you use CVS or subversion for this there are some issues to overcome.
Most sites I know of don’t maintain separate vendor branches at all and just walk the work trees
and manually try to find differences in versions and incorporate the changes.
See DacsExamples for a discussion of creating and using a vendor branch for the /etc/services
file. The subversion manual
http://svnbook.red-bean.com/en/1.4/svn-book.html#svn.advanced.vendorbr provides
more detailed information on handling vendor branches under subversion.

62

http://svnbook.red-bean.com/en/1.4/svn-book.html#svn.advanced.vendorbr

Chapter 5

The Build System

The build system uses gnu make to generate files. A replacement can be substituted, but only gnu
make has been tested. The distribution system uses the build system to generate the control file
that determine what hosts receive the distributed files, so you may just want to use gnu make for
everything.

5.1 What does the Build System provide

For some sites the build system may not be needed. However a lot of configuration files have
information (hostnames, ip addresses) embedded in them. If you don’t use the build system this
information is usually specified at least twice:

• Once in the DACS database where it drives the distribution system

• In one or more configuration files

For example the files /etc/resolv.conf and /etc/dhcpd.conf use information about the DNS
servers in your installation. When you change the DNS servers in the DACS database, you should
either:

• generate new copies of these files with the new DNS server assignments or

• verify that these files still have valid DNS information

It is very easy to miss changes to these files and have problems weeks or months later when a host
using DHCP reboots and it no longer has a valid dns server. Even worse is when only one of the
three dns servers is correct in resolv.conf and the one functioning DNS server reboots or crashes
leaving most of your network without any DNS service. Using the build system you can
implement either option and eliminate the problem entirely.
So the build system:

• generates configuration files for hosts using information from the database or information
from other configuration files contained in the DACS CCM tree to generate correct and
consistent operation.

63

• validates configuration files against other files in the DACS CCM tree to verify that the
information is correct.

• provides a mechanism for generating individual configuration files for every host based on
the attributes of that host. E.G. iptables files can be generated that allow access to port 80
only if the host is running the Apache web server.

• provides a mechanism to generate output files from input files that have change rights
delegated to non-admin users. This allows non-admin users to modify portions of a larger
configuration file.

• sets owner, group and mode of files in the DACS CCM tree so that they are installed on
remote machines with proper settings.

5.2 Build system setup

To trigger the build system place a file called Makefile under any of the top level directories in
the DACS CCM tree. Rdist will automatically call make all or make verify (when run in
distribution or verify mode respectively) using the Makefile if the directory name matches the
selected labels that are being distributed (see “Distfile Label Types and Special Purpose Labels”
section 6.4.2 for details on the link between directory names and labels).
The Makefile rules can generate all the required files itself, or it can invoke other Makefiles using
$(MAKE) -C <subdir> to generate files in subdirectories. This submake form is useful if you have
multiple independent subdirectories under your top level directory.

5.3 Makefile template

The Makefile should have a verify target in it as it will generate files for pushing during a verify
phase. A prototype gnu make Makefile is:

all: [default_files_to_generate]
verify: all

.PHONY: all verify

Replace [default_files_to_generate] with any make(1) targets that you want to build. See
the documentation for make(1) for further details. Also in the DACS release there are Makefiles
that you can use as examples.

5.4 Setting modes, owner and groups

Permissions, ownership and group membership are not preserved by CVS or subversion. To
handle CVS permission setting, create a shell script, or a target in the makefile. E.G.

all: security

security:

64

chmod 755 file1
chgrp 123 file1
chown 456 file1
chown bin file2

...

.PHONY: security

(Note that all the command lines begin with a tab).
To perform the same thing with subversion we use the subversion properties:

• svn:owner

• svn:group

• svn:unix-mode

on each file. See section 4.4.5 for more details on this The properties are set using the
svn propset command like so:

svn propset svn:unix-mode 600 <file/directory>

The file properties are updated on an svn update and extracted using the recursive propget
(property get).
To do this, create a Makefile in the first subdirectory under the root of the tree. E.G.
”firewalls/Makefile” or ”Config/Makefile”. These makefiles will trigger the makefile execution
functionality built into DACS.
Then modify the makefile so that it includes the following:

define location of root of the config tree.
RELATIVE_TOPDIR=..

include this makefile to define:
security target that will set owner/group/perms from svn properties.
also individual modes, user and group targets
include $(RELATIVE_TOPDIR)/Config/lib/config/Makefile.permissions.include

all: security

verify: all

This uses the provided include file that has all the command to perform the maintenance of
permissions, user and groups. By running the security target from the all or verify target you
set permissions, ownership and modes.
If you are in your own working copy of the CCM tree, you aren’t operating as root and therefore
make will fail when trying to set the owner or group. If you set the environment variable:
NOCHOWNCHGRP to any value, then make security will skip the group and owner modification
steps only if you are not running as root. However it is still a good idea to unset the variable
before running any Rdist command from a master tree.
In addition to the security target, you can use:

65

• make .set modes - to set just the modes of the files

• make .set group - to set just the groups of the files

• make .set owner - to set just the owners of the files

Note the target names start with a dot. In general they aren’t used explicitly and the leading dot
is used to indicate that they are internal targets used by security.

5.4.1 Implementation notes

Arguably this mechanism should be placed into the Rdist wrapper or be maintained by a Makefile
at the root of the DACS working tree so that each top level directory doesn’t need to deploy a
Makefile just to keep permissions up to date. However the current implementation permits
checking out a portion of a tree and being able to test it.
This mechanism wastes resources and time because there is no easy way to find out if the
permissions on the files have changed. The only way to find out is to analyzing the output of the
svn update command. Analyzing the output takes longer than just setting the permissions every
time. Since a change in permissions doesn’t update the time stamp of the checked out file other
make(1) based attempts to work around the problem are foiled.

5.5 Reducing dbreport invocations (using a per host cache)

When you generate files that are different for each host, the information in the DACS database is
often used to select the contents of the generated files. By convention, the generated files are
placed in the dist subdirectory and named for the host. So the copy of /etc/hosts generated for
the host a.example.com would be generated to: etc/hosts/dist/a.example.com. When using
gnu make you would use a pattern rule like:

dist/%: ../Config/database/db Makefile
some commands

that says that any file in the dist subdirectory can be generated by this rule. (In the target
dist/%, the under the dist subdirectory, so it would be invoked for dist/a.example.com.) Also
this rule states that the files in dist/ need to be rebuilt if the database ../Config/database/db
or the Makefile change. The down side of this is any change to the database will result in all the
dist/* files being regenerated. This happens even if the database change doesn’t change the
configuration for any host (e.g. a comment was added to the database file).
Also the database report on each individual host may be needed by multiple Makefiles. Without
some shared caching mechanism, each Makefile will have to run the commands needed to generate
the per host database report. Since a lot of time is spent generating per host data from the
database, a shared caching mechanism was added to the build system that generates the per host
information once per database change and detects changes to that information before using it.
To use the caching mechanism add the following at the top of the Makefile (this example is taken
from the Makefile that generated iptables firewall configurations for each host):

66

define location of root of the config tree.
RELATIVE_TOPDIR=..

define this makefile for dependencies below.
this can be modified by included makefiles to
be a list of all makefiles
ALL_MAKEFILES:=$(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST))

override the default selector given to dbreport.
VALID_HOSTS for this makefile are hosts that do not have the NOFIREWALL
uses clause and do not have rdist set to no.
DBREPORT_SELECTOR:=-n ’rdist:/no/|uses:/\bNOFIREWALL\b/’

include this makefile to define:
VALID_HOSTS, default value of SPEC_HOSTS and rules needed to create
.sum files and cached info files.
include $(RELATIVE_TOPDIR)/Config/lib/config/Makefile.md5cache.include

Create the list of files to be created. Select elements of the
(optionally) defined SPEC_HOSTS macro which defaults to all VALID_HOSTS.
per_host_files:=$(addprefix dist/,$(filter $(SPEC_HOSTS), $(VALID_HOSTS)))

Define the default targets
all: $(per_host_files)

verify: all

dist/%: $(ALL_MAKEFILES) .sum/% <other files, templates ...>
build commands using the per host database cache files
located at $(HOST_CACHE)/$* for each host

This implements an md5 checksum mediated cache by setting three variables:

RELATIVE TOPDIR the location of the root of the DACS CCM tree relative to the Makefile

ALL MAKEFILES this setting should be copied verbatim and includes the paths to all the
makefiles involved in generating the files.

DBREPORT SELECTOR the setting of DBREPORT SELECTOR is optional and by default
includes all the hosts in the DACS database that do not have their rdist value set to no).
It is passed to the dbreport command (see DacsDatabase) to refine the list of hosts that are
generated. In the example above it removes hosts not under DACS control and that do have
the uses ... NOFIREWALL ...= value set indicating that they do not use a unique firewall
from DACS.

and including the Makefile.md5cache.include makefile from the library.
The only change to the original dist/% rule is to make the target depend on .sum/% and
$(ALL_MAKEFILES) rather than the DACS database and the local Makefile. So when creating the
file dist/a.example.com, make will verify that the file .sum/a.example.com is up to date as well
as the list of makefiles.

67

The firewalls directory included in the distribution is one example of using this caching
mechanism. The services directory provides a second example. Also there is a Makefile.cache
included in the ntp diectory that doesn’t use per host files, but still can use the mediated cache to
reduce the number of database reports that need to be generated.

5.5.1 VCS Interaction

Since the .sum and dist directories are output directories for files generated by the Makefile,
their contents should always be reproducible by checking out a prior release of the tree and
re-running the build system. So the contents of the .sum and dist would NOT be checked into
the VCS system, but the directories themselves are in the VCS.
The VCS system needs to be told to ignore any files located under the .sum or dist directories
otherwise one of the safety interlocks in DACS will stop file distribution. This safety interlock
checks to make sure that there are no modified or unrecognized files (i.e. the files under .sum and
.dist) in the checked out tree. By setting the svn:ignore property for the .sum and dist
directories to ’*’ any files in the .sum or dist directory are made invisible to the VCS system.
Since these files are recoverable from a prior version of the VCS tree it is safe to tell the VCS to
ignore these build artifacts.
To set these directories up, you should make the .sum and dist directories and add them to
subversion (svn add .sum dist). Then tell svn to ignore the contents of the directories using
svn propset svn:ignore ’*’ .sum dist.
You can do the same with CVS, but rather than using svn propset, you add a .cvsignore file
under the dist and .sum directories with the contents of ’*’ to ignore all the files.
Then you can check-in the directories under either subversion or CVS to finalize the change.

5.5.2 Adding new data to the host caches

To add new data to the host cache modify the script
Config/lib/config/make_per_host_database_cachefile.
For example, suppose you have an ftp service running on a host at a unique IP address
(192.0.2.72), and you need to modify the firewall rules to allow access to the ftp server only if an
ftp request come in for the 192.0.2.72 address. So the problem becomes what is the address of
ftp.example.com assigned to the server s1.lax1.example.com?
To solve this, get a list of IP’s where the base host is the current host (s1.lax1.example.com) and
the child host includes the FTPEXT value.
dbreport -f ip -s ’base:/s1.lax1.example.com/|services:/\bFTPEXT\b/’ (See section 3.4
for info on using dbreport).
Add this command to Config/lib/config/make per host database cachefile and append it to the
cache file defining the macro FTPEXTSVCIP.
This looks like:

if the host provides FTP service, capture that external IP address
and record it.
FTPEXTSVCIP="‘${DBREPORT} -f ip -s "base:/^${HOST}\$/|services:/\bFTPEXT\b/" \

-n ’isbase:/no/’ ${DB}‘"
if [-n "$FTPEXTSVCIP"]; then
echo "#define FTPEXTSVCIP $FTPEXTSVCIP" >> ${CACHEFILE}.$$.tmp
fi

68

Then in the firewall rules file, if the FTPEXTSVCIP is defined include a rule like:

#ifdef FTPEXTSVCIP
#if FTPEXTSERVICE ne ""

-A IN -d FTPEXTSVCIP -p tcp -m tcp --dport 21 -m state --state NEW -j ACCEPT
#else
#undef FTPEXTSVCIP
#error HOSTNAME has a null value for FTPEXTSVCIP
#endif

#endif

where we add a little error checking to make sure that the address is not null. This adds the rule:

-A IN -d 192.0.2.72 -p tcp -m tcp --dport 21 -m state --state NEW -j ACCEPT

to the iptables configuration file dist/s1.lax1.example.com.
Note that we originally set this up for s1.lax1.example.com, but it implements the general rule:

If a system provides the FTPEXT service, it must have a unique IP address for that
service, and only ftp requests to that IP address will be accepted.

If the FTPEXT service is moved to a different host in the database, then the firewall rule also
moves with it and is removed from the old server. If an additional FTPEXT server is set up, it
has to be set up according to the specification above or the FTPEXTSVCIP will be empty and
the build will fail, preventing the distribution of incorrect firewall rules.

5.5.3 The internals

This section describes how the md5 mediated caching mechanism works and why it was devised
along with performance improvement numbers. If you are interested you can read this section but
it is likely to be of little interest unless you are quite familiar with make.
Normally, you use this dependency chain (called the direct dependency mode):

dist/A.file -------+
+--- database

dist/B.file -------+

This causes a build to start for both A.file and B.file every time the database changes regardless
of what info changed. In Makefile syntax this is expressed with:
dist/A.file dist/B.file: database. Now we could use (the cache mode):

dist/A.file --- A.report ---+
+--- database

dist/B.file --- B.report ---+

where the A.report contains the info needed from the database to create A.file. When the
database updates, the A/B.report files can be generated to a temporary location, compared to the
original report files and if they are different, the new copies of the report files replace the original
copies.

69

So when the database entry for A is updated, the A.report file is replaced but B.report isn’t. So
A.file is regenerated while B.file isn’t.
So this kind of does what we want, but not really. Here’s why. The majority of the processing
time is spent generating the A.report and B.report files. So if I update system A, the make runs,
generating a new A.file and A.report. it leaves B.report alone since no data has been updated.
Now we do another make without any other changes, (which is automatically done by the DACS
system when you go to verify or update the corresponding label). The file B.report is older than
the database, so we regenerate the report and find once again that B.report doesn’t need to be
updated. We keep doing the needless work of regenerating the unchanged B.report information to
prevent performing the update of file B.
Other make systems (makepp (http://makepp.sourceforge.net/), cons
(http://www.dsmit.com/cons/)) don’t depend on timestamps to determine if B.file should be
regenerated. They record the checksums of the inputs for B.file (e.g. B.report, Makefile ...) and if
the inputs and the command line to create B.file are the same as the prior run, they don’t rebuild
B.file.
I tried to use makepp, but its lack of support for a pattern rule like:

report.%: database

where the prerequisite (on the right hand side of the ’:’) doesn’t use any part of the base (%)
made it unsuitable.
So a solution is provided in this diagram (the md5 mediated mode):

dist/A.file --- .sum/A.md5 --- A.report ---+
+--- database

dist/B.file --- .sum/B.md5 --- B.report ---+

We add one more dependency between the per host report/cache file and the target file. This
md5 file is generated automatically by the included Makefile.md5cache.include and placed in the
.sum directory. Now when the database changes, file A.report and B.report are rebuilt. However,
A.file is rebuilt only if A.md5 changes. The script that updates A.md5 calculates the md5
checksum of file A.report and compares it to the contents of the file A.md5. If they are the same,
it exits and doesn’t update A.md5 file. Since the A.md5 file’s date hasn’t changed, A.file isn’t
rebuilt. If the md5 sums are different it writes the new md5sum to the A.md5 file triggering a
rebuild of A.file. In this scheme a change to the database does cause one update of every report
file, but after that only the md5 update runs which is much faster and less resource intensive.

5.5.4 Performance of caching

The following example compares a direct dependency of the target files on the database to the
md5 mediated dependency. Note that A.file and B.file also depend on a template file that is
processed using the report files.
The following sequence is executed:

• the firewall configuration template is processed for every host (approx 90) to produce the
output file.

• The database cache files are used by filepp to process the template

70

http://makepp.sourceforge.net/
http://www.dsmit.com/cons/

operation direct dependency cache file md5 %
update database host A 1m47s 1m20s 1m17s 28
update template 1m45s 1m22s 29s 71
update with no changes 3s 1m28s 6s -100

Table 5.1: Performance improvment using md5 mediated caching mechanism compared to direct
mode.

We perform the following sequence of operations and record the wall clock time:
These were run with gnu make using 20 jobs in parallel (running serially the direct mode lasts for
7+ minutes).

• In ’update database host A’ a change was made to the IP address of one of the 90 hosts.
Then make was run.

• In ’update template’ the firewall configuration template was changed. Then make was run.

• In ’update with no change’ make was run and it has to run no commands.

The last column is the percent change between the direct dependency mode and the md5
mediated mode. All tests were run on the same set of hosts (approx 90). This is not meant to be
a precise scientific experiment, the numbers above represent the best of three runs. It is also a
real life example as the run was done on the box that is a master for DACS. So there is some
jitter in the numbers due to the changing load on the box.
This table demonstrates the report/cache file generation dominating the processing time. The
differences among the database update times is the first case is due to processing needed to
generate the per host firewall files from the report and template files. So this provides the 28%
time saving between the direct and md5 modes as only one firewall file had to be generated rather
then all 90.
When we change just the template file, the md5 mode doesn’t need to redo any reports, it just
verifies the md5 files and starts processing. This provides the huge 71% performance increase. In
the cache only case, we generate a report for every host except host A since the A.report file is
newer than the database thus suppressing the report file generation. For the cache only case 23
seconds was saved from not having to regenerate the target files from the report files.
When there are no changes, make never has to run anything in the direct dependency mode. It
looks at the timestamps and makes the determination. For the md5 mediated case we have 90
runs of the md5 comparison program which doubles the run time to 6 seconds for a whopping
-100% ’improvement’, but it’s only 3 seconds. In the cache mode we once again are running
multiple reports only to throw away the contents.

5.6 Using templates and other file processing tasks

Ok, so we know how to set up a Makefile to execute commands that can build files. Now why do
we want this?

• It reduces the number of files that require hand editing. For example, the hosts file for every
host has it’s own name and IP address in it. At one site I worked at we also included the

71

DNS server and LDAP server information. The dns servers and ldap servers were defined in
a separate file (the database) and the per host files were generated using this info. So to
change a DNS server, required editing one file and the build system generated the 100
individual hosts files.

• It also reduces the change of errors from fatigue while editing all the files.

• The files generated from templates show less variation than manually maintained files. This
makes developing programs to do changes to them, or audit them easier since there are
fewer error conditions to consider.

• It reuses information in the database rather than embedding it into a configuration file.
When the database is changed, the configuration file automatically gets the update.

Why should we not do this?

• It takes time to generate the files. If you only need three files, it may be faster to manually
maintain them. Although you increase the risk of having out of date information in those
files.

• The time spent implementing the file generation could be better used elsewhere.

However using the right tools and techniques within a framework can minimize both the build
and implementation time.

5.6.1 Using filepp

While make allows you to use any processor to generate files, DACS provides support for
generating files with filepp. Filepp is written in Perl and is meant as a generic file pre-processor
providing:

• macro expansion

• foreach loops

• conditionals

• and other processing (including set manipulation)

It is freely available from http://www.cabaret.demon.co.uk/filepp.
If you have ever programmed in C or C++ you have used the cpp macro processor. Filepp input
is similar to cpp, some of it’s directives are identical to cpp.
Note that the distribution helper macros (see DacsDistribution) used by DACS need filepp, so it
is likely that you will be exposed to it at least a little bit.
I cover the most common filepp directives you may see below. note that the directives in these
examples are introduces with a ’#’ sign. This is settable on the filepp command line, but ’#’ is
the default to agree with cpp. The directives shown below include the ’#’ in their descriptions.

72

http://www.cabaret.demon.co.uk/filepp

5.6.1.1 Macros

A macro is simple a piece of text that is defined and replaced by another piece of text. Macros
are case sensitive. The filepp directive #define is used to define a macro. For example:

#define MACRO REPLACEMENT
MACRO

will print REPLACEMENT anytime MACRO is seen in the file after the #define statement.
Filepp also supports other type of macros (e.g. macros that take arguments) and ways of
modifying macro values. I refer you to the filepp manual page for details.

5.6.1.2 Conditionals

Filepp also can select text to print using conditionals. The #ifdef, #else and #endif directives
are used in:

#ifdef MACRO
macro is set
#else
macro is not set
#endif

will print macro is set if MACRO is defined (even if it is defined to be the empty value), and
will print macro is not set otherwise.
In addition to testing to see if a macro is defined (or not defined using the #ifndef directive),
filepp allows any Perl comparison operator to be used. So you can use regular expressions:

#if MACRO !~ /REPLACEMENT/
...
#endif

which will print ... if MACRO expands to something that does not match the regular expression
REPLACEMENT. While

#if "MACRO" eq "REPLACEMENT"
...
#endif

will print ... only if MACRO expands to exactly the word REPLACEMENT.

5.6.1.3 Foreach loops

Using the foreach.pm module filepp obtains the #foreach directive and the #foreachdelim
directive. This allows you to loop over elements of a macro. The elements are split apart by the
value of the #foreachdelim (which by default is a comma, so in DACS it is usually set to one or
more spaces). So the example:

73

#foreachdelim /\s+/
#define arguments a b, c d

#foreach THING arguments
the current element is THING
#endforeach

you will get:

the current element is a
the current element is b,
the current element is c
the current element is d

Note that the comma is included with the b. This is because the #foreachdelim was set to one
or more white space characters, so the b and comma are part of the same white space delimited
element.

5.6.1.4 Include statements

The #include directive locates a file and includes its contents into the current file.

#include "test.fpp"

will find the file ”test.fpp” and insert its contents at the location of the include statement. The
list of directories to search for include files can be changed on the filepp command line using the
-I flag.

5.6.2 Basic directive/command examples

Let’s take a look at the distribution file firewalls/template.fpp. In that file you see a series of
filepp directives. Filepp directives/commands start with a # sign (although it can be changed if
needed). Any line that starts with a # and is followed by something that is not a filepp directive
is printed to standard output. If a non-directive line is inside a filepp directive like a conditional
or foreach loop, it is processed by that directive. Other non-directive lines have any defined
macros in the line replace and the result is printed to standard out.
This file is processed for each host using the database cache file for that host
(Config/.host cache files/[hostname]),
The file starts with:

#pragma filepp UseModule foreach.pm
#foreachdelim /\s+/

A pragma changes how filepp behaves. This pragma makes filepp load the file that defines the
foreach directive. Then one of the options for the foreach directive is set. This makes the foreach
directive split its argument on white space rather than on commas.
Then we load a file of definitions.

#include "filepp.classes"

74

The filepp.classes is generated by DACS from the database and defines the various classes of
machines like:

• FILEPP SSHD HOSTS - hosts running (the service) sshd

• FILEPP CENTOS 4.X HOSTS - hosts running some variant of the Centos 4 operating
system

See the section on class definitions in the DacsDatabase chapter for details.
After this we have a few safety checks implemented using filepp conditional and error directives.

#if "LOCALNET" !~ /^[0-9.]+\/[0-9.]+$/
#error LOCALNET not properly defined should be ip/netmask is ’LOCALNET’

#endif

The value for the LOCALNET macro (think of it like a variable) is the local network for the host
being processed. If that variable doesn’t match the regular expression of a series of digits and
periods followed by a slash and some numbers (e.g. is not in the CIDR form 192.0.2.0/24), the
#error filepp directive is executed and prints and error message and causes filepp to exit.
Further down in the file are the rules that determine if port 22 (the ssh port) should be made
accessible. This is done by the (nested) conditional:

ssh firewall rules
#if "SERVICES" =~ /\bSSHDEXT\b/
allow all ssh traffic
-A IN -p tcp -m tcp --dport 22 -m state --state NEW -j ACCEPT
#else
#if "SERVICES" =~ /\bSSHD\b/

allow internal ssh traffic only
#if "OS" =~ /FEDORA_2/

-A IN -s 192.168.0.0/255.255.0.0 -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT
#else

-A IN -s 192.168.0.0/255.255.0.0 -p tcp -m tcp --dport 22 -m state --state NEW -j ACCEPT
#endif

#endif
#endif

that emits the (iptables-save output) line:

-A IN -p tcp -m tcp --dport 22 -m state --state NEW -j ACCEPT

if the current definition of the SERVICES macro matches SSHDEXT standing alone as a word (so it
won’t match WSSHDEXT for example, \b matches a word boundary).
Otherwise it skips to the else part and if the word SSHD is found (again as a standalone word) in
the SERVICES macro it will emit one of two lines depending on whether the OS matches
FEDORA 2. If neither SSHD not SSHDEXT match, then nothing is printed from this nested
conditional clause.
An example of using the foreach loop is provided by:

75

#foreach SNMP_IP SNMP_COLLECTOR_IPS
-A IN -s SNMP_IP -p udp -m udp --dport 161 -j ACCEPT
#endforeach

assuming the macro SNMP_COLLECTOR_IPS is defined with:

#define SNMP_COLLECTOR_IPS 192.168.1.1 192.168.3.1 192.168.5.1

the foreach loop prints:

-A IN -s 192.168.1.1 -p udp -m udp --dport 161 -j ACCEPT
-A IN -s 192.168.3.1 -p udp -m udp --dport 161 -j ACCEPT
-A IN -s 192.168.5.1 -p udp -m udp --dport 161 -j ACCEPT

and allows specific hosts the ability to query the snmpd daemon.
The IP addresses for the SNMP COLLECTOR IPS are extracted from the database using
dbreport so adding a new service (e.g. nagios or cacti) to a host would automatically cause the
firewalls on systems to change to allow it access to their snmp daemons.

5.6.3 Performing set operations with host classes

Filepp doesn’t have any built in mechanism for dealing with sets (unlike the command used for
file distribution), but we can use conditionals, foreach loops and an extra filepp directive or two to
implement the standard 3 set operations:

• difference

• intersection

• union (straight addition)

and also unique union where each value in the set shows up just one.
All these examples assume that:

#pragma filepp UseModule foreach.pm
#pragma filepp UseModule predefine.pm
#pragma filepp UseModule predefplus.pm
#foreachdelim /\s+/

is prepended to each of the examples below. This is done by default using the rdist_macros.fpp
file in distfile.base for example. Note that these operations works only if there are no spaces
in the elements of the sets. However this is usually true in DACS as the set elements are
hostnames which don’t allow spaces
Note the spaces around the quoted macros in the if statements. They are needed to allow the
macros (HOST, FILEPP SET B) to be replaced if filepp is run without the -w flag (substitute
within words), it also means that you don’t have to use \b in the regexp to specify a word
delimiter as the space provides that functionality.
In these examples, the stuff in the inner loop are usually lines you want printed for each element
that results from the set operation. If you want to define a new set, (that will be used 2 or more
times in the file) an example using the predefplus directive is given in the ”Difference” section.

76

5.6.3.1 Difference (FILEPP SET A - FILEPP SET B)

To process text for each host in FILEPP SET A that is NOT in FILEPP SET B use:

#define FILEPP_SET_A bar baz bax bam
#define FILEPP_SET_B baz bam

#foreach HOST FILEPP_SET_A
#if " FILEPP_SET_B " !~ / HOST /

put stuff here that should occur for hosts/items in FILEPP_SET_A but
not in FILEPP_SET_B.
#endif

#endforeach

This sets HOST to each host in FILEPP SET A. Then if FILEPP SET B does not matches the
value of HOST, HOST is not in FILEPP SET B and we process and print the stuff between the
#if and #endif.
To create a new set that is the difference of the two sets, use:

#define FILEPP_SET_A bar baz bax bam
#define FILEPP_SET_B baz bam foo

#foreach HOST FILEPP_SET_A
#if " FILEPP_SET_B " !~ / HOST /

#predefplus DIFF_SETS_A_B HOST
#endif

#endforeach

DIFF_SETS_A_B

will print baz bam and leave the new set defined as DIFF SET A B for use later in the file.

5.6.3.2 Intersection (FILEPP SET A & FILEPP SET B)

To process text for each host in FILEPP SET A that is also in FILEPP SET B, we set it up like
difference but change the if test from does not match ! to does match ~=<nop>.

#define FILEPP_SET_A bar baz bax bam
#define FILEPP_SET_B baz bam

#foreach HOST FILEPP_SET_A
#if " FILEPP_SET_B " =~ / HOST /

put stuff here that should occur for hosts/items in FILEPP_SET_A that
are also in FILEPP_SET_B.
#endif

#endforeach

5.6.3.3 Union (FILEPP SET A + FILEPP SET B)

Unions are simple, just list the classes all on the foreach line

77

#define FILEPP_SET_A bar baz bax bam
#define FILEPP_SET_B baz bam

#foreach HOST FILEPP_SET_A FILEPP_SET_B
put stuff here that should occur for hosts/items in FILEPP_SET_A and
FILEPP_SET_B. Note that some things may be processed multiple times
for the same host if the host is in both sets.

#endforeach

however if a host is duplicated in both FILEPP SET A and FILEPP SET B, it will be processed
twice. To get around that a unique union must be used.

5.6.3.4 Unique Union (FILEPP SET A + FILEPP SET B) with duplicates removed

In some cases we have the same host in both sets (i.e. their intersection is not empty), but we
want to emit something for that host only once. To do this we need a couple of extra filepp
directives that were helpfully provided for me by the author, Darren Miller. From the email we
exchanged:

I’ve written a couple of new modules that replace macros when defined, so you can do
what you wanted. The modules are included with this e-mail, just copy them to your
modules directory.

To do what you wanted, use #predefplus and a Perl regular expression if statement:

#pragma filepp UseModule foreach.pm
#pragma filepp UseModule predefplus.pm
#foreachdelim /\s+/

#define FOO bar baz bax bam
#define BAR baz bam blah

#foreach HOST FOO BAR
#if "DEF" !~ /\bHOST\b/

HOST
#predefplus DEF HOST
#endif

#endforeach

The two new modules provide the following keywords:

#predefine macro defn
The #predefine macro works the same as the #define keyword
except any macros in defn are replaced at the time of the
definition, rather than waiting until the macro is used.

#predefplus macro defn
The #predefplus macro works the same as the #defplus keyword
except any macros in defn are replaced at the time of the
definition, rather than waiting until the macro is used.

78

Note that the pragma’s shown in the example are done automatically if you include
rdist macros.fpp, if you are doing a unique union operation in another context besides
distfile.base, you will need the pragmas, or use -m and -M to filepp to load the modules and
define the search path respectively.

79

Chapter 6

Distribution of files

Distribution is done using the script (capital R) Rdist which uses the rdist(1) (little r) command
over ssh to distribute files and run commands.
The rdist(1) command copies files preserving the:

• owner

• group

• mode

• and contents

of the master copy to a target copy residing on another machine. It uses a mechanism such as
ssh(1) to gain access to the remote machines.

6.1 What does the distribution system provide

The distribution mechanism in DACS supports:

• updating files on remote systems based on file contents or modification times.

• running commands remotely when a file changes

• backing up a user definable number of prior copies of a updated file. This makes it possible
to undo changes or compare prior and current files on a system without having to go
through DACS. This speeds problem diagnosis and resolution when investigating a problem
after an update.

– the files can be backed up to a different directory from the installation directory. This
is used when pushing files to a config directory (e.g. /etc/cron.d), where any file in the
directory is considered a command file. By moving the backup to a different directory
you prevent the prior copy of the file from being used.

• three types of distribution commands:

80

– pre commands - runs before a file is distributed. It can be used to set up the
environment to receive the distributed file, determines the state of dynamically
changeable services etc.

– installation commands - installs a file and runs commands (if needed).

– post commands - runs after an installation command is run to verify state changes,
perform cleanup, notify of pending manual actions etc.

• grouped post commands - if you have 5 files to distribute and changing any one of them
requires a restart a program. This allows you to only do one restart even if all 5 files are
updated (which normally would result in 5 restarts of the program).

• forcing a command to run every time it is invoked. By default commands are only run when
a file is updated.

• report the file destination (on the remote machine) in addition to the source file name.

• verification targets that run when Rdist is in verify mode and allows programs to run that
can verify state. Normal verification only reports file differences, this can perform arbitrary
commands to determine if things are in a sane state.

• reporting differences between two files (useful for verification targets that report what will
change before you distribute files)

• logging of file updates to systems

There are approximately 10 filepp macros that are used to provide some of this functionality and
hide the ugly details. Their use is documented (Config/docs/lib/config/rdist macros fpp.html)
and examples are provided in this documentation and the distribution example files.
DACS expects to use version 6 of the rdist command. There were some major advancements in
that release of rdist:

• rdist can distribute to multiple systems in parallel

• rdist can do set operations on space delimited lists of hosts

• rdist can run over ssh rather than rsh

All of these greatly increase the functionality or security of rdist. Version 6 of rdist (released in
1992) is the version of rdist that is distributed by most OS vendors. If your OS doesn’t support
it, the source code is available and it can be built and installed. It has support for using the
native rdist binary if it is invoked with the older style command line so it provides backward
compatibility.
To set up rdist access and allow Rdist to work, see ”Setting up ssh access from the master to
clients” section 9.2.

81

6.2 Running Rdist

The main command used under DACS is Rdist which is at the top of every checked out
configuration tree. An sample invocation is: sudo /config/Rdist label1 label2 where
the label1... arguments specify parts of the CCM tree to update and distribute.
Using labels reduces processing and distribution time as well as limiting the changes that will be
pushed. Since there can be multiple administrators working in the CCM tree at one time this
allows you to limit your distribution to the area you changed. Rdist uses the rules contained in
the file Distfile, that is located at the top of the DACS tree, to determine what files are
distributed and what commands are run on remote hosts.
The Rdist script does the following on every invocation:

• Locks the CCM tree from simultaneous updates.

• Updates the DACS mechanisms under the Config subdirectory (including itself) from the
VCS.

• Generates a Distfile from Config/distfile/distfile.base and the DACS database in
Config/database/db. This adds variables to the Distfile that contain hostnames meeting
some criteria. It also expands any DACS macros/syntax in distfile.base into standard
rdist(1) command stanzas.

• Runs a host verify step that verifies information in the database (host name, os type and
version, architecture ...) against the host. This makes sure that dns mappings are correct
and that the host that Rdist thinks it’s talking to is the host defined in the database.

• Determines the list of labels that are to be distributed. The label list is either given on the
command line or is determined by scanning for the the automatic labels (defined below) in
the Distfile.

• Determines the list of machines to be updated. These are either given on the command line
with the -m machine.name flag or excluded from the default list using
--exclude machine.name. The default list is generated from the DACS database by
looking for machines that have the rdist keyword set to ’yes’.

• Does an VCS update of the directory corresponding to the labels it’s processing to get new
files and modifications.

• Invokes the build mechanism for each directory corresponding to a label it is processing if
the directory has a Makefile in it.

• Invokes rdist(1) using the machine list and labels determined above to distribute the files.

If the host verify step fails for a host, that host (and only that host) is removed from the list of
hosts that will be updated. The distribution continues with any verified hosts. Host verification
can be disabled using the --nohostverify option to Rdist.
If any excluded host specified with --exclude is not found in the DACS database, the
distribution is stopped. However if a host specified with -m is not found the distribution continues
but without that host. The theory is that you specify --exclude to stop an undesired state

82

change. If the excluded host is not found and the distribution continues, the host that you didn’t
want to change would be changed. This is bad since it may be difficult to roll back the change
without rolling back the entire state of the repository. On the other hand if you mistyped a host
to the -m flag, no change is done to the host and it can be easily fixed (in most cases) by running
another Rdist with the proper host name.
If any of the VCS updates fail because:

• the VCS server is unavailable

• the update finds files that aren’t supposed to be present and aren’t marked as ignorable

• the update discovers any changed files in the tree (don’t forget the DACS distribution tree
should consist only of exact copies of files in the repository and files derived from them.
Otherwise you can’t roll back the configuration.)

the distribution is stopped. If you have directories such as dist or .sum (discussed below) that
contain artifacts from the build systems, you need to tell the VCS to ignore the files in these
directories. See ”VCS Interaction” section 5.5.1 in the DacsBuild chapter.
Also if any of the build/make operations exit with an error condition, the distribution is stopped.
These safety interlocks help prevent pushing incorrect, incomplete or invalid files to machines.
There are a few more optional things that are done, see the online Rdist documentation (obtained
by running perldoc on the Rdist script) for details, but this is sufficient for our discussion.
Rdist can operate in two modes: distribute and verify. In distribute mode the default labels are
the automatic labels. In verify mode, (invoked with Rdist -v) the default labels are the
automatic and verify labels (see below for information on the definition of these labels). In both
cases the labels are sorted alphabetically when used. So the commands associated with the etc
label will occur before the commands associated with the tomcat label.

6.2.1 Other Rdist options

For a full list of options to Rdist, use perldoc Rdist. The options that are used in this
documentation are listed below.

-v verify files only. Do not push any operational files.
-S c generate a condensed summary of rdist output
-S v generate a verbose summary of rdist output

Table 6.1: Common arguments to Rdist command

The condensed summary reports all hosts that receive a particular file. So it groups by
distributed file. E.G.

s5.example.com s7.example.com
/config/etc/hosts: need to update
/config/sshd/known_hosts: need to update

On the other hand, the verbose summary groups all the output for a host together.

83

s5.example.com: /config/etc/hosts: need to update
s5.example.com: /config/sshd/known_hosts: need to update

s7.example.com: /config/etc/hosts: need to update
s7.example.com: /config/sshd/known_hosts: need to update

They are useful to make sense of the Rdist output when multiple hosts are updated in parallel.

6.2.2 Host selection and verification

If no host is specified, each host in the database with the rdist keyword set to yes is selected as
a client. A host or hosts can be specified on the Rdist command line with the -m flag. The
argument to the -m option can be a single host name (as specified in the database using the
machine keyword) or a space separated list of hostnames again matching the machine keywords in
the database. The space separated form is useful for selecting a group of hosts meeting some
criteria (e.g. they all run NTP) from the database using dbreport -l.
If you don’t use the -m flag, you can exclude hosts from the default set using the --exclude
option. The argument to --exclude has the same formats as -m. At some point in the future you
should be able to specify both -m and --exclude and have the right thing(TM) happen.
If the HOST-VERIFY option is not disabled using --nohostverify then the host verify script is
executed on each client. If the script reports an error, the host is removed from the machine list.
Currently the script checks that:

• the host’s name (returned by hostname) matches the one in the database

• the host is running the same os release as is specified in the database

• the host has the same architecture as specified in the database. (If no architecture is
specified in the database, this check is skipped.)

This reduces the chance of pushing incorrect files to hosts.
The need for this arose when a Sun workstation was swapped for an Silicon Graphics workstation.
They had the same name and IP address, and the database entries weren’t updated. Needless to
say many new words and sounds were invented when the Silicon Graphics system was updated.

6.3 Target Overrides and Rdist fragments

This is here for historic documentation. At this time I don’t know of anybody who uses this, but
people transitioning from some private releases of Config may use it. If you do need/use this
please let me know and we can try to work out a better defined replacement. If you are just
getting started with DACS, skip this section totally as it scares me and I am sure it will will just
scare you. It has not been tested in a long while and may not work. I look forward to removing it.
When you specify a target to Rdist a number of things happen if an associated directory exists at
the root of the tree:

1. The directory is locked against other Rdist updates by creating a .locked directory with a
file locker containing the username@host and process id (pid) info. The lock directory is
recorded to allow deletion after Rdist exits.

84

2. The directory is updated from SVN.

3. If a Makefile exists in the directory, ”make .targets” is executed if run in distribution mode,
or ”make .targets-verify” in verify mode. Note that .targets-verify is a phony target and the
file should not be made. The verify target should be updated.

4. If a .targets file exists, the specified target is replaced by the contents of the .target file
with a $$ in the .target file replaced by the original target. This can be used with
pre/post targets to explicitly order a sequence of steps. Path targets can be used to map
the target into a deep directory structure. Also the file can be empty if you use a .push file
to specify an alternate distribution mechanism.

5. for each element of the target list (if a .target was found), it is updated from SVN if the
target exists in the file system.

6. if a Makefile exists in the directory, make is run with no arguments in distribution mode, or
a verify target in verify mode. Before running the verify target, the Makefile is scanned
for the verify target to prevent it from running is there is nothing to do. If make exits with
an error, the Rdist is stopped in distribute mode, but is ignored in verify mode.

7. if the .targets file was empty and a .push file exists, it is queued up for future execution.

8. if a file .rdist exists, it is appended to the master distfile. Note that targets defined in the
.rdist file will not be automatically found, so a .targets file must exists if a new target is
defined in that .rdist file.

6.4 Controlling Rdist: the Distfile

This section discusses Distfile structure and conventions including filepp macros used by DACS to
simplify the specification.

6.4.1 The anatomy of a Distfile entry

As mentioned above, the Distfile is used to drive the Rdist/rdist mechanism. A typical Distfile
entry stanza looks like:

label:
source/file(s)/or/directories -> (host(s))

install -ooptions target/file_or_directory_location/on/host;
cmdspecial "shell command run on remote system if something changes";

In DACS, filepp macros have been defined to make some of the features work more easily and we
will discuss those shortly, but let’s look at this example. Since Rdist always specifies labels to use
for distribution, each distfile stanza should start with a label. There are a number of different
label types which are discussed below, but all are on a line by themselves and end with a ’:’.
The next line in the stanza specifies the source file or files that are to be distributed. You can use
shell style glob specifications (e.g. * or {a.file,b.file}) to specify more than one file. If you
are installing a directory of files, you will want to use the except or except_pat commands to

85

prevent certain files (like the subversion of CVS control directories) from being pushed. See the
”Distfile.base Examples” section 6.4.5 below or rdist(1) manual page for details.
After the ’->’ token is a list of hosts. Usually in DACS it is not a literal list of hosts like
(a.example.com b.example.com) but an rdist variable that lists a class of hosts (hereafter called
a class or class variable) sharing some attribute. Some sample classes are:

NTPCLIENT SLAVES a list of hosts in the DACS database that have the line
uses=NTPCLIENT in their definition.

SSHD HOSTS a list of hosts running the ssh (secure shell) daemon that have
service=SSHD ... in their definition.

These classes are automatically generated by the Rdist command using dbreport and the DACS
database and are available for use.
After the source and host specification is the indented command install that installs the files
before the -> token at specified location. If there is only one file being installed, the destination
location can be a directory or a file. If multiple files are to be installed, the target must be a
directory. There are various options that can be specified that will:

• perform a binary file compare rather then just checking the modification time of the file

• create a backup of the original file before it’s overwritten

• ignore owner, mode or group differences

• for all the options see the rdist(1) man page.

The rdist command cmdspecial is optional. If it is present the shell command specified is
executed if the install command caused any file to be updated. If no files were updated the
cmdspecial doesn’t do anything. The shell command associated with the cmdspecial is run after
all the files are installed. There is a special command as well that is run once for each updated
file if you are installing multiple files.
If you look at a generated Distfile, you will see many of these commands used.
However you don’t modify the Distfile. You place your commands in the file
Config/distfile/distfile.base. Because it can be tedious setting up many of these commands DACS
provides macros like SAVEINSTALL that expands to multiple basic rdist commands to implement
specific functionality. The macros are described below, but first a discussion of the label types is
appropriate since that is how all the rdist stanzas start.

6.4.2 Distfile Label Types and Special Purpose Labels

As mentioned above, there are a few different label types. They are explained in detail in this
section. Note that some versions of DACS/Config documentation refer to these as targets. Labels
and targets are the same in the context of rdist. These label types are purely a DACS convention
and don’t exist as far as rdist(1) is concerned.
The rdist stanza types are defined by their labels. So if a stanza is labeled with an automatic
label, it is considered an automatic rdist stanza or rule. The 6 basic label types (you will only
care about the first 4 unless you are converting from Config) are:

86

automatic Specification Automatic labels start with a lower case letter and consist of letters
(upper/lower case), numbers and underscores.

Purpose these targets are used by default when Rdist is invoked without any explicit
labels. So they are automatically run if no labels are specified. They are also
sometimes referred to as normal labels.

Associated Directory the name of the automatic label is expected to be a top level
directory in the DACS tree. This directory will be updated from the VCS
automatically and it will be searched for a Makefile to trigger a build process.

Notes none

verify Specification Verify labels are automatic labels that end in -verify.

Purpose Verify labels are used in addition to automatic labels when Rdist -v (verify
mode) is run with no labels. The rdist(1) verify mode just compares the files in the
repository against the files on the host. It does not execute any commands and does
not change any files. In some cases this is insufficient to actually verify that things are
up to date.
For example a managed file may need local post processing to be activated/installed,
so you have to undo the post-processing to see if the proper rules are in place. Rdist
running in verify mode runs the ’-verify’ labels in distribution (not verify) mode using
rdist(1). This allows file updates and commands to execute. Hence it can push files
and call scripts. It can verify that an installed firewall rule set matches the spec file for
the firewall rules. It can also run monitoring programs although a tool like nagios
would be better suited for active monitoring.

Associated Directory The directory update operations use the name of the label without
the ’-verify’ suffix. So a ”firewall-verify” label would update/build the firewalls top
level directory. When the build occurs in verify mode, the makefile command ”make ...
verify” is used so you can build different things in a verify compared to a distribution
run.

Notes Verify labels should not make operational changes to the remote system. This is not
enforced but unexpected and bad things can happen if this rule is violated.

partial Specification Partial labels have a period ’.’ in their names.

Purpose Partial labels are meant to allow pushing a subset of the files under a directory.
E.G. you may have an ntp target, but you can also define a target (ntp.toplevel)
that pushes configuration files for only the top level ntp hosts. Or you can have a
target etc.sudoers that pushes only the sudoers file among all the files under the etc
directory.
It is expected that stanza’s labeled with a partial label are also duplicated with an
automatic label so that the files are automatically maintained.

Associated Directory The directory update operations use the name of the label
preceding the first period ’.’. So a ”etc.sudoers” label would update/build in the etc
top level directory.

Notes A partial target is an automatic target with a period and trailing text. So you can
not create a partial path label.

87

manual Specification Manual targets have -manual appended to them.

Purpose Manual targets are never automatically run and must be specified manually
(hence the name) on the Rdist command line in order to be pushed. These are useful
for one time changes (e.g. commands to run only on initial system setup) or other
temporary changes (e.g. pushing an alternate configuration that blocks Internet access)
that need to be imposed.
The files managed by a manual label may be but are not expected to be managed by
any other label

Associated Directory The directory update operations use the directory preceding the
-manual suffix. So ”postgres upgrade-manual” would update the postgres upgrade
directory.

Notes none

path Notes This is kind of useless in it’s current state unless you are using target overrides or
distfile fragments. Best you forget about it.

Specification Uses forward slashes ’/’ between components

Purpose path targets are used to bridge the gap between a deep directory structure and a
shallow target name space. By default target names are expected to map to directories
that will have various operations performed on them. Path targets are just regular
targets with ’/’ characters separating to components. Note they do not start with a /.
Verify and other types also apply to path targets, but they are not automatically
selected and must be explicitly specified.

Associated Directory: None. No build or VCS updates are done for these items.

distribute Notes Consider this deprecated. However if you are using it from Config let me
know and I will add support for it.

Specification Distribution targets have -dist appended to them.

Purpose Distribute targets are invoked only in distribution mode and not in verify mode.
Note that this mode is not yet implemented in DACS Rdist although it did work in
Config’s Rdist. I don’t think I ever got any reports of people using these, but a possible
use case would be with a firewalls update where the stanzas associated with the
’-verify’ label are the only useful operation and the verification provided by running
the automatic label in rdist’s verify mode is useless. So you could create a firewalls-dist
rule that runs only when distributing files and never when verifying to save time.

Associated Directory The directory update operations use the directory preceding the
-dist suffix.

There are also two additional types of labels that usually don’t require special specification. By
default rdist has an implicit execution order based on the order of the distribution stanzas in the
distfile. So for stanzas with the same label, their distfile specification order determines the
execution order. This mode is supported and should be used.
However DACS supports the ability to create the distfile from fragments located in the DACS
tree. It also supports the ability for one label to add other labels to the distribution list. This
supports a very distributed mechanism of update and delegation where multiple admins from

88

different groups are responsible for updating specific trees and the main control files are not
editable by all of them. This support may be removed in the future as I have decided I don’t like
the model or implementation. However I am documenting it here.
Each type below has two description paragraphs, the first paragraph describes the use case for the
implicit execution order.
You should skip the second and subsequent paragraphs for each type unless you are coming from
the Config system where it is used. The two additional label types are the pre and post labels
that are expected to run before (pre) and after (post) some other stanza.

pre a pre label is any one of the 4 standard label types that is run before another stanza. It can
set up conditions for the other stanza to work (e.g. by updating/pushing commands used by
a cmdspecial, or by creating a file needed by another stanza). Basically it is a helper to a
stanza that actually does something useful. It has no special markup and shares the same
label as it’s associated command. However it must occur before the associated command in
the distfile so that it runs prior to the associated command. See ”Configuring dynamically
reconfigurable services” section 7.10 in DacsExamples for an example of pre label use.
There is a second variant of this that is useful in very complex environment where the
Distfile is built in pieces and allows explicit execution order independent of the order of the
stanzas in the distfile. If you need this read on otherwise stop now (unless your health plan
has very good psychiatric services). If you use the target override methods and rdist
fragments it is possible to explicitly specify the execution order. You can’t use the implicit
order of the stanzas in the distfile as the rdist fragments are appended to the resulting
Distfile. In this case, the pre label is an automatic label followed with ’-pre’. Numbers may
be appended to the -pre suffix to permit multiple ordering levels independent of the order
in the distfile (e.g. -pre1, -pre2 etc.). No automatic directory update or builds occur with
a pre target. (Slight lie, the suffix isn’t stripped so a directory of mumble-pre would have to
exist to be updated, but this is probably not a useful function.)

post a post label is exactly like the pre label except that it occurs after it’s associated target. It
can verify correct update, send notification emails etc. They aren’t used much since most of
this can be done with special and cmdspecial directives in the associated stanza, but it may
be useful in some cases (e.g. such as managing network devices via proxy, or always running
a command even if no files were updated (which prevents the cmdspecial and special
command in an automatic label from running)).
Again this is a place you probably don’t want to be reading. But if you are among the sites
using rdist fragments or target/label overrides a post label is identified by the suffix -post
on the label name. As with pre targets, numbers may be appended to the -post suffix to
permit multiple ordering levels. No automatic directory update occurs with a post target.
(Slight lie, the suffix isn’t stripped so a directory of mumble-post would have to exist to be
updated.)

There are also two special labels that are used internally by the DACS mechanisms:

”HOST-VERIFY” is a special label that is run to verify basic facts about a host. If the remote
host fails to verify, Rdist removes the host from the list of hosts to update.

89

”POSTINSTALL-ACTIONS” is a special label that is at the end of the generated distfile so
it executes after all other targets. It is used to execute any final commands that need to be
done. It is primarily meant to trigger the restart of programs like httpd when any one of it’s
configuration files changes. The example ”Triggering one service restart for multiple files”
below describes it’s use.

6.4.3 Distfile Macros

The macros that ae used in Distfile creation are documented in the file
Config/lib/config/rdist_macros.fpp. This file is included in the default
distfile.base.example that is distributed. The macros will be explained in the ”Distfile
Examples” section as they are used, but I suggest you look at the documentation generated from
the source. This documentation is located in the distribution at
Config/docs/lib/config/rdist_macros_fpp.html. The key macros and their synopsis are:

RDIST SPECIAL FILTER use with special commands to filter it from the output
BACKUP manage some number of backup copies of pushed files
BACKUPTO backup copies of pushed files to a new directory
DATESTAMP a current datestamp
FORCERUN always run special commands
NOOP Allow a rule in distfile that will never be executed
IFPOSTACTION check to see if there are postinstall commands to run
POSTACTION register an action for execution after all updates occur
REPORTTARGET report the name of the updated file as it is known on the target

machine.
SAVEINSTALL Install a file saving some number of copies.
VERIFYFILE Diff an installed file against the one in the repository.

Table 6.2: Macros defined for use with Rdist in distfile.base

Note that the macro names are all uppercase to make them stand out from normal rdist
commands.

6.4.4 Distfile set operations

The version 6 rdist command includes the ability to perform set operations between two class
variables. Three operators are available:

Set Operation Operator
difference - in set A but not set B -
intersection - in both set A and B &
union - in set A or B +

Table 6.3: Set operations supported by rdist.

For example:

NON_CENTOS_HOSTS=${ALL_HOSTS} - ${CENTOS_HOSTS}

90

JUST_CENTOS_HOSTS=${ALL_HOSTS} & ${CENTOS_HOSTS}

JUST_SOLARIS_AND_CENTOS_HOSTS=${SOLARIS_HOSTS} + ${CENTOS_HOSTS}

The rdist command doesn’t support more than two variables. When more complex set
combinations are needed, intermediate variables have to be used:

ONLY_CENTOS_4_1237_HOSTS_1= ${CENTOS_4.1_HOSTS} + ${CENTOS_4.2_HOSTS}
ONLY_CENTOS_4_1237_HOSTS_2= ${CENTOS_4.3_HOSTS} + ${CENTOS_4.7_HOSTS}
ONLY_CENTOS_4_1237_HOSTS = ${ONLY_CENTOS_4_1237_HOSTS_1} + ${ONLY_CENTOS_4_1237_HOSTS_2}

or

ONLY_CENTOS_4_1237_HOSTS_1= ${CENTOS_4.1_HOSTS} + ${CENTOS_4.2_HOSTS}
ONLY_CENTOS_4_1237_HOSTS_2= ${ONLY_CENTOS_4_1237_HOSTS_1} + ${CENTOS_4.3_HOSTS}
ONLY_CENTOS_4_1237_HOSTS = ${ONLY_CENTOS_4_1237_HOSTS_2} + ${CENTOS_4.7_HOSTS}

will create a list of hosts running centos 4.1, 4.2, 4.3 and 4.7.

6.4.5 Distfile.base Examples

In DACS you don’t edit the Distfile directly. The Distfile is generated from distfile.base and the
DACS database by make with the assistance of filepp and dbreport. This section displays some
examples from distfile.base using the macros and other filepp magic that makes specifying the
distfile rules easier.
In all these examples you will see that the source file always begin with $C. The variable C is
defined by the Rdist command when it calls rdist and always points to the top of the current
configuration tree. This allows you to have multiple configuration trees checked out without
having to modify the distfile rules.
So invoking sudo /config/Rdist ... will set $C to /config. while invoking
sudo /config.test/Rdist ... will set $C to /config.test.
See distfile.base.examples (and distfile.base.config.examples) distributed with DACS
for more examples. These examples are intended to give you a feel for what can be done and
cover the usual cases.

Note: the command lines in the examples below may be too long to display. So they
are wrapped using a \ at the end of the prior line. In distfile.base these continued lines
must all be on a single line and the \ indicating the configuration must be removed.

6.4.5.1 Establishing a standard time on all systems

How many times have you had to look at date-stamped log files and realized that the date-stamps
are from different timezones. To make all your timezones consistent you can push the same
timezone file to all your hosts. This rule does just that pushing etc/localtime/UTC.linux as
/etc/localtime.

the localtime file can not be a link into /usr/share/zoneinfo because
timezone is needed when system is booting before the /usr partition
is mounted.

91

etc:
$C/etc/localtime/UTC.linux -> ${TZUTC_SLAVES} & ${LINUX_HOSTS}

SAVEINSTALL(/etc/localtime,2);

It performs an intersection of the host classes that use TZUTC (i.e. have uses=... TZUTC ... in
their database definition) and hosts that run LINUX. So if you have a Solaris host or a BSD host
running with TZUTC they aren’t updated by this rule.
Now there is on wrinkle to this. You might think that the LINUX HOSTS have os=LINUX.
Although this is logical, it’s also wrong in this case. If you run multiple Linux distributions:
SuSE, Centos, Debian, Fedora Core, ... you want to specify each distribution as the OS since at
an administrative level they behave as different operating systems. You could add a LINUX uses
value, but when you bring up a new host, the fewer settings you need the better. So the way
LINUX HOSTS is defined is below:

LINUX_HOSTS=${FEDORA_HOSTS} + ${CENTOS_HOSTS}

That is it’s the union (indicated by the + sign for rdist) of the two automatically generated
specific OS classes. Let’s say that we also ran system with the Debian release. To generate a list
of all Linux hosts in this case you would need to use:

LINUX_HOSTS1=${FEDORA_HOSTS} + ${CENTOS_HOSTS}
LINUX_HOSTS=${LINUX_HOSTS1} + ${DEBIAN_HOSTS}

you can only connect two variables with the + (union), & (intersection) or - (difference)
operators. So you need to create numbered variables to hold the intermediate results. Sadly this:

LINUX_HOSTS=${FEDORA_HOSTS} + ${CENTOS_HOSTS} + ${DEBIAN_HOSTS}

will result in an error from rdist.
We also see the new macro SAVEINSTALL. It takes three arguments:

1. the destination location for the file(s) on the host

2. the number of backups copies of prior versions of the file(s) to keep

3. any options to pass to the install command (e.g. compare). The third parameter is optional
and is missing in this example.

6.4.5.2 Pushing unique /etc/hosts files for each host

This example expects the build system to create unique hosts files for each system under
etc/hosts/dist/<hostname> where =¡hostname=¿ is replaced with the machine name specified
in the database.
This stanza pushes the hosts files generated from the build system to all the client hosts running
FEDORA core or CENTOS that are not listed in the (manually maintained) OLD HOSTS rdist
variable (see Supporting Legacy hosts... section 6.5 for why you shouldn’t do this).
It uses filepp directives to duplicate a template once for each host. (See Using Filepp section 5.6.1
for information on using filepp and it’s directives.)

92

#foreach HOST FILEPP_CENTOS_HOSTS FILEPP_FEDORA_HOSTS
etc:
$C/etc/hosts/dist/HOST -> (HOST) - ${OLD_HOSTS}

install -osavetargets,compare /etc/hosts ;
BACKUP(10);

#endforeach

The macros FILEPP CENTOS HOSTS and FILEPP FEDORA HOSTS are automatically
generated by DACS from the os keyword values in the database.
The filepp foreach loop emits a list of stanzas that look like:

etc:
$C/etc/hosts/dist/a.example.com -> (a.example.com) - ${OLD_HOSTS}

install -osavetargets,compare /etc/hosts ;
BACKUP(10);

and so on for b.example.com, c.example.com and the rest of the hosts in the
FILEPP CENTOS HOST and FILEPP FEDORA HOSTS macros. So each host specific
generated hosts file is pushed to it’s corresponding host. The old copy is saved (-osavetargets) and
the install command uses a binary comparison to make sure the file is identical and to prevent
pushing a file when only the datestamp of the generated file changes.
Since the source file changes for each host, we have to use filepp to generate the list of stanza.
Well we don’t HAVE to use filepp. We could write them all manually, but I hope you will agree
that using filepp is easier and less prone to error.
The BACKUP(10) macro saves the 10 prior installed versions of /etc/hosts (except for the most
recent) on the client named: /etc/hosts.SAVED which is the most recent saved file and prior
versions /etc/hosts.SAVED.~N~ where there will be 10 files with .~N~ suffixes and the N is the
N’th version of the replaced file. E.G. if you have the files: /etc/hosts.SAVED.~14~ ...
/etc/hosts.SAVED.~23~ you know that the current /etc/hosts is the 25th version to have been
pushed (as /etc/hosts.SAVED.~23~ was the 23rd version, /etc/hosts.SAVED is the 24th version
and /etc/hosts is the 25th version). You won’t see /etc/hosts.SAVED.~13~ because only 10 prior
~N~ files are preserved. There was at one point a /etc/hosts.SAVED.~1~ file, but it has expired.
This could also be written as:

#foreach HOST FILEPP_CENTOS_HOSTS FILEPP_FEDORA_HOSTS
etc:
$C/etc/hosts/dist/HOST -> (HOST) - ${OLD_HOSTS}

SAVEINSTALL(/etc/hosts, 10 , compare);
#endforeach

and would have exactly the same effect (in fact both versions expand to the same result).
On the other hand if you have a single hosts file that is valid for every Linux host in your
organization you can use the simpler:

etc:
$C/etc/hosts/combined_hosts_file -> ${LINUX_HOSTS} - ${OLD_HOSTS}

install -osavetargets,compare /etc/hosts ;
BACKUP(10);

Where LINUX HOSTS is defined as above.

93

6.4.5.3 Pushing a daily cron job to backup mysql

The following stanzas install a cron job that backs up a mysql database daily. It is installed on all
hosts running mysql as listed in the rdist class variable MYSQL_HOSTS. It also shows the use of a
verify stanza/label.

Backup mysql databases on all hosts running mysql.
cron:
$C/cron/cron.d/mysql_dump -> ${MYSQL_HOSTS}

SAVEINSTALL(/etc/cron.d/mysql_dump, 2, compare) ;
cmdspecial "if ! test -e /var/bak/mysql.all_databases.dump; \

then touch /var/bak/mysql.all_databases.dump; fi \
RDIST_SPECIAL_FILTER";

BACKUPTO(/etc/cron.d.backup, 5);

cron-verify:
$C/cron/cron.d/mysql_dump -> ${ALL_HOSTS} - ${MYSQL_HOSTS}

FORCERUN;
cmdspecial "if [-r /etc/cron.d/mysql_dump]; then echo \
\"ERROR: /etc/cron.d/mysql_dump exists on a machine that is \
not a MYSQL server. Please remove.\"; fi \
RDIST_SPECIAL_FILTER";

When you run Rdist cron it will:

• push the file cron/cron.d/mysql dump to

• all hosts in the MYSQL HOSTS class (a host with service ... MYSQL ...= in it’s
definition)

• install the file (if the target is different) as /etc/cron.d/mysql dump and create a backup

• it will compare the file and not just use the date of the file

• if the file is updated, it will make sure the directory used by the cron job exists and creates
it if it does not exist. The command will not be displayed to the user by default.

• the backup file will be moved to the /etc/cron.d.backup and 5 copies of the file will be kept.

If you choose the label cron-verify (or run sudo /.../Rdist -v which will include the -verify
labels automatically) it will:

• for the set of hosts in ALL HOSTS that are not in MYSQL HOSTS (i.e. it does a difference
of the two sets).

• push the file cron/cron.d/mysql dump to some random location. This will always succeed in
updating the file which will trigger:

• a command that verifies that there is no /etc/cron.d/mysql_dump file on the machine.

• It will complain if the /etc/cron.d/mysql_dump file is found since mysql isn’t supposed to
be running on that host.

94

Now you may ask how did the mysql_dump file get there in the first place? Well the host may have
run mysql at a prior point and it was disabled and the mysql dump file was never cleaned up.
Before we discuss the new macros, note the use of \" to embed double quotes inside the
cmdspecial. If the double quotes are not escaped using the backslash ’\’ they terminate the
cmdspecial (or special) command and will cause a syntax error.
The RDIST SPECIAL FILTER macro takes no arguments and sits at the end of any special or
cmdspecial command inside the quotes. Note that there is no ’;’ between the shell command and
the macro. All it does is supply a unique string that will be filtered out by Rdist when run unless
you specify a high verbosity level. This simplifies the output making it more readable.
You can do this to remove housekeeping commands from the Rdist report. Note that you probably
don’t want to do this for commands that are needed to restart/reload services for two reasons:

• errors from those commands can be confusing if the command is not shown

• if the operator needs to perform the same operation by hand, it is easy to see what
commands should be run to update/reload the service.

Housekeeping commands are part of the structure needed to allow rdist to manipulate the service
configuration as opposed to the commands that actually change the service configuration. So:

• don’t filter ”/etc/init.d/httpd graceful”

• do filter ”cp /etc/http/conf.d/proxy1.cfg /etc/http/conf.d/proxy1.cfg.bak”

The BACKUPTO macro moves the backups done by SAVEINSTALL (or the basic rdist
command install -osavetarget) to a different location. It takes two arguments:

1. the directory the backup file should be moved to. If the directory doesn’t exist it is created
mode 700 owned by root.

2. the number of backups to keep.

When using both BACKUPTO and SAVEINSTALL, the number of retained backups is
determined by the BACKUPTO macro.
Why are we using the BACKUPTO macro? Well cron loads all the files in the directory
/etc/cron.d. If we left the backup file in the same directory, which is the default and is
reasonable in most cases, the backup file would get loaded as well. So we use BACKUPTO to
remove the backup and place it in a different directory hiding it from cron.
The last new macro is FORCERUN. All this does is make sure that a file is updated and it
triggers any cmdspecial or special commands. It has no other function other than to force the
running of special or cmdspecial commands.

6.4.5.4 Excluding files in a directory from being pushed

In this example I am pushing all the files in the directory config/dist but I don’t want the
administrative files pushed to the clients. So I exclude the directories: .svn, .locked and the files
Makefile and empty from the list of distributed files.

95

install files needed to support DACS
config:
$C/config/dist -> ${ALL_HOSTS}

install /etc/config/. ;
except_pat (\\.svn) ;
except_pat (Makefile) ;
except_pat (empty) ;
except_pat (\\.locked) ;
REPORTTARGET;

The except pat command takes a regular expression. The double back slashes before the period in
the .svn and .locked entries make the period match only a period and not any character.
Because backslash ’\’ is an escape character is must be doubled when used to represent itself.

6.4.5.5 Duplicating stanza’s with automatic and partial labels

One of the drawbacks of partial labels is that you need to duplicate the same rule with an
automatic label. However since filepp is used to generate the Distfile from distfile.base you can
use this construct:

#foreach LABEL users users.sudo
LABEL:
$C/etc/sudoers/sudoers.site -> ${LINUX_HOSTS}

SAVEINSTALL(/etc/sudoers, 3, nochkmode);
special "chmod 440 /etc/sudoers";

LABEL:
$C/etc/sudoers/sudoers.site -> ${SOLARIS_HOSTS}

SAVEINSTALL(/etc/sudoers, 3, nochkmode);
special "chmod 440 /etc/sudoers";

#endforeach

which will generate two copies of these stanzas. One copy with LABEL replaced by the automatic
label users and one copy with LABEL replaced by the partial label users.sudo.

6.4.5.6 Triggering one service restart for multiple files

Each stanza in rdist can push a file or files to a known location and you can run a command if the
file(s) is updated. But what do you do for services like httpd/Apache that have multiple control
files in different locations and has to be restarted if any of them change?
One way of doing it is:

httpd:
$C/httpd/httpd.conf -> ${APACHE_HOSTS}

SAVEINSTALL(/etc/httpd/conf/httpd.conf, 3);
cmdspecial "/etc/init.d/httpd restart";

httpd:
$C/httpd/conf.d/*.conf -> ${APACHE_HOSTS}

SAVEINSTALL(/etc/httpd/conf.d/., 3);
cmdspecial "/etc/init.d/httpd restart";

96

any changes pushed by either stanza causes httpd to restart. This works but is not optimal.
What we really would like is to have httpd restart just once if either or both stanza’s pushed files.
DACS does this using a couple of macros along with the POSTINSTALL-ACTIONS label.

httpd:
$C/httpd/httpd.conf -> ${APACHE_HOSTS}

SAVEINSTALL(/etc/httpd/conf/httpd.conf, 3);
POSTACTION(httpd_restart);

httpd:
$C/httpd/conf.d/*.conf -> ${APACHE_HOSTS}

SAVEINSTALL(/etc/httpd/conf.d/., 3);
POSTACTION(httpd_restart);

and at the end of distfile.base

POSTINSTALL-ACTIONS:
$C/.empty_file -> ${APACHE_HOSTS}

FORCERUN ;
cmdspecial "IFPOSTACTION(httpd_restart); /etc/init.d/httpd restart";

The POSTACTION macro registers a named postaction (httpd_restart in this case) on the
client machine if a file update occurred. Then when the POSTINSTALL-ACTIONS stanza runs
(the POSTINSTALL-ACTIONS label is automatically appended to the list of labels by the Rdist
command) it uses the IFPOSTACTION command inside a cmdspecial to allow execution of the
following commands if the host has the httpd_restart action registered.
Note that the IFPOSTACTION macro is a little different from the other macros in that is occurs
inside of an rdist cmdspecial command rather than replacing an rdist command like the
SAVEINSTALL or POSTACTION commands do.
This could be implemented using a post label named httpd (see above for label types
section 6.4.2). POSTINSTALL-ACTIONS however transcend labels as the label you use to make
the change is not the same label that implements the action. For example let’s extend this
scenario to include another label called software that updates the Apache binary file and shared
objects. Using POSTINSTALL-ACTIONS you can run sudo /config/Rdist httpd software
and still only have a single restart of the Apache process regardless of having a changing binary,
shared object or configuration file.

6.4.5.7 Diffing remote files without update

To use Rdist as a mechanism to diff files before replacement, use a stanza with the VERIFYFILE
macro. E.G.

etc-manual:
$C/etc/services/services -> ${ALL_HOSTS}

VERIFYFILE(/etc/services);

Now run Rdist using: Rdist -M 1 etc-manual, it will perform a diff -u (unified diff output)
between the argument to VERIFYFILE (/etc/services) and the file in the repository
($C/etc/services/services). The -M 1 is used to stop rdist from running multiple hosts in parallel
which results in interlaced output from the diff command that is difficult to read. The diff
occurs on the remote machine, so it won’t work if the host doesn’t have diff installed.

97

6.5 Supporting Legacy hosts that have part of their
configuration unmanaged

You might be tempted to use a macro in the distfile that is subtracted from the list of hosts that
should receive the file. For example:

LEGACY_FIREWALLS = (
fred.example.com
bar.example.com
baz.example.com
)
...
firewalls:
$C/firewalls/minimal -> ${LINUX_HOSTS} - ${LEGACY_FIREWALLS}

SAVEINSTALL....;

This way new hosts will automatically receive the service/file when the host is added to the
database, but older hosts will be excluded or opt out from the firewall.
This works, but is less than optimal for reason we will discuss below. However if you are going to
manually maintain class lists like this make sure to use an opt out list and do not use an opt in
list in the distfile. Use of an opt in list means that newly deployed systems have to get configured
in two places: the database and the macro in distfile.conf and it is very easy to forget to opt in a
new host. A distfile entry for for an opt in list (that you should never use) looks like:

LEGACY_FIREWALLS = (
fred.example.com
bar.example.com
baz.example.com
)
...
firewalls:
$C/firewalls/minimal -> ${LEGACY_FIREWALLS}

SAVEINSTALL....;

If you are going to manually maintain class lists, the opt out list is the safer way to manage this.

6.5.1 Why you shouldn’t do this

Using a manually maintained list of hosts breaks a basic tenet of DACS:

• all config info is defined in one place, the database.

You can’t generate a report on the database and determine that a particular host is being treated
as a legacy host if the info about the ”legacyness” of the host is located only in the distfile.
However defining a macro in the distfile is a useful short term measure if everybody knows about
it, but you should never add more hosts to it. Only subtract hosts making it ultimately go away
(or replace it with a uses/service keyword in the database).
A better way to “unmanage” a host is to define a new uses value: LEGACY_FIREWALL and apply it
to the hosts you would add to the opt out list. This way you can discover all the hosts holding
onto legacy firewall configurations using: dbreport -l -s "uses:/LEGACY_FIREWALL/". This
does change the rdist rule slightly as you have to use the proper rdist class name:

98

firewalls:
$C/firewalls/minimal -> ${LINUX_HOSTS} - ${LEGACY_FIREWALL_SLAVES}

SAVEINSTALL....;

but it is safer and better able to be audited.

6.6 Troubleshooting distribution errors

Occasionally you may end up seeing errors during distribution.

6.6.1 Rdist/distfile errors

If you get errors like (wrapped for display):

localhost: LOCAL ERROR: Error in distfile: line 903:
/config/httpd/conf.d/host1.example.com/: No such file or directory

localhost: LOCAL ERROR: Error in distfile: line 905: Bad distfile
options "savetargets".

localhost: LOCAL ERROR: Error in distfile: line 911: Bad distfile
options "savetargets".

localhost: LOCAL ERROR: Error in distfile: line 915:
/config/httpd/conf.d/host2.example.com/: No such file or directory

localhost: LOCAL ERROR: Error in distfile: line 917: Bad distfile
options "savetargets".

localhost: LOCAL ERROR: Error in distfile: line 923: Bad distfile
options "savetargets".

generally the first error generated is the real error. The others are bogus errors caused by the first
one. Note that the line number presented is (903) is in the generated Distfile, and not in
distfile.base. So you need to go to line 903 in Distfile, determine what the rdist stanza is, and fix
the corresponding stanza in distfile.base. (As a future enhancement, filepp defines the macro LINE
that is the current input line number. Using this macro provides a way to tie output line numbers
to input line numbers and may make locating the entry in distile.base easier.)
To generate the errors again, you can go to any fully checked out copy of the DACS CCM tree
change to Config/distfile/ and run: make check 2>&1 |head -25 to get the first few errors.
You can run this in any working copy of the full DACS repository (note that this may not work
on a partially checked out working tree as some files that the distfile wants to push will be
missing and thus cause errors of it’s own). See the auto-generated Makefile documentation for the
entry on check, or check-config.
See the automatically generated documents to find out about other makefile targets such as audit
in config/Config/Makefile or the various check targets in: docs/distfile/Makefile.html for
additional features that provide information and verifcation before checking in changes to
distfile.base. These are also discussed below in ”Distribution Reports” section 6.7.

6.6.1.1 Errors with ’label not defined in the distfile’

Two things to check:

1. the label you specify is in the distfile

99

• grep for ’̂label:’ in the distfile to make sure there aren’t weird non-printable characters
in the label.

2. a label is defined only if it’s applied to a host, so make sure that at least one host in the
stanza is valid. It is not an error for the list of hosts to evaluate to the null set, and that
label will be removed from the parsed result.

6.6.1.2 Other ’unexplainable’ errors

For general troubleshooting, strip all entries (but not variable definitions) out of the file except
the ones causing the trouble. See if that makes the problem go away. If it does, see if this test
case is easier to analyze. If it’s not showing a problem, try adding in the rules before the
troublesome ones. Changing the order of the stanzas may ”fix” the error.
I agree this is an unsatisfying and worrisome condition, but on some operating systems there
appear to be rdist issues associated with the ordering of stanza’s. A distfile that works fine on one
OS version, may have an issue on another OS or version. I assume the problem is in the libraries
that rdist uses, however I can’t rule out some odd bug in rdist that manifests itself only under
certain circumstances.

6.7 Distribution Reports

These reports provide information on how the distribution system functions. They should not be
confused with reports from the database like wiring or asset reports that are discussed in
Standard database reports: wiring, ... section 3.6 in the DACS database chapter.

6.7.1 Host-target report

This report identifies distfile.base rules that use host names rather the rdist classes/variables.
This identifies places in the distfile.base that have to be changed when services move because
simply making database changes won’t change the rule’s operation.
The host-targets report is performed by changing the the Config/distfile directory and running
make host-targets. It reports the rdist stanza’s containing host names. As an example:

etc:
$C/etc/sysconfig/nfs -> ${LINUX_NFSSERV_HOSTS} - (store.example.com)

SAVEINSTALL(/etc/sysconfig/nfs, 2);
cmdspecial "echo ’WARNING: some portions of the NFS subsystem
must be stopped/restarted to get the effects of the changes to
/etc/sysconfig/nfs. You must do this MANUALLY.’ RDIST_SPECIAL_FILTER";

This stanza is produced because of the presence of store.example.com in the stanza. (Note: the
cmdspecial is all on one line in distfile.base. It is split here for readability.)

6.7.2 Files-report report

This report provides a map between files in the DACS configuration tree and the target location.
The report consists of lines like:

100

a.example.com: /etc/log.d/conf/logwatch.conf <- /config/etc/logwatch/logwatch.conf/logwatch.conf
a.example.com: /etc/log.d/conf/logfiles/. <- /config/etc/logwatch/conf/logfiles/yum.conf/yum.conf
a.example.com: /etc/man.config <- /config/etc/man.config/man.config.through_centos4
a.example.com: /etc/nscd.conf <- /config/etc/nscd/nscd.conf
a.example.com: /etc/hosts <- /config/etc/hosts/dist/a.example.com
...

The format is:
host: file path on host <- source file in the DACS CCM tree
which can be used to:

• locate the source of a file if you know the location of the file on the target system

• identify files on the target system that are DACS managed (to exclude from a tripwire or
AIDE scan for example)

• identify where the source files are distributed to (to verify distfile rules for example)

Files-report is performed by changing to the Config/distfile directory and running
make files-report.
When pushing files to a directory, the target on the left of the <- is the directory and not the
actual file name. So searching for /etc/log.d/conf/logfiles/yum.conf won’t work, but
grepping for the regular expression: /etc/log.d/conf/logfiles.*<-.*yum.conf$ should match.
(Patches to fix this are welcome.)

6.7.3 Files audit report

This report lets you identify files in the DACS CCM tree that are not used or that are missing.
This report is of more use when file generation isn’t heavily used and most of the files are
manually maintained. But it has a limited value when used with file generation if a convention is
established for naming the generated files (e.g. in a dist/ subdirectory).
It generates a three column list comparing the two file lists: one from the distfile and one from
the svn command. If a file exists only in the distfile, it is in the far left column and is prefixed
with a ”d”. If it exists only in the source code repository, it starts in the middle column and is
prefixed with an ”s” for source. If it is matched in both lists, it starts in the third column and is
prefixed with a ”b” for both. Sample output looks like:

s nsswitch/
b nsswitch/nsswitch.conf.ldap
b nsswitch/nsswitch.conf.noldap
s ntp/
b ntp/clients.conf
d ntp/dist/ntp_root1.conf
d ntp/dist/ntp_root2.conf
d ntp/dist/ntp_root3.conf
s ntp/hosts/
b ntp/hosts/a.example.com.ntp.conf
b ntp/hosts/b.example.com.ntp.conf
s ntp/ntp_root.conf

101

Which shows the directory nsswitch present in the VCS list, but not being pushed by the distfile.
This is expected and can be filtered by the user. Also the generated files: ntp/dist/ntp root?.conf
are present in the distfile, but not in the VCS. This is also expected as no files under the ’dist’
directories should be checked into subversion as they are generated from source files that are
version controlled. Files like ntp/clients.conf shows up as being in both VCS and the distfile.
These are usually manually maintained files.

102

Chapter 7

Examples

These examples provide more detail on setting up some simple and more complex configurations
in DACS.
They combine and expand on examples from the DacsDatabase, DacsVcs, DacsBuild and
DacsDistribution sections. The examples shown here progress from simple to more difficult.
Don’t worry if you don’t understand some of the more complex examples. Depending on your
environment you may not need to use them. However if you work requires high levels of
automation and standard policies (e.g. for regulatory compliance) you can automate it using
DACS. This section also includes an ambitious use case and some caveats about using extensive
automation in ”Renumbering a network and a caution about automation”.
In the examples dealing with file deployment you will see echoes of the basic 8 steps:

1. Identify what files to manage

2. Decide where to locate them in DACS

3. Decide how to create/manage the content of the files

4. Decide were the files should be distributed

5. Find out if the new files work

6. Commit the changes

7. Test the distribution

8. Deploy to all hosts

In many cases describing the steps is much more time consuming than actually performing them.
Initially it will be somewhat time consuming but as you gain experience with DACS, a number of
these steps barely take any time at all because you are able to follow prior practice to eliminate
some of the steps above.
The detailed version of this list can be daunting, but you have to remember that you are
eliminating the need to manually maintain hundreds of files/entries on each host and establishing
a documented, reproducible mechanism for maintaining and identifying common elements among
these systems.
The detailed list:

103

1. Identify the files you want to maintain on the client hosts. The biggest bang for the buck are
files that are changed on almost every host, especially if changes to those files are frequent,
or if bad changes to those files has caused downtime, loss of revenue or unneeded expense.
These may be ntp configurations, hosts files, resolv.conf, public key certificate files, ssh
configurations that are common across a bunch of hosts. They may also be files that are
unique (currently) but that need to be valid in order to properly supply services. E.G.
Apache configuration files for the main web site.

2. Figure out where these files will live in the DACS CCM tree. Fortunately with subversion
this is easier to change should the initial decision be incorrect, but it is worth a little time to
consider: where would other people using DACS expect it to be located. What makes sense
for a DACS user.

(a) Optionally you may want to check the vendor supplied original copy of the file into a
vendor branch to have a reference when a newer copy of the file is released by the
vendor.

3. How are the files to be maintained, and how many files will there be? Often you don’t have
just one configuration of a file, you may have two, three or more than one hundred. You can
maintain these copies manually, or generate them from a master copy. Once you have more
than 5 or 10 configurations, it usually makes more sense to maintain them automatically by
generating them from a template, especially if the file changes often or is highly complex.
The generation process can simply the file so that the manually maintained file is simpler
and removes options from the admin to maintain standards.

(a) If you are going to manually maintain the files, create and the check in the master
copy/copies of the file(s) It is a good idea at this point to try to reconcile the files so
that they are as identical as possible in structure. This reduces the amount of
documentation and training needed for people who will change the file and reduces the
effort required to troubleshoot issues caused by changes.

(b) If you are going to generate the files, there are more options available. First set up the
directory structure with a dist subdirectory for the generated (and distributed) files.
Then create the manually maintained input files and the build machinery.

4. Decide where the files should be distributed (what hosts should receive the file and what file
location e.g. /etc/hosts, /etc/inet/host) and set up the rules to distribute the files from the
CCM tree to the hosts.

(a) Identify the hosts that need a particular file

i. does a class with these hosts in it already exist?
ii. can you use a set operation among existing classes to identify the hosts?
iii. do you need to define a new service, cluster or uses attribute to define a new class

of hosts that fulfills number 1 or 2?

(b) Set up an automatic labeled stanza that pushes the file(s) to the hosts using class
variables.

(c) Does each host need a unique file?

104

i. If so wrap the stanza in a filepp foreach clause to generate rules for each host to
install that host specific file.

5. Test the new files

(a) If the files are generated or you need to change permissions, run a make to build
files/set permissions and manually inspect them to see if they are correct.

(b) Use the Makefile target files-report in the distfile directory to generate the
distribution list. This list shows the map from files in the DACS tree to files on the
managed hosts. Verify that the files you added are properly listed.

(c) Manually copy (generated or manually maintained) files from the DACS tree to client
systems and deploy them to verify proper operation.

6. Commit the changes to DACS

(a) Add all newly created files and directories to subversion svn add

(b) Assign permissions to files using svn propset with the svn:owner, svn:group and
svn:unix-mode properties if the defaults of root, root and 755 (for executables) or 644
(for other files) are not suitable. Run make to verify that the proper permissions are
set.

(c) Set up ignore lists for work directories like .sum and dist using svn propset on the
svn:ignore property

(d) Audit files using svn status making sure no files that you need have an unknown
status (?), are in a conflicted state (C) etc.

(e) Check-in the changes with comments using svn ci [list of files].

7. Test the distribution

(a) Run Rdist -v [label] and verify that you see the expected files being pushed.

(b) Run Rdist -m host label and verify that the file is installed, activated, and operates
properly on a test host. You may want to run this a few times for different hosts or
classes of hosts so you can test multiple configurations. This is an automatic version of
the steps you performed in item 5.

8. Run Rdist label to push the files to all hosts.

One case below discusses the addition of files to a vendor branch. This is useful, but in practice is
a pain without automated tools that help with the mechanics. Those tools aren’t available, but if
anybody would like some help with developing these tools, I would be happy to assist. Because of
the lack of tools, a vendor check-in will only be mentioned in one example. See the subversion
docs for steps needed to manage a vendor branch if you wish to implement this.
All of the examples below assume you have a working copy of the CCM repository tree already
checked out. These examples deal with the decisions needed to implement the scenarios assuming
an already deployed DACS system.
It also assumes that you are using a single production configuration tree located under /config
and that updates made to the CCM are immediately available there (i.e. there is no promotion or
other QA process).

105

7.1 Changing a managed file

This example is manipulating an already managed file, so a number of the 8 basic steps aren’t
needed. The ones that are needed are *’ed below:

1. Identify what files to manage

2. Decide where to locate them in DACS

3. * Decide how to create/manage the content of the files

4. Decide were the files should be distributed

5. * Find out if the new files work

6. * Commit the changes

7. * Test the distribution

8. * Deploy to all hosts

In your working copy of the DACS tree, change to the directory that contains the file. Step 3
above changes to:

• Perform an svn up in the directory to get any new changes that may have been committed
by others.

• Change the file.

then test the file by copying it to the working location. Once it is tested, check it in using
svn ci filename. Run /config/Rdist label to push the change where the label is the name of
the top level directory in the working copy.
Because we are updating a file that is already under DACS management, we don’t have to make
any changes to distfile.base as the file is already accounted for.

7.2 Adding a new file (simple case)

This assumes a few things:

• you know what file you want to manage (basic step 1)

• already have a suitable directory under the DACS tree for the file (basic step 2)

• a class is already set up with the list of hosts that should receive the file (basic step 4)

in this example we will push /etc/ssh/sshd_config to our hosts. We have a properly configured
file on the host s3.example.com that we want to deploy to all hosts running the Centos operating
system. (Also assume that you have only one major release of the Centos operating system
deployed (i.e. Centos version 5.x)).

106

7.2.1 File installation (basic step 3)

The ssh/sshd_config directory under the DACS root already exists (assuming you imported the
DACS 2.0 release tree). Change to that directory and copy (using scp for example)
s3.example.com:/etc/ssh/sshd_config to the file sshd_config.centos. Add the file using:
svn add sshd_config.centos.

7.2.2 Distfile.base setup (basic step 4)

Edit Config/distfile/distfile.base and find the other ssh: labels. Then add:

ssh:
$C/ssh/sshd_config/sshd_config.centos -> ${CENTOS_HOSTS}

SAVEINSTALL(/etc/ssh/sshd_config, 3);
cmdspecial "/etc/init.d/sshd restart";

7.2.3 The finish (basic step 5, 6, 7, 8)

Step 5 is done already since the file works on s3.example.com, it is already tested. Also all the
hosts are running the same OS and therefore the same version of ssh so we expect the file will
continue to work on the other systems.
Check in the changes using:
svn ci ../../Config/distfile/distfile.base sshd_config.centos
Note your paths may be different depending on the current working directory when you run the
command. The example above assumes you are still in the sshd/sshd config directory.
Add your comments for the check-in and exit the editor. Now run:
sudo -S c /config/Rdist -S c -v ssh you should see something like:

a.example.com b.example.com c.example.com
d.example.com s3.example.com

/config/sshd/sshd_config/sshd_config.centos: need to update
cmdspecial "/etc/init.d/sshd restart"

where all the Centos hosts are listed (including the machine you took the file from originally
(s3.example.com) since the datestamp of the file is different from the one in DACS). Then to
deploy run: sudo -S c /config/Rdist -v ssh and you will see:

a.example.com b.example.com c.example.com
d.example.com s3.example.com

/config/sshd/sshd_config/sshd_config.centos: updating
Starting sshd: [OK]
Stopping sshd: [OK]
cmdspecial "/etc/init.d/sshd restart"

and that’s it. You just set up 5 systems with the same sshd configuration file and activated the
changes. When you set up a new Centos host it will automatically receive these changes. If
somebody modifies the sshd config file on one of the hosts, Rdist will report that the file needs to
be updated and you can:

• Investigate to find out why an unauthorized change occurred or

107

• Remember that a planned experimental change is still in effect and may result in different
sshd operation on that host or

• Revert the change and re-establish standard operation

7.2.4 Some Variations

Suppose we have both Centos 4 and Centos 5 hosts. These two versions run different versions of
ssh, so we can’t use just one file as the Centos 5 version supports some directives that the Centos
4 version doesn’t.
In this case we can create ssh/sshd_config/sshd_config.centos4
ssh/sshd_config/sshd_config.centos5 with rdist stanzas:

ssh:
$C/ssh/sshd_config/sshd_config.centos4 -> ${CENTOS_4.X_HOSTS}

SAVEINSTALL(/etc/ssh/sshd_config, 3);
cmdspecial "/etc/init.d/sshd restart";

ssh:
$C/ssh/sshd_config/sshd_config.centos5 -> ${CENTOS_HOSTS} - ${CENTOS_4.X_HOSTS}

SAVEINSTALL(/etc/ssh/sshd_config, 3);
cmdspecial "/etc/init.d/sshd restart";

where the Centos 4 copy is pushed just to the Centos 4 hosts and the Centos 5 copy is pushed to
all Centos hosts except Centos 4 hosts (the ’-’ sign specifies a difference operation between the
two sets/classes). So a Centos 6 host for example would get the same file as a Centos 5 host. This
may or may not be correct as Centos 6 may have an even newer version of sshd that would
require yet another config file variant, but that can be detected when Centos version 6 comes out.

7.3 Adding a new host

Create an entry in the database for the host. Make sure you have at minimum the following fields
defined:

Machine =
cluster =
enet =
enet_if =
ip =
os =
rdist = yes
services =
uses =

If this host is similar to other hosts at a site, you may be able to copy and paste an existing entry
and edit it a little to get a working entry.
In the example above, the rdist keyword is set to yes. This is fine if the host is set up and is
expected to be under constant maintenance.

108

But if you are just setting the system up and you don’t yet want it under constant maintenance,
but you do want to be able to use DACS to set up the host, set the rdist keyword to request as
in rdist=request to allow you to use =sudo /config/Rdist -m new host.example.com= to
request the host be updated. Don’t forget to change it to yes when the setup is done so it will be
automatically maintained.
If the new machine has multiple IP addresses, add a child entry section 3.2.2 similar to:

machine = newhost-newip.example.com
aliases =
ip =
enet =
enet_if =
rdist = no
base = newhost.example.com

for each additional address.
Once you have the DACS entry set up, copy the ssh public key for the DACS master server to
root’s authorized keys file on the new system. This will bootstrap DACS access to the new host.
If your new host is running the same software and hardware as other hosts, and is co-located with
exiting hosts, chances are you won’t have to add any new files or change any classes in dbreport
as the existing definitions will provide all the functionality you need.

7.3.1 Managing the ssh keys

Now if using the DACS supplied ssh key management:

• deploy the keys to the host and

• update all the hosts so they will recognize the new host.

Make a new public/private RSA key pair for the new host by changing to the ssh/host_keys
directory and type make <machine name> where machine name is the name in the database entry
(newhost.example.com). This will create two new files: newhost.example.com and
newhost.example.com.pub.
Logged into the new machine as root, copy the newly created public and private keys into place
(e.g. /etc/ssh/ssh host rsa key and ssh host rsa key.pub) The hostname.pub file should be copied
to ssh_host_rsa_key.pub and the file =hostname should be copied to ssh_host_rsa_key.
Make sure the .pub file is mode 444 and the key file is mode 400 and restart the ssh server to use
the new keys.
Then check the keys into the VCS (svn ci in the ssh/host_keys directory). On the DACS
master server run: /config/Rdist -m master.server.name ssh. This will update the
known hosts file on the master server so it will recognize the newly added machine.
On the DACS master server run: /config/Rdist -S c ssh to update the keys on all the other
hosts (including the new host you just added if it is configured to receive updates by default).

7.3.2 Updating the host

Since the DACS master host received the new known hosts file in the update above you can run
/config/Rdist -m <new machine name> ssh on the DACS master. It should update the new

109

host without asking to confirm the host’s ssh keys (if this was not done by the enterprise wide ssh
push above). This update will push the keys and config files onto the new machine synchronizing
the timestamps on the files.
Then run /config/Rdist -v -m <new machine name> to see what files would be updated. Make
sure they make sense and if so, use /config/Rdist -m <machine name> to push the new files.
You may have to run it a few times to get the state to converge especially when Rdist has to
create multiple directory levels in which to store files.
Once this is done, if the rdist option in the database file for the new machine is set to request
change it to yes so that it will be automatially updated.

7.4 Setting up location specific timezone files

Let’s assume that you have two data centers: one in Los Angeles and one in Miami. You want the
systems in both data centers to use their local time. Also we will assume that we have only one
type of system at each site.
You don’t expect this to change much so you are going to place the files under the etc/ directory
in your DACS tree.
Create a new directory etc/timezones. Copy the timezone file for the Miami systems into
etc/timezone/timezone.EST5EDT. Copy the timezone file for the LA systems to
etc/timezone/timezone.PST8PDT.
Add the directory and the two files to subversion using svn add etc/timezone. An
svn status etc should now show:

A etc/timezone
A etc/timezone/timezone.EST5EDT
A etc/timezone/timezone.PST8PDT

This example assumes that you have already defined two cluster values site_lax1 and
site_mia1 by editing Config/bin/dbreport and modifying the %cluster_list associative array.
If you don’t have these cluster values established, you should do it now and add the
corresponding cluster value to each host in your database. If this is already done, you don’t need
to do any more work to identify the target hosts for each file.
Edit Config/distfile/distfile.base and search for the start of the etc labels section (I
assume all the stanzas for a particular label are grouped together. This isn’t required but makes
it easier to view the group.) Somewhere in that section (I recommend maintaining alphabetical
order in each labeled section by the source file name as much as possible) add the following
stanzas:

etc:
$C/etc/timezone/timezone.EST5EDT -> ${site_mia1_C_HOSTS}

SAVEINSTALL(/etc/timezone, 2);

etc:
$C/etc/timezone/timezone.PST5PDT -> ${site_lax1_C_HOSTS}

SAVEINSTALL(/etc/timezone, 2);

commit (check-in) the files in using subversion:

110

svn ci Config/distfile/distfile.base etc/timezone
enter comments to describe why these changes are being done and what request/problem spawned
this decision and solution.
Then run sudo /config/Rdist etc and you will see the timezone files pushed to the end
systems. (You may also see other files under the etc label being pushed as well, you can expand
this example to use partial labels, or exclude hosts using the --exclude option to Rdist.)
One thing to note about the timezone files is that applications that determine their timezone
when they start up may still be running with the wrong timezone. So you may need to reboot
those systems before the changeover is complete. You could add:

cmdspecial "/etc/shutdown -r";

to each of the stanza’s above. However given the disruption a reboot causes, you may be better
off adding (wrapped for display section 6.4.5):

cmdspecial "echo ’WARNING: a reboot may be needed to fully \
implement the timezone change.’ RDIST_SPECIAL_FILTER";

and a manual process to schedule and perform the reboots as needed.
The down side to this that you won’t receive the warnings ever again because the warning
command is only run when the /etc/timezone file is updated. Since the file should remain up to
date, the warning is suppressed. However using a post command, you can continue to receive
warnings until the system is rebooted. So a better way of doing this is using the POSTACTION
mechanism and a post rdist stanza. To do this add:

POSTACTION(reboot_needed, timezone);

to each of the stanzas that update the /etc/timezone file. The POSTACTION macro records the
need for a reboot. The ’timezone’ option is used to record what the reason is for the reboot. You
could also have POSTACTION(reboot_needed, driver_update) which records the need for the
same action but for a different reason.
Then after the distribution rdist stanzas (which will probably break the alphabetic ordering) add
(wrapped for display section 6.4.5):

etc:
$C/.empty_file -> ${site_mia1_C_HOSTS} + ${site_lax1_C_HOSTS}

FORCERUN ;
cmdspecial "IFPOSTACTION(reboot_needed, timezone); echo
’WARNING: pending reboot needed due to timezone change. \

Run \"Rdist -m this.host reboot-manual\" for this host.’";

This will continue to alert until somebody runs the Rdist command to reboot the system. Define
the reboot-manual label using (wrapped for display section 6.4.5):

reboot-manual:
$C/.empty_file -> ${site_mia1_C_HOSTS} + ${site_lax1_C_HOSTS}

FORCERUN ;
cmdspecial "IFPOSTACTION(reboot_needed); /etc/shutdown -r \

+1min \"going down for reboot\"";

111

which will reboot the host if it still needs a reboot. Also make very sure this is a manual label.
You really don’t want it being an automatic or verify type label.
Note there is no second parameter for the IFPOSTACTION in the reboot-manual stanza. Any
reason for a reboot is sufficient to trigger the reboot and without the second parameter, the
action is reset to the ’not needed’ state.
This could also be done using the POSTINSTALL-ACTIONS mechanism as described in
DacsDistribution. POSTINSTALL-ACTIONS is just a different form of post label. However since
we only have one file to update, and it is associated with just a single label using a normal post
label/stanza will work just fine.

7.5 Setting up a database driven ntp configuration (new top
level directory)

In this scenario we will set up an ntp configuration with three top level hosts that get their time
from the Internet and all the rest of the systems will get their time from these three hosts. Rather
than embedding the ip addresses or host names of the three top level hosts in configuration files,
DACS will generate the configuration files from the database.
Setting this up is a fair amount of work, but it means that a junior admin is capable of moving an
NTP server from one machine to another by changing two entries in the database. S/he doesn’t
have to know how to edit ntp.conf files across hundreds of hosts, change firewalls configurations
etc. to perform the operation. All those steps are automated within DACS. So the steps to move
an NTP server are:

• Edit the database and move the NTPx service from the old host to the new host.

• Run ’Rdist -m newhost ntp firewalls’

• Run ’Rdist ntp’

Also if you have ntp clients that are on external networks (e.g. routers and switches) listing the
host in the database and assigning it the ’NTP’ uses keyword is sufficient to allow access to the
NTP servers. Again the Cisco expert doesn’t have to bother with ntp.conf and firewalls. S/he
just adds the database entry for their router and says it uses the ’NTP’ service.
The environment that this scenario occurs in has two classes of client hosts that should always
have NTP access: SOLARIS HOSTS and LINUX HOSTS. The clients should receive their time
from the three top level ntp servers by default, but we also want the ability to exclude a host in
these classes from using NTP services.
The files for this scenario are located in the ntp subdirectory of the distribution tree.
This scenario has two manually maintained files and four generated files. One manually
maintained file will be used to generate configuration files for the three top level ntp servers. The
other manually managed file will generate the configuration file for all the clients.
Since pushing a new configuration will be made easier by having a single label, create a new ntp
directory at the top of the DACS CCM tree to isolate these changes from other directories/labels.
As expected the generated files will go into the ntp/dist directory.
Before continuing, let’s create a list of the files currently being distributed. Change to the
Config/distfile directory and run make files-report. Later we can compare this files-report
to the files-report we get after changing the configuration to distribute the new ntp files.

112

7.5.1 Files and services

In the ntp directory we will create the two managed files:

• ntp root.conf

• client.conf

and a Makefile that generates the output files. For now I will just use touch to create the empty
files and will add the contents later. This lets me set up the structure under svn before I get
started. Also I can set the ignore flag on the dist directory so that Rdist distributions won’t abort
due to the generated files in the dist directory.

mkdir ntp
mkdir ntp/dist
touch ntp/ntp_root.conf
touch ntp/client.conf
touch ntp/Makefile
svn add ntp
svn propset svn:ignore ’*’ ntp/dist

At this point running an svn status ntp should show:

A ntp/ntp_root.conf
A ntp/client.conf
A ntp/dist
A ntp/Makefile

7.5.2 Database changes

We need to be able to identify four things:

• three top level NTP server hosts

• the single list of clients that use those servers

Since there is no existing class that identifies the top level NTP hosts, define three new service
values: NTP1, NTP2, and NTP3 and add them to Config/bin/dbreport. Also create the uses
value ”NTPCLIENT” indicating that the host should run the NTP service using the three top
level hosts. See Deploying multiple redundant servers section 3.5.1 in the DACS Database chapter
for the logic behind adding the three NTP1,2,3 services. See Adding/changing cluster, services
etc section 3.4.3 for info about adding the NTPCLUSTER uses value.
Once you define the values, in the DACS database assign NTP1 to the services keyword for one
host. Assign the NTP2 value to another host and similarly with NTP3. So we now have identified
three different hosts that will be the top level NTP servers. A sample NTP server entry may look
like:

Machine = s2.example.com
ip = 192.168.9.33/24
os = Centos 5.2
rdist = yes
services = SSHD NTP2

113

Because rdist=yes and the services keyword includes the NTP2 value, the host will be
automatically included in the NTP2 HOSTS rdist class variable. With the settings above,
dbreport -s "rdist:/yes/" db generates the rdist class variable:

NTP2_HOSTS=(s2.example.com)

Also assign the NTPCLIENT uses value to all the hosts we want to be time synchronized. A
sample NTP client server host entry may look like:

Machine = a1.example.com
ip = 192.168.9.12/24
os = Centos 5.0
rdist = yes
services = SSHD
uses = NTPCLIENT

Because rdist=yes and the uses keyword includes the NTPCLIENT value, the host will be
automatically included in the NTPCLIENT SLAVES rdist class variable. The output of
dbreport -s "rdist:/yes/" db generates the rdist class variable:

NTPCLIENT_SLAVES=(a1.example.com a2.example.com ...)

All the class variables are automatically prepended to distfile.base by the procedure used to build
the Distfile.

7.5.3 The build system and file generation

This touches on the critical parts of the Makefile. Some details are changed to simplify the
example. See the full Makefile in the DACS distribution at
repository/Config/work/ntp/Makefile for all the details.
(Note there is also a Makefile.cache in the same directory that is instructive if you are trying to
understand how the md5sum mediated cache works. Both Makefiles produce identical output, but
via different mechanisms. For those interested in the cache mechanism see DacsBuild.)
The first thing to do is define what files will be created by this Makefile. To do this add them as
dependencies of the all and verify targets:

all verify: dist/ntp_root1.conf dist/ntp_root2.conf dist/ntp_root3.conf dist/clients.conf

so that make all or make verify will build the 4 distributed files.

7.5.3.1 Gathering data from the database

In the Makefile we need 6 things:

• the host names of each of the 3 NTP top level hosts

• the IP address of each of these 3 hosts (yes we could do without these and just use host
names everywhere but that wouldn’t be any fun)

114

The names of the 3 top level hosts can be obtained from the database by listing the hostname
when selecting the NTP1, NTP2 and NTP3 services entry. So the following three dbreport
queries:

HOST1:=$(shell $(DBREPORT) -l -s ’services:/NTP1/|isbase:/yes/’ $(DB))
HOST2:=$(shell $(DBREPORT) -l -s ’services:/NTP2/|isbase:/yes/’ $(DB))
HOST3:=$(shell $(DBREPORT) -l -s ’services:/NTP3/|isbase:/yes/’ $(DB))

will return the host name.
These commands make use of the dbreport command to list (-l) the name of the host that is
running each of the services by selecting (-s) the service identifier and returning only the the
hostname for the machine that is at the base of the inheritance tree. See the DacsDatabase
document for details on using dbreport.
Once we have the hosts defined, we get the internal IP addresses for the machines using the
hostnames defined above:

NTPIP1:=$(shell $(DBREPORT) -f ip -s ’machine:/$(HOST1)/|ip:/^192.168/’ $(DB))
NTPIP2:=$(shell $(DBREPORT) -f ip -s ’machine:/$(HOST2)/|ip:/^192.168/’ $(DB))
NTPIP3:=$(shell $(DBREPORT) -f ip -s ’machine:/$(HOST3)/|ip:/^192.168/’ $(DB))

that selects the internal ip address (ip address starts with 192.168 which is one of the reserved
address ranges).
(Note: these values could be extracted in a few different ways. This is just one implementation.)

7.5.3.2 Generating the client config

With these 6 values we can create the client configuration file dist/clients.conf using the Makefile
rule:

dist/clients.conf: clients.conf Makefile $(DB)
filepp -D "Host1=$(HOST1)" -D "Host2=$(HOST2)" \

-D "Host3=$(HOST3)" -D "NtpIp1=$(NTPIP1)" \
-D "NtpIp2=$(NTPIP2)" -D "NtpIp3=$(NTPIP3)" \
clients.conf -o $@.out

mv $@.out $@

where dist/clients.conf will be rebuilt if:

• the maintained clients.conf file changes

• the Makefile that builds clients.conf changes

• the database where the NTP server information is stored changes

This rule calls filepp defining the six values Host1 through 3 and NtpIp1 though 3. It puts it’s
output into the file dist/clients.conf.out ($@ is make shorthand for the file you are trying to
make). If the filepp command succeeds, the temporary output file is moved into place to create
the permanent output file.
The maintained clients.conf file contains:

115

Host1 NTP1
server NtpIp1 iburst
Host2 NTP2

server NtpIp2 iburst
Host3 NTP3

server NtpIp3 iburst

when processed by the filepp command line above generates output similar to:

box1.example.com NTP1
server 192.168.1.1 iburst
s2.example.com NTP2

server 192.168.9.33 iburst
box10.example.com NTP3

server 192.168.5.1 iburst

Note that this example uses IP addresses to eliminate the dependency on internal DNS. So ntp
will keep working even if internal DNS fails.
This is just a fragment of the ntp configuration file, but the rest of the file is boilerplate and was
obtained from the original /etc/ntp.conf provided with the OS.

7.5.3.3 Generating the three server configuration files

We will look at the generation of a file for the NTP1 server since they are all basically identical
except for one small change. The Makefile lines that generates a server config file is:

FPPDEFS=-D "Host1=$(HOST1)" -D "Host2=$(HOST2)" -D "Host3=$(HOST3)"

dist/ntp_root1.conf:
filepp -D NTP1 $(FPPDEFS) ntp_root.conf -o $@.out
mv $@.out $@

This passes the three host names onto the filepp command and processes the ntp_root.conf file
with the macro NTP1 defined. In the ntp_root.conf file we have:

#comment make sure host defines are not empty.
#if ! "Host1"
#error Host Host1 not defined or empty
#endif

that checks to see if the Host1 definition is empty. If it is it exits with an error stopping the file
generation and halting the file distribution. This is one way of implementing error checking to see
if the dbreport commands failed. After this we see:

#ifdef NTP1
#
clock.redhat.org
#
restrict 66.187.233.4 mask 255.255.255.255 nomodify notrap noquery
server 66.187.233.4 iburst

116

#endif

#ifdef NTP2
NL ntp0.nl.net (193.67.79.202)
Location: NLnet, Amsterdam, The Netherlands
Synchronization: NTP primary (GPS), Sun/Unix SunOS 4.1.3
Service Area: The Netherlands/Europe
Access Policy: open access
Contact: beheer@nl.net
restrict 193.67.79.202 mask 255.255.255.255 nomodify notrap noquery
server 193.67.79.202 iburst
#endif

Since NTP1 is defined on the command line with ’-D NTP1’, the lines between #ifdef NTP1 and
the matching #endif are printed to the output file. Since NTP2 is not defined nothing is printed
for the NTP2 conditional clause. This defines all the time source servers to be used by the NTP1
server. Then we see:

#ifndef NTP1
#
Host1
#
restrict Host1 mask 255.255.255.255 nomodify notrap noquery
peer Host1 iburst
#endif

#ifndef NTP2
#
Host2
#
restrict Host2 mask 255.255.255.255 nomodify notrap noquery
peer Host2 iburst
#endif

which sets the three top level servers to connect to each other. Note that #ifndef outputs the
text only if the value is not defined. So the first conditional block produces nothing, since have a
system sync to itself is useless. The second conditional block produces:

#
s2.example.com
#
restrict s2.example.com mask 255.255.255.255 nomodify notrap noquery
peer s2.example.com iburst

as it replaces the Host2 macro with the name of the NTP2 server establishing a peer relationship
for the NTP1 server. Note that we use DNS names here in contract to the client configurations. If
internal DNS fails, the internal peering relationships may be interrupted. However the important
relationships here are not the internal relationships but the external relationships to higher level
servers. For those relationships, using hostnames resolved via DNS is really the only alternative
since they are outside of our span of control.
In the DACS distribution, repository/Config/work/ntp has a fully working implementation of
this system.

117

7.5.4 Distributing the generated files

Now that the build mechanism is configured to create the files we want to distribute, we need to
configure the distribution. Modify the file Config/distfile/distfile.base to push the
generated files. We don’t use host names in distfile.base rules, instead we use the 4 rdist class
variables:

• NTPCLIENT SLAVES - for the clients

• NTP1 HOSTS - for the 1 NTP1 server

• NTP2 HOSTS - for the 1 NTP2 server

• NTP3 HOSTS - for the 1 NTP3 server

So the rule stanzas for the clients look like:

ntp:
$C/ntp/dist/clients.conf -> ${NTPCLIENT_SLAVES} & ${LINUX_HOSTS}

SAVEINSTALL(/etc/ntp.conf, 10, compare) ;
cmdspecial "/etc/rc.d/init.d/ntpd restart" ;

ntp:
$C/ntp/dist/clients.conf.solaris -> ${NTPCLIENT_SLAVES} & ${SOLARIS_HOSTS}

SAVEINSTALL(/etc/inet/ntp.conf, 10, compare) ;
cmdspecial "svcadm restart ntp:default" ;

Where NTPCLIENT SLAVES includes all the hosts that have the

uses= ... NTPCLIENT ...

entry in their database definition.
Note that we use the rdist intersection operator &. The first stanza applies to
NTPCLIENT SLAVES that are also LINUX HOSTS while the second stanza applies to
NTPCLIENT SLAVES that are also SOLARIS HOSTS.
Why is it split into two rules? There are two different source files (the Solaris ntp server doesn’t
support iburst mode). But even if the client ntp.conf files had identical contents, look at the two
SAVEINSTALL statements. The files need to be installed in different locations on the two
operating systems. Also the command to activate the changes is different on the two systems.
With the clients taken care of look at the server configurations. In this case all the servers are
Linux boxes, so we don’t need to intersect anything, but to prevent the mistake that would occur
from using a stanza on the wrong host we use the intersection anyway.

top level NTP servers for our systems
ntp:
$C/ntp/dist/ntp_root1.conf -> ${NTP1_HOSTS} & ${LINUX_HOSTS}

SAVEINSTALL(/etc/ntp.conf, 10, compare) ;
cmdspecial "/etc/rc.d/init.d/ntpd restart" ;

ntp:
$C/ntp/dist/ntp_root2.conf -> ${NTP2_HOSTS} & ${LINUX_HOSTS}

118

SAVEINSTALL(/etc/ntp.conf, 10, compare) ;
cmdspecial "/etc/rc.d/init.d/ntpd restart" ;

ntp:
$C/ntp/dist/ntp_root3.conf -> ${NTP3_HOSTS} & ${LINUX_HOSTS}

SAVEINSTALL(/etc/ntp.conf, 10, compare) ;
cmdspecial "/etc/rc.d/init.d/ntpd restart" ;

and this completes the setup for pushing to the servers.

7.5.5 Testing

Changing back to the ntp directory, we run make and look at the 4 generated files to see if they
are correct. You could even manually copy them into place on test systems to verify that they are
syntactically correct.
To test the distfile.base modifications, change to the Config/distfile directory. Copy the
files-report file that we created before to files-report.orig and run make files-report
again. Use diff(1) to compare these two files to see what new files are being pushed. If files are
distributed that we think shouldn’t be distributed, see the DacsBuild section for troubleshooting
tips. Once we are happy with the files check-in the changes.

7.5.6 Check in the changes

There are a number of interfaces to subversion. I use the psvn.el interface within Emacs. It lets
you mark which files you want to check in which is very useful. In any case, if you are using the
command line change to the root of CCM tree and run svn status. You should see something
like the following:

A ntp/ntp_root.conf
A ntp/client.conf
A ntp/dist
A ntp/Makefile
M Config/bin/dbreport
M Config/distfile/distfile.base

If you also see:

? ntp/dist/client.conf
? ntp/dist/ntp_root1.conf
? ntp/dist/ntp_root2.conf
? ntp/dist/ntp_root3.conf

You need to do an ’svn propset svn:ignore ’*’ ntp/dist’ to hide those files from the VCS.
Now you can view the differences between the new files and the original versions of the files using:
svn diff Config/distfile/distfile.base Config/bin/dbreport ntp | less
If the differences look ok, check-in the changes and added files:
svn ci Config/distfile/distfile.base Config/bin/dbreport ntp
add your check-in comments, exit the editor and this part is complete.

119

7.5.7 Update the master tree with a new top level directory

In order to support the ability to use DACS on a partially check out master tree (e.g. one that is
used for pushing only a subset of files usually with changes delegated to other people) you must
manually check out all top level directories. Rdist by itself won’t create a new directory at the
root of the CCM tree. Since ntp is a new directory, we must perform the update by hand before
we run the Rdist script. To do this:

cd /config
sudo env -i /usr/bin/svn up ntp

This uses the env command to unset all the environment variables and run the subversion
command to update the ntp directory. This only has to be done once to create the top level
directory. After it is created, new subdirectories, changes to files etc. will all be pulled in by a run
of Rdist.
When this is done you can use sudo /config/Rdist -S c -v ntp to see what files would be
updated using the condensed summary format.

7.5.8 Update the hosts

Run sudo /config/Rdist -S c -v ntp to see what files would be updated and then
sudo /config/Rdist -S c ntp to update all the hosts.

7.6 Integrating external tools into DACS

DACS allows file editing to be delegated to a user, but it can also allow a process to access a file.
For example at one site all passwords were handled via local /etc/password and /etc/shadow
files. However they also wanted a single password for each account across all the systems. When
the user used the password change server to change his or her password, the password change
server checked in the new password configuration and invoked DACS to propagate the new
password to all the systems.
Another example of an operation you can integrate into DACS is the distribution of a CRL
(certificate revocation list) for a Certificate Authority (CA). These lists can be used in many
places if you use certificates for controlling access. They are needed by:

• openvpn - to permit only allowed individuals to access the network

• the corporate web server - where people external to the company can verify that s-mime
certificates are still valid.

• web servers - when client certificates are used to authenticate users

Since the need for a CRL is bound not to a host but to a service, DACS makes the logical place
to perform the distribution as it knows all of the services that are deployed. As new service
instances are brought on line, the CRL will be automatically deployed. However you may not
want your certifying authority to be under DACS as DACS tree’s can be checked out in multiple
places and you may not want multiple copies of the certificate authority’s (CA) key.

120

To integrate the CA with DACS, treat the CA as a delegated user with the ability to update the
CRL file.
Let’s assume that your CA creates the crl in a subdirectory ”CRL” of the CA tree. First create
an ssh key using ssh-keygen. Place the private part of the key in your CA tree. Let’s say it is in
/usr/lib/CA/id rsa. Protect the file so that only the user who performs the key signing can access
the file (it should have the same very restrictive access permissions as the master key for the CA).
On the subversion repository side, set up the ssh key as described under: ”Importing the DACS
repository tree” in DacsAppendix. But change the tunnel-user to CA. Then set up the authzfile
(see SVN Access controls section 4.4.3) with the following:

[/Config/work/etc/crl]
CA = rw

Now create the directory etc/crl to house the list. As the CA user execute:

mv CRL CRL.orig
export SVN_SSH="/usr/bin/ssh -i /usr/lib/CA/id_rsa"
svn co svn+ssh://dacsuser@dacsmaster:/repo/Config/work/etc/crl CRL
cp CRL.orig/crl.pem CRL
svn add CRL/crl.pem
svn ci -m "initial check-in of CRL" CRL

This will perform a check-in of the crl file. Note the use of SVN SSH to set the path to the ssh
binary and also the location of the key file that should be used for svn operations. Because the
check-in message was specified using the -m option, no editor is started.
In your CA machinery that creates the CRL, add:

export SVN_SSH="/usr/bin/ssh -i /usr/lib/CA/id_rsa"
svn ci -m "CRL update" CRL

so that it will check in the crl when it is changed.
Now adding:

etc:
$C/etc/crl/crl.pem -> ${VPNOPEN_HOSTS}

SAVEINSTALL(/etc/openvpn/crl.pem, 3);

etc:
$C/etc/crl/crl.pem -> ${HTTP_HOSTS}

SAVEINSTALL(/etc/httpd/crl.pem, 3);

etc:
$C/etc/crl/crl.pem -> ${WWWMAIN_HOSTS}

SAVEINSTALL(/var/www/htdocs/crl.pem, 3);

etc.crl:
$C/etc/crl/crl.pem -> ${VPNOPEN_HOSTS}

SAVEINSTALL(/etc/openvpn/crl.pem, 3);

etc.crl:
$C/etc/crl/crl.pem -> ${HTTP_HOSTS}

121

SAVEINSTALL(/etc/httpd/crl.pem, 3);

etc.crl:
$C/etc/crl/crl.pem -> ${WWWMAIN_HOSTS}

SAVEINSTALL(/var/www/htdocs/crl.pem, 3);

to distfile.base and checking the file in will distribute the CRL for:

• openvpn security

• httpd security

• publishing to the public

Now this can be enhanced to allow the CA user to log into the DACS master host and run:
sudo /config/Rdist etc.crl to push the CRL’s to all the locations that need it without having
to explicitly log into the DACS master host. Enhancing this example is left an an exercise for the
reader.
As a hint to the reader, read the manual for sudo paying attention to the ability of sudo to
restrict the command and arguments that can be run. Also reading the sshd man page on using
forced commands may be of some benefit.

7.7 Adding new file or files (complex case)

This example goes into great detail on deploying a single file /etc/services to systems running
either Centos Linux or Sun Solaris. It discusses other scenarios to expand the application of the 8
basic steps into more complex scenarios and encodes a discussion on using vendor branches.
As mentioned above the major steps are:

1. Identify what files to manage section 7.7.1

2. Decide where to locate them in DACS section 7.7.2

3. Decide how to create/manage the content of the files section 7.7.3

4. Decide were the files should be distributed section 7.7.5

5. Find out if the new files work section 7.7.6

6. Commit the changes section 7.7.7

7. Test the distribution section 7.7.8

8. Deploy to all hosts section 7.7.8

122

7.7.1 Identifying the file(s)

Which files on the client system need changing? Do you need to push just a single file, or a group
of related files?
Implementing a particular configuration state may result in a number of different files being
changed. E.G. setting up secure ldap for password authentication on a host means changing:
/etc/ldap.conf, certificate and key files for the ldap server, master keys files and
pam/system-auth. All of these have to be pushed to make secure ldap authentication work.
A lot of the work is in identifying the files that need to change. Once that is done we move on to
the next step. To help identify changed files, you can set the service up on one host and use find
to locate all the files that were modified to implement the change. Then you will automate the
distribution of these changes.
In this example we will add just the single /etc/services file to DACS so all the systems can have
a single common file. But how may different /etc/services files exist on the client machine? We
hope only two (one for Centos and one for Solaris) but is that true? Assuming that that is true
we will have to merge the /etc/system files from the two systems to create a common file.
But that assumption may be wrong so we verify it by surveying that file on all the hosts.

7.7.1.1 How many files exist

Often the contents of the file will change from host to host. Some things that can cause the file to
be different are:

• different versions of the software (e.g. the /etc/ssh/sshd config files on Centos 2 systems are
different from those on Centos 4 systems because the new ssh version added some keywords
to activate new functionality.)

• different role of the host. E.G. the aliases file on a mail delivery host has more aliases and
different aliases since it is the end delivery point for email. Alias files on hosts that just
forward to the central mail host have a much more stripped down version of the aliases file.

• site specific changes. E.G. if you have multiple sites with local dns resolvers, you may have
a site specific /etc/resolv.conf that lists the local site’s dns resolvers first. So for each site
the ordering (and therefore contents) of resolv.conf are different. But they are the same
within a site.

• entropy - especially when hand editing files, spacing, line order, etc can change making
auditing of these files difficult. You will often discover misconfigurations in files this way.
However you need to try to figure out if the standard file you are putting in will be
compatible with the one you are replacing.

To do the survey, you can use dbreport to generate a list of all the hosts under rdist control (-s
rdist:/yes/). Then for each host copy the file to the local directory:

for i in ‘Config/bin/dbreport -l -s ’rdist:/yes/|isbase:/yes/’ Config/database/db‘
do
scp $i:/path/to/file file.$i
done

123

Then run: =sum file.* — sort — uniq -c -w 5’ to produce:

2 17474 338 services.solaris1.example.com
10 34762 334 services.s1.example.com
1 35185 422 services.s3.example.com

the -w options tell uniq to compare just the first 5 characters (i.e. the checksum). The output tells
you how many files are identical and how many times each file occurs. In the case above we have
three unique copies of the services file. Two of them are the same as services.solaris1.example.com
and ten are the same as services.s1.example.com. The host s3.example.com is the only one with
its particular brand of services file. So it is quite possible that some service on s3.example.com
will fail when moved to another host because of a missing entry in the services file.
This is the most time consuming part of the process as you have to make sure that the files you
are generating encompass all the functionality that you want. This audit process may result in
more files to manage under the CCM and hence more classes of hosts that receive these files.
However it is crucial for understanding how complex the environment is and starting to reduce
that complexity.

7.7.2 Where should the files live in the DACS CCM tree

The nice part about using subversion is its ability to track directory and other structural changes,
so you are able to better organize your files to make things more efficient. The key questions here
are:

1. when I configure or change this service in the future do I have one file or multiple files to
change?

2. how likely is it that multiple people will be changing the same files (i.e. how static is the
configuration).

Some things like password files (in the absence of LDAP or NIS) will be changed often as
employees are added/removed or change roles. Other files like /etc/services won’t be changed
often if at all.
So you may want to make password a top level directory so that you can push those changes
separately from others that don’t change. On the other hand you may place the services file
under ”etc” in the services subdirectory along with other rarely changing files and update the set
of files under etc as a single group.
If I am performing an LDAP setup I can:

• put all the files under the top level etc assuming they will be set up once and not changed

• put them in an top level ldap directory so the changes can be pushed independent of other
files

• put them in separate top level directory trees:

– openldap - for the client configuration needed for the software application

– etc/pam.d - for the client configuration files that allow login and other authentication
to occur

124

– software/schemas - for changes to the openldap database schemas

– servers/ldap - for the files that configure the ldap servers (as opposed to client
configurations)

Your layout depends on how you think you workflow will occur. If you have 3 files that need to be
updated (e.g. when a new LDAP server comes on line you add the new server to the openldap
config files, the pam config files and add a new servers/ldap config file) it may make more sense to
have all the ldap files under a single directory (ldap) where they can be generated or searched
easily rather than spread in multiple directories in the DACS CCM tree.
With the predecessor to DACS (Config) relocating files in the CCM tree was often an issue as
CVS didn’t provide good support for moving files and directories while preserving history
information. Subversion does better in this respect, so moving files and directories around is
easier. However you still have to worry about re-training users after a restructuring so they go to
the new location for the files, use new labels to push the files etc.
For our /etc/services file we will place it in the etc/services directory under the DACS CCM
tree. To set this up:

cd etc
mkdir services
svn add services
cd services

7.7.3 Automatic or manual file maintenance

The basic ideas behind DACS is that the DACS database should hold all the information about
the machines and services at the site. That information should not be replicated in individual
configuration files.
Now there is a trade-off. Setting everything up to be database driven requires an investment of
time and money in setting up the machinery as well as time to perform the generation of files. Not
using the database increase the risk that some file with embedded information won’t be changed
when it needs to be leading to loss of service and the expense and effort required to recover.
Also there may be more than one way to engineer a solution for the configuration files. Some of
these solutions will support future changes to the files more easily, while some will require changes
to support future growth and changes.
E.G. the ldap client configuration could extract the names of the ldap servers from the database
and generate files for the clients using that information.
However it is also perfectly valid to assign static names to the ldap servers (e.g.
ldap1.example.com) and hard-code ldap1.example.com in the configuration files. Then you
generate your hosts files (or dns records) from the database to map ldap.example.com to an
underlying machine.
If you plan on using ssl encrypted ldap, the method using static names is better as the static
names are hard-coded in the ssl certificates. So moving a secure ldap server from one host to
another means you don’t need to generate new certificates for the new host.
Both implementations accomplish the end result where changes to the location of the LDAP
server (move to a new machine) or changes to the IP address of the LDAP server are propagated
to the clients without manual intervention, but the first one requires some additional work if you
are deploying encrypted ldap.

125

You can also choose to hard code all of this information in files (ldap.conf or dns) and not use the
database at all, but this increases the risk that you will make a change that is incomplete. So
rather than having two redundant ldap servers accessible to all clients, only one LDAP server is
usable by the clients. This works fine (and is pretty undetectable) until the one usable ldap server
crashes, or is taken down for maintenance, leaving you locked out of the systems on your network.
Some files don’t use host specific information directly, but instead have slight variations based on
the software installed on a host. E.G. between Openssh version 3.6 and 3.9 some new directives
were added. So while 90% of the file is identical the other 10% means that you have to maintain
two files. Or do you? Using filepp and the build system you could use a single master
configuration file and generate the two variants. This makes sense if you need to make changes in
the 90% of the file that the two hosts have in common. Now for a file that has only two variants
and is not expected to change much, setting up a template driven mechanism may be overkill.If
you have 10 or 20 variants the effort to change these files correctly, and keep them in sync so that
they actually implement the same function is significant. In this case deploying the templating
system saves a lot of effort.
There are some files that don’t include host specific information and are suitable for hand
maintenance. /etc/services is an example of this type of file, so we can manually maintain the file
adding new service/port mappings as needed.
Moving forward with the example, we create the file by copying the vendor supplied services files
(one from Solaris and one from Centos) to ”services.solaris” and ”services.centos” respectively
and merge them into services.merged. If you aren’t using the vendor tree to keep the original
copies, execute:

mv services.merged services
svn add services
svn ci services

to check-in the new services file. If you are going to use the vendor tree read the next section with
all three files (services.solaris, services.centos, services.merged) in the current services directory.

7.7.4 Add the unmodified file to the vendor tree

Since we have an unmodified configuration file(s) as supplied by the OS vendor, add them to the
vendor tree under the OS in the same sub-location as you are adding it in the rdist tree.
We want to check in a copy of the services file for each release. We already have
”services.solaris”,”services.centos”, and ”services.merged” in the services directory.

svn switch svn+ssh://dacsuser@dacsmaster:/repo/Config/vendor/centos_4.3/etc/services

The reason to do this is to allow faster updates to a new version of the operating system. To use
this:

• install a new operating system

• check out a copy of the vendor tree

• for every file in the vendor tree copy the corresponding file from the new system on top of
the orginal copy

126

• perform an svn diff to see what changes have occurred.

• see if any of the changes should be applied to the CCM working tree.

This makes updating files for each new OS release very easy as you have an original copy of the
file to refer back to and can apply the differences between the earlier vendor versions of the file
and the new vendor version. This example will discuss performing the operation for the
/etc/services file.

7.7.4.1 Make the vendor directory

Create the vendor branch for the Centos and Solaris releases replicating the working tree
structure:

svn mkdir -m "checkin of services file from centos 4.3 box" \
svn+ssh://dacsuser@dacsmaster:/repo/Config/vendor/centos_4.3

svn mkdir -m "checkin of services file from centos 4.3 box" \
svn+ssh://dacsuser@dacsmaster:/repo/Config/vendor/centos_4.3/etc

svn mkdir -m "checkin of services file from centos 4.3 box" \
svn+ssh://dacsuser@dacsmaster:/repo/Config/vendor/centos_4.3/etc/services

svn mkdir -m "checkin of services file from solaris 10.2 box" \
svn+ssh://dacsuser@dacsmaster:/repo/Config/vendor/solaris_10.2

svn mkdir -m "checkin of services file from solaris 10.2 box" \
svn+ssh://dacsuser@dacsmaster:/repo/Config/vendor/solaris_10.2/etc

svn mkdir -m "checkin of services file from solaris 10.2 box" \
svn+ssh://dacsuser@dacsmaster:/repo/Config/vendor/solaris_10.2/etc/services

{\small \begin{verbatim}

(Note newer versions of =svn mkdir= have the =--parents= option that
will create all needed intermediate directories like =mkdir -p=
does. But for earlier versions you need to run all the commands to
create the tree hierarchy.)

---++++ Import the unmodified vendor file(s)

Now we switch our working directory to the newly created service
directories. Because none of the "services.*" files has been checked
in they will still be present after the switch. So run the commands:
{\small \begin{verbatim}
svn switch svn+ssh://dacsuser@dacsmaster:\

/repo/Config/vendor/centos_4.3/etc/services

cp services.centos services

svn add services

svn ci -m "original /etc/services file for centos 4.3"

then the same is done for Solaris. Note that this will delete the services file we just added. This is
expected as the Solaris branch doesn’t have it’s services file yet. The lines you type are preceded
with a ’>’.

127

>svn switch svn+ssh://dacsuser@dacsmaster:\
/repo/Config/vendor/solaris_10.2/etc/services

D services
Updated to revision 53.
> cp services.solaris services
> svn add services
> svn ci -m "original /etc/inet/services file for solaris 10.2"

Note that the check-in comments include the original source of the file. This makes finding it
easier when new OS deployments are done and you need to locate the next generation of the file
on the new OS.

7.7.4.2 Create and edit new file in working directory

We should be in the etc/services working copy of the DACS tree. We will now copy a services files
from a vendor branch, modify it and check it in. Since we switched this directory above, first
switch back to the work tree.

> svn switch \
svn+ssh://dacsuser@dacsmaster:/repo/Config/work/etc/services
D services
Updated to revision 54.

Copy and check in the file from a vendor copy. Which OS release you use doesn’t matter. This
simply records a pointer to the file location in the vendor tree. Then update the copy with the
merged copy. We will also commit the file at this point, and reserve testing for later. As long as
we don’t check in the distfile.base changes, the file will live in the DACS CCM tree, but not
be pushed to the clients.

> svn cp svn+ssh://dacsuser@dacsmaster/repo/Config\
/vendor/centos_4.3/etc/services/services .

A services
> svn ci -m "RT:2345 adding base revision"
Adding services/services
Committed revision 55.
> cp services.merged services
> svn ci -m "RT:2345 adding merged revision"
Adding services/services
Committed revision 56.
> svn log -v
r56 | rouilj | 2008-12-28 15:07:38 -0500 (Sun, 28 Dec 2008) | 1 line
Changed paths:

M /repository/Config/work/etc/services/services

RT:2345 adding merged revision
--
r55 | rouilj | 2008-12-28 14:52:12 -0500 (Sun, 28 Dec 2008) | 1 line
Changed paths:

R /repo/Config/work/etc/services/services (from
/repo/Config/vendor/centos_4.3/etc/services/services:56)

RT:2345 adding base revision

128

using svn cp first rather than just adding a services file allows you to locate the location of the
file in the vendor tree if the working file changes location in the future. Look at the second log
message in the svn log output, it reports the vendor file where the services file was copied from.
Lastly, insure the files have the proper modes. See Setting modes, owner and groups section 5.3 if
the standard owner/group of root/root and perms of 644 (unless file is executable in which case
the default perms are 755). In this case the default owner, group and mode is fine.

7.7.4.3 Future maintenance using vendor trees

The vendor tree can be used to ease file updates when new OS releases are deployed. When
Centos 4.7 is deployed, create the vendor tree for centos 4.7 using the 4.3 tree as the base:

svn co svn+ssh://dacsuser@dacsmaster/repo/Config/vendor/centos_4.3

copy in all the Centos 4.7 files overlaying the centos 4.3 files. Now rather than checking in the 4.3
tree, we copy the modified tree to the vendor area for centos 4.7 using:

svn cp /path/to/working svn+ssh://dacsuser@dacsmaster/repo/Config/\
vendor/centos_4.7

Now we have a centos 4.7 vendor tree that we can use to generate the list of changes between the
4.3 and 4.7 releases. To merge these changes into the working services entry, change to the
working CCM tree and run:

> svn merge svn+ssh://dacsuser@dacsmaster:/repo/Config/\
vendor/centos_4.3/etc/services/services \
svn+ssh://dacsuser@dacsmaster:/repo/Config/\
vendor/centos_4.7/etc/services/services

--- Merging differences between repository URLs into ’services’:
U services

Use svn diff to see what changes were merged and edit the changes if needed to make sure they
make sense and are valid. Then you use svn ci to check in the changes and push the updated file
using Rdist.
Alternatively you can use:

svn diff svn+ssh://dacsuser@dacsmaster:/repo/Config/vendor/centos_4.3/\
etc/services/services \

svn+ssh://dacsuser@dacsmaster:/repo/Config/vendor/centos_4.7/\
etc/services/services | \

patch

to add the differences between the two files to the services file. This usually operates exactly the
same as svn merge, but with subversion 1.5 and newer, you loose merge tracking information.
Now supposed the etc/services file was renamed at one point to etc/services.centos. The
svn log -v output will still point to the centos_4.3/etc/services/services file. But now we
want to merge changes in that file between 4.3 and 4.7 into the services.centos file. To do this
use an explicit target file =services.centos=:

129

> svn merge svn+ssh://dacsuser@dacsmaster:/repo/Config/vendor/centos_4.3/\
etc/services/services \

svn+ssh://dacsuser@dacsmaster:/repo/Config/vendor/centos_4.7/\
etc/services/services services.centos

--- Merging differences between repository URLs into ’services.centos’:
U services.centos

Using the patch method instead of a subversion merge, you can specify the name of the file to
patch as well.
Reading the subversion book for your release of subversion to get addition tips and tricks to make
this easier is strongly encouraged.
This method removes the guesswork when upgrading from one release to the other, but it does
impose the burden of maintaining the vendor tree on each OS release (or sub-release).

7.7.5 Distribute from the CCM tree to the hosts

There are two steps here:
1 identify the set of hosts that should receive the files based on DACS classes 2 generate distfile
stanzas to install and activate the files

7.7.5.1 Identification of hosts

From the survey of the file on all the hosts done in the file creation section, you should be able to
determine how many unique files needs to be distributed.
Now we have to identify the hosts that should get each file. While hostnames can be used directly
in Config/distfile/distfile.base as in the following stanza:

$C/cron/root/sshdexternal.root -> (a.example.com c.example.com)
install -ocompare /var/spool/cron/root ;
special "EDITOR=/bin/touch crontab -u root -e" ;

this is incorrect because the host configuration information isn’t derived from information in the
database.
Thie cron file implements a single function because these two servers have a public ssh server role.
If we want to move this role to another machine, duplicate the role to multiple machines,
decommission a.example.com, or figure out what machines have this role it is easier to do by
looking in the database. That said, sometimes the quick and dirty way suffices. But you shouldn’t
do it this way as it will cause more work in thelong run by not enabiling you to use the database
to solve problems.
What you should do instead is look for existing classes that can be combined using set operators
like intersection, difference and union. These techniques are supported by both rdist and filepp
(although by different mechanisms). If you can’t find any existing classes you can add new
classes. See the DacsDatabase documentation and the ntp example above for more details. For
this case the SSHDEXT HOSTS class would seem ideal.
For our /etc/services example, all the servers we have have an /etc/services file in the same
format, but the file is installed in different locations so we will create two rules using the Solaris
and Centos host classes.

130

7.7.5.1.1 Create the distfile rule using the classes Now create new rules using the
classes you defined or discovered. Edit Config/distfile/distfile.base. Add the label named after the
top level directory the file is stored in. E.G. If the file is located in: etc/services, use the target
etc:. See Distfile Label Types and Special Purpose Labels section 6.4.2 for more information.
Set the path to the file using a relative path from the top of the checked out tree. Using ’$C/’
before the path will anchor it to the root of the directory tree.
So for the etc/services source file the rules:

etc:
$C/etc/services/services -> ${CENTOS_HOSTS}
SAVEINSTALL(/etc/services, 3);

$C/etc/services/services -> ${SOLARIS_HOSTS}
SAVEINSTALL(/etc/inet/services, 3);

will install the file etc/services/services as /etc/services on the Centos hosts and
/etc/inet/services on the Solaris hosts. These two rules distribute the files to the client classes we
originally identified.
When you are done, use make check in the distfile directory to verify your changes are
syntactically correct. You can search the output of make files-report see where the source files
will be distributed.

7.7.6 Testing the files

In this case, there isn’t much to testing. You can hand copy the new services file to /etc/services
on a Centos box and to /etc/inet/services on a Solaris box (the two classes of systems we
identified originally). Then run some commands ’telnet host smtp’ or use a Perl script that uses
the services file to resolve a service name.
Once we have tested all the host classes, we are ready to check in the changes.

7.7.7 Commiting the changes

With the tests done commit the distfile.base changes (as the services file changes were already
commited).
svn ci Config/distfile/distfile.base
and add your comments.

7.7.7.1 Dealing with commit failures

Sometimes the file check-in fails with the error:

Sending Config/distfile/distfile.base
Transmitting file data .svn: Commit failed (details follow):
svn: Out of date: ’/Config/work/Config/distfile/distfile.base’ in transaction ’10018-1’

This just means that somebody changed distfile.base since you last updated. If you perform
an svn up Config/distfile/distfile.base, you should see:

131

G Config/distfile/distfile.base
Updated to revision 10018.

which indicates that the change in the repository was successfully merged into distfile.base. At
this point you can test the distfile by running another make files-report or make check. Using
svn diff to verify that their changes don’t overlap with your change is also useful (although svn
will usually report a conflict in this case). svn log -v distfile.base is also useful to see what
the reason was for the other update(s). You can also use svn diff to see all the changes from the
prior revisions listed in the log compared to your current revision. If the changes merged in look
compatible, check in the merged file.
Sometimes you end up getting a conflict where the other users changes overlap your changes. In
this case I refer you to the subversion documentation on Basic Work Cycle
(http://svnbook.red-bean.com/en/1.1/ch03s05.html) so you can resolve the conflict and
check in the new file.

7.7.8 Pushing the files

On an DACS master server use /config/Rdist -S c -v etc to update the CCM tree and run
the update against the hosts without actually pushing the changes to the hosts. You should see a
bunch of updates for /config/etc/services/services being pushed out.
Since we believe the services file is correct, use /config/Rdist -S c etc to push the files.

7.8 Configuring Solaris Zones or VMware guest OS

In DacsDatabase the use of the base keyword to tie together multiple machine entries
representing different interfaces/names for a host is described.
One might try to use that for virtual machines or Solaris Zones as well. However Solaris Zones or
VMware servers aren’t tied to the base hardware in the same manner. I.E. the global zone/host
system doesn’t know anything about the child zone or guest server’s ip addresses. A guest OS in
VMware doesn’t even have the have the same hardware configuration as that is abstracted by the
virtual machine.
To represent these types of dependencies, don’t use the base inheritance mechanism and instead
use either:

• a cluster value: global_zone_s1_example_com or vmware_s1_example_com for all the child
zones or guest hosts that run on the host s1.example.com.

• or linked service/uses keys

To use linked service/uses keys for a VMware host os create a VMWARE_1 service to identify the
first VMware host instance. Then assign that service to the host running the VMware host os.
Then create a VMWARE_1 uses value and assign the VMWARE_1 uses value to each guest os/server.
This method should also work for Solaris Zones as well. To answer the question: If I take the
master host offline what hosts/zones do I impact, you can simply query he database for the hosts
that use VMWARE_1.

132

http://svnbook.red-bean.com/en/1.1/ch03s05.html

7.9 Configuring MASTER/STANDBY services

In many cases a service can run on multiple systems and handle a local site or some particular
group of clients (e.g. a local DNS server). However there are also services that run in a cold
backup mode and are configured to be started only when the master isn’t going to run. This is an
example setup of such a master/standby configuration.
(The standby service can also be called a slave service. However DACS uses the term slave to
describe any distfile class derived from a uses key. So to prevent confusion and make it a little
more explicit that the second service isn’t running, the term standby was chosen.)

7.9.1 Conditions

The host box01 run a service that copies files from a remote location to a number of hosts.
Initially this was set up with the DACS service name COPYME. Now we want to deploy a
backup service in case box01 dies. To prevent duplication of work by pulling the files over a slow
WAN connection, box03 is set up with the same service, but the service is disabled. We want to
keep all the config files for the service up to date on box03 to allow fast activation of the service,
but it should have the service disabled.

7.9.2 Implementation: single master, disabled standby

The service name in DACS was COPYME when it existed only on box01. We will reuse that
name since installation of files etc, is associated with the class COPYME HOSTS. However we
add a modifier to distinguish between the master and standby instances.
In dbreport replace the original COPYME service value with two values:

• COPYME MASTER

• COPYME STANDBY

Replace the COPYME service tag with COPYME MASTER in the services entry for box01 in
the DACS database. Add COPYME STANDBY to the services entry for box03 in the DACS
database. Any files that have to be pushed to both the hosts should be distributed to the
COPYME HOSTS class in distfile.base. This will most likely be the case from the initial setup.
To prevent the services from activating/starting, you change the services/DACS/template.fpp to
read:

#if "SERVICES" =~ /\bCOPYME_MASTER\b/
copyme service
#endif

to enable it only on the MASTER server. If the server is configured to restart the service on
reboot, DACS will catch it and complain.

7.9.3 Enabled, but idled standby

Some services require some processing before it is able to take over. If the service is designed to
take input, build up state and not emit anything until it is signaled, or an external file is changed
to a given value, we have another way of activating the service.
On both the master and standby the service is running so in DACS/services/template.fpp add:

133

#if "SERVICES" =~ /\bCOPYME_/
copyme service
#endif

to enable it on both the MASTER and STANDBY.
Then you want to either:

• push a different file based on whether the server is in MASTER or STANDBY mode.

• create/delete a file based on whether the server is in MASTER or STANDBY mode.

If you want to push different files use:

$C/.../masterfile -> ${COPYME_MASTER_HOSTS}
SAVEINSTALL(/file/location,...);

$C/.../standbyfile -> ${COPYME_STANDBY_HOSTS}
SAVEINSTALL(/file/location,...);

in distfile.base.
If you want to create a file on the master and delete a file on the standby use:

masterfile -> ${COPYME_MASTER_HOSTS}
SAVEINSTALL(/file/location,...);

standbyfile -> ${COPYME_STANDBY_HOSTS}
FORCERUN;
cmdspecial "rm -f /file/location";

One variant on the create/delete file mechanism is to delete the file from every host, not just from
STANDBY hosts:

standbyfile -> ${ALL_HOSTS}
FORCERUN;
cmdspecial "rm -f /file/location";

this incurs a penalty because it runs a command on every host, but it also make sure that a host
that has had the COPYME MASTER service removed from it (rather than changed to
COPYME STANDBY) is put into standby mode.

7.9.4 Multi-master variant

You may also have multiple masters for a service. One running per cluster of systems. E.G. you
may have two offices, Miami and LA and each needs a master and a standby service.
To handle this use service keys:

• COPYME MASTER1 (for the Miami master)

• COPYME MASTER2 (for the LA master)

• ... (if you had a third site)

134

for the standbys, you can either number them

• COPYME STANDBY1 (for the Miami standbys)

• COPYME STANDBY2 (for the LA standbys)

• ... (if you had a third site)

or just use a single COPYME STANDBY key.
If you have to push different files in the two sites, you can push Miami files using the distfile rules

• miamifile -> ${COPYME_MASTER1_HOSTS} + ${COPYME_STANDBY1_HOSTS}
pushes miamifile to both sets of hosts.

or

• miamifile -> ${COPYME_HOSTS} + ${miami_C_HOSTS}
push to any COPYME host but just members of the Miami cluster.

The second one is considered easier to understand since it is more obvious what site is being
accessed. You don’t have to remember that site 1 is Miami.

7.9.4.1 Advantages

Setting up master/standby servers this way has a few advantages since the information is
included in the database.
If you want to see what machines are running MASTER services, run:
dbreport -l -s ’services:/_MASTER/|isbase:/yes/’
If you want to include a list of all services on any host running a MASTER service run:
dbreport -f machine:services -s ’services:/_MASTER/|isbase:/yes/’
If you want to make sure that only one master service is configured for the single master case:
dbreport -l -s ’services:/COPYME_MASTER/|isbase:/yes/’ will return only one host. Take
that command and run it through wc -w to see the number of words (one word per host) and
verify that there is only one.
For the multi-master case, you can check each MASTER[N] case individually:
dbreport -l -s ’services:/COPYME_MASTER1/|isbase:/yes/’
or you can select each site or cluster
dbreport -l -s ’services:/COPYME_MASTER1/|cluster:/mia1/|isbase:/yes/’
and verify that there is one host. Note that this also verifies that the right multi-master tag is
assigned to a host, if COPYME MASTER1 was assigned only to a TOKYO host, the query
above would return no hosts indicating a problem.
You can also verify that there is (at least) one standby configured at each site using:
dbreport -l -s ’services:/COPYME_STANDBY1/|cluster:/mia1/|isbase:/yes/’
and checking for one or more hostnames.
These tests can be added to the Makefile for the service, or to the Makefile for the distfile to run
these sanity checks on distribution of services or any distribution.
However there is a caveat to adding these sanity checks automatically. Suppose you are moving
the COPYME MASTER service from box1 to box4. You may want to have COPYME MASTER

135

enabled for both boxes temporarily during the transfer (to make sure you don’t accidentally shut
down the service on box1 before box4 is ready). If you enforce a single MASTER in the Makefiles,
you need to temporally disable the check otherwise DACS will prevent the file distribution
because of the error.
Properly ordering the changes:

1. Move the COPYME MASTER from box1 to box4 in the database

2. Manually disable the service on box1 if desired

3. Rdist to box4 to bring its service on line

4. Rdist to all other systems except box1 to set up any client side changes that need to be
done for the MASTER changeover

5. Rdist to box1 to disable and unconfigure its COPY MASTER service

will permit the safety checks to be left in place and allow an orderly move of the service. However
it may be more efficient to structure the move in some other way.

7.10 Configuring dynamically reconfigurable services (firewalls,
routing,...)

Dynamic services have an initial configuration file that determines the configuration upon boot
(/etc/routes.conf /etc/sysconfig/iptables.conf ...). However command line utilities are provided to
change the configuration while running without updating the configuration file. As a result
verifying the configuration file doesn’t verify the running configuration.
The firewalls mechanism provides a closed loop control mechanism that can detect and report
changes to the running firewall service. Some other systems provide an open loop control
mechanism which is not as resilient and can result in an incorrect set of firewall rules remaining
deployed on the system.
To implement closed loop verification in DACS you need to perform four steps:

1. Create or use an existing file that has a standard format to record the running configuration
and that can be used to load the configuration on reboot.

2. Generate in DACS a copy of the file(s) in 1 from your managed configuration files using the
build system

3. Run a pre-command from DACS/Rdist that dumps the current state of the service to the
file(s) in 1.

4. Set up a DACS rule to compare your generated file (in 2) to the file that was updated in 3.
If the compare fails, the file will be overwritten and a command can be executed to
implement the new configuration.

To allow the operator to determine what will change if a configuration is pushed, we shall
implement a verification rule as well. The details of doing this will be discussed below in the
context of manipulating iptables firewall rules running on the Centos Linux distribution. Since

136

all/most Linux iptables installations include the commands iptables-save and iptables-restore this
should be adaptable to most systems.
The DACS distribution includes an example firewalls directory with a representative template file
called template.fpp and a Makefile to generate per-host firewall config files.

7.10.1 Implementing the file update rules

This is one of the most complex examples because the firewall configuration consists of a standard
DACS component and remotely managed firewall tables that are updated dynamically and these
updates must be preserved across firewall updates that are generated from DACS.
All the build machinery for the file updates is also used for the verification rules so the section on
verification rule implementation is much shorter.
This build machinery is complex because it creates a file for each individual host that receives a
firewall configuration and uses the caching mechanism discussed in DacsBuild to cut down on
processing time.
If you don’t understand this the first time though, don’t worry about it. Chances are you don’t
need it yet. But by the time you do need it and understand it you will be well on your way to
DACS mastery.

7.10.1.1 Identify Configuration File

In the case of iptables on RedHat/Centos systems the initial file is /etc/sysconfig/iptables.
This is the file we will be updating as part of a configuration installation. It is the output of
iptables-save and consists of a series of arguments to be passed to iptables.
We will create a new top level directory firewalls in the DACS CCM to hold the firewall rule
files. This also means that we will create an automatic label in distfile.base called firewalls to
push these files.
The goal is to produce a copy of /etc/sysconfig/iptables for each host from DACS. This can
then be compared to the copy of that file generated from the actual running firewall rules.

7.10.1.2 Generate a copy of the configuration file in DACS

There are 4 files we need:

• Makefile - drives the build mechanism

• template.fpp - processed once for each host to generate the per host firewall rules.

• geniptables-save - a shell script that is used to generate the startup firewall rules file from
the running configuration preserving local table modifications.

• local-firewall-restore - a shell script that restores the local modifications to a running
firewall.

and two subdirectories

• dist - to store the generated firewall files

• .sum - a work directory for the caching mechanism. See the DacsBuild caching section for
more information.

137

Filepp is used to generate per host firewall rules from the template.fpp file based on what services
a given host is supposed to be running. The service list is determined from the DACS database
and is cached to allow faster operation.
If you are not familiar with the output from iptables-save, a quick summary can be found at:
http://www.faqs.org/docs/iptables/iptables-save.html
A portion of the the template.fpp file:

*filter
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [0:0]

#if "SERVICES" =~ /SSHDEXT/
:BLACKLIST - [0:0]
#endif

:IN - [0:0]

...
ssh rules for ssh blacklist
#if "SERVICES" =~ /SSHDEXT/
-A INPUT -p tcp -m tcp --dport 22 -m state --state NEW -j BLACKLIST
#endif

This file is processed for every host that gets its firewall from DACS. The SERVICES filepp
macro is a list of services that run on that host.
The first if clause looks to see if the host is running the SSHDEXT service that permits ssh access
from the Internet. If it does, then it defines an iptables table called BLACKLIST.
Then it always defines the default iptables table called IN. Then we see another rule that is
output if the host is running SSHDEXT and this rule is added to the default IN table and it
activates the BLACKLIST table rules if a new ssh connection comes in. So for a host providing
the SSHDBLACK service we will have as output:

*filter
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [0:0]

:BLACKLIST - [0:0]

:IN - [0:0]

-A INPUT -p tcp -m tcp --dport 22 -m state --state NEW -j BLACKLIST

So adding new rules to this list is as simple as:

• test the rule on a host

• run iptables-save to output the canonical form for the rule

• paste the canonical form for the rule in the proper place in template.fpp and

138

http://www.faqs.org/docs/iptables/iptables-save.html

• optionally setting up a filepp conditional around the line that controls when the rule is
imposed.

The processing that this file undergoes is a bit more extensive and includes replacing cdir (/24)
notation (which is easy to type) with the netmask format that iptables-save(*) uses in it’s
canonical form. It also removes blank lines and does other formatting fixups (like appending a
blank space). But by the time the processing is done we have a file that is identical to what
iptables-save will generate when it is running the proper ruleset. The details of the processing are
documented in the sample Makefile and scripts.
(*) Really what is saved by geniptables-save but ...
——
Another stanza in the template.fpp file is:

#####P* iptables/snmp, iptables/port/161
POLICY
Access list for snmp servers
APPLIES TO
all hosts
SYNOPSIS
Allow access to snmp servers from cacti and nagios servers.
DESCRIPTION
Allow access to port 161 from cacti and nagios servers.
#####
#foreach SNMP_IP SNMP_COLLECTOR_IPS
-A IN -s SNMP_IP -p udp -m udp --dport 161 -j ACCEPT
#endforeach

Now you may have figured out that SNMP COLLECTOR IPS is a macro that is supposed to
have the IP addresses of the machines that collect SNMP data (nagios and cacti servers). But
where does that come from?
Well at the top of template.fpp is the following filepp statement:

#include "filepp.classes"

The filepp.classes file consists of definitions of network information from multiple hosts like:

• a list of the IP’s of all the DNS servers

• a list of the IP’s of all the SNMP monitoring hosts

all of this information is combined with information about the host that we are building the
firewall rule set for.
In the Makefile the rule to make filepp.classes is:

create filepp.classes by concatenating the contents of each
explicitly named cache file, using the cache file name as the macro
name to be defined.
filepp.classes: $(per_cache_sum_files) $(ALL_MAKEFILES)

@[-n "$$MAKE_DEBUG"] && set -xv; set -e; \
for i in $(CACHE_FILES); do \

139

echo -n "#define ‘basename $$i‘ " >> $@.tmp; \
tr ’\n’ ’ ’ < $$i >> $@.tmp; \
echo >> $@.tmp; \

done
mv $@.tmp $@

make.sum/filepp.classes build filepp.classes
.sum/filepp.classes: filepp.classes

@$(UPDATESUM) $@ $?

The first rule builds filepp.classes by looping over each file (in the variable ”CACHE FILES”)
using the file name as the macro name. The contents of the file are used as the value of the
macro. So the file: .cache/SNMP_COLLECTOR_IPS with the contents:

s1.example.com
s2.example.com
s4.example.com

creates the definition:

#define SNMP_COLLECTOR_IPS s1.example.com s2.example.com s4.example.com

The first rule also uses some magic that isn’t shown here, but that dynamically creates rules of
the form:

.sum/SNMP_COLLECTOR_IPS: .cache/SNMP_COLLECTOR_IPS
@$(UPDATESUM) $@ $?

that makes filepp.classes (indirectly) depend on .cache/SNMP_COLLECTOR_IPS using an md5
mediated cache. See the DacsBuild.txt for detailed information on how the md5 mediated cache
works.
The second rule in this snippet will trigger an update of filepp.classes if
.sum/filepp.classes needs to be made.
Now how is the file .cache/SNMP_COLLECTOR_IPS created? The Makefile rule:

.cache/SNMP_COLLECTOR_IPS: $(DB) $(ALL_MAKEFILES)
$(DBREPORT) -f ip \

-s ’rdist:/yes/|services:/\bCACTI|NAGIOS[0-9]\b/|isbase:/yes/’ \
$(DB) > $@

builds .cache/SNMP_COLLECTOR_IPS if the DACS database changes or if any of the Makefiles
used to build it change.
So we have a chain going from filepp.classes to it’s components one of which is
.cache/SNMP COLLECTOR IPS.
Now what triggers building the filepp.classes file? Well the Makefile rule that generates each per
host output file is:

140

dist/%: template.fpp $(ALL_MAKEFILES) .sum/% .sum/filepp.classes
@echo Building iptables list for $*
@umask 077; [-n "$$MAKE_DEBUG"] && set -xv ; set -e; \
filepp -w -o $@.tmp -m foreach.pm $(HOST_CACHE)/$* template.fpp && \
sed -f cleanup.sed $@.tmp > $@.tmp2

@mv $@.tmp2 $@
@rm -f $@.tmp $@.tmp2

Whew. Ok, this looks pretty bad, but this isn’t as bad as it seems. What you need to see are:

• the output file (dist/% for some hostname replaced with %) depends on .sum/filepp.classes.

• .sum/filepp.classes depends on filepp.classes (from the prior makefile snippet)

• filepp.classes depends on .cache/SNMP COLLECTOR IPS (indirectly via
.sum/SNMP COLLECTOR IPS)

• the file .cache/SNMP COLLECTOR IPS depends on the database and makefiles.

So in generating the per host files we traverse the dependency chain and incorporate any database
changes into the per host configuration file.
Why do it this way? Well the filepp.classes information is used to generate rules that allow access
from hosts running particular services to other hosts. E.G.

• allow snmp data collection

• allow dns packets to pass through

By doing it this way I can deploy a new cacti server, nagios server or dns server and push the
firewalls label and all the hosts will automatically allow access for the new server. I don’t have to
remember to edit the firewall rules as everything is driven off the database.

7.10.1.3 Collect the Currently Running Config Using DACS/rdist

Rdist can run any command as part of a special or cmdspecial directive. However there must be a
file installed in order to run anything. Using the filepp macros, a file installation can be forced
using the FORCERUN macro. For example (wrapped for display section 6.4.5):

#foreach HOST FILEPP_FEDORA_HOSTS FILEPP_CENTOS_HOSTS
update the iptables file from current kernel config.

firewalls:
$C/.empty_file -> (HOST) - ${NOFIREWALL_SLAVES}

FORCERUN;
cmdspecial "/etc/config/bin/geniptables-save > \

/etc/sysconfig/iptables RDIST_SPECIAL_FILTER";

Where NOFIREWALL SLAVES is generated from the database (uses ... NOFIREWALL ...)
and contains hosts that either do not have a firewall or use a manually maintained firewall. In
either case they should not get this DACS provided firewall.
This is an example of a pre label or pre stanza. Thus this stanza must share the same target
name (firewalls) as the stanza in the next section, and it must occur before the next stanza in the

141

distfile. The rdist command runs the stanzas in the same order as they exist in the distfile.
$C/.empty file is just a zero length file. It could be a real file, it would just take more time to
transfer a non-zero length file.
The executed command (/etc/config/bin/geniptables-save in this case) is responsible for
transforming the command used to dump the running state (iptables-save in this case, but it
could be /sbin/ip route if you were managing routing tables via DACS or some other command
for other dynamic services) into the form that is generated by DACS.
Note also the filepp foreach loop that starts in this block. For each host running the CENTOS or
FEDORA operating system, it outputs one copy of the stanza replacing the HOST macro with
each machine name. So the output looks like:

firewalls:
$C/.empty_file -> (a.example.com) - ${NOFIREWALL_SLAVES}

FORCERUN;
cmdspecial "/etc/config/bin/geniptables-save > \

/etc/sysconfig/iptables RDIST_SPECIAL_FILTER";

and so on for each host.

7.10.1.4 Push the DACS configuration file to the remote system/reload service

Once we have updated the file from the running config, we push the DACS generated file to the
system if it is different. Note that we use the compare option since running the geniptables-save
command as part of the pre label will have changed the datestamps on the file. If the compare
fails, the file is updated and the cmdspecial commands are run.

firewalls:
$C/firewalls/dist/HOST -> (HOST) - ${NOFIREWALL_SLAVES}

SAVEINSTALL(/etc/sysconfig/iptables, 3, compare);
BACKUP(3);
cmdspecial "/etc/init.d/iptables restart";
cmdspecial "/etc/config/bin/local-firewall-restore";

#endforeach

Here we see the end of the foreach loop that was started in the prior section.
Sample output for one host would be:

firewalls:
$C/firewalls/dist/a.example.com -> (a.example.com) - ${NOFIREWALL_SLAVES}

SAVEINSTALL(/etc/sysconfig/iptables, 3, compare);
cmdspecial "/etc/init.d/iptables restart";
cmdspecial "/etc/config/bin/local-firewall-restore";

Here we see the firewall configuration file for the host a.example.com
($C/firewalls/dist/a.example.com) pushed to /etc/sysconfig/iptables only if the files are different.
Because we have locally maintained parts of the firewall config (e.g. the dynamically added rules
in the BLACKLIST that corresponds to ssh login failures), the geniptables-save script splits the
running firewall setup into two parts:

• DACS controlled (in /etc/sysconfig/iptables)

142

• locally controlled (in /etc/sysconfig/iptables.local rules)

the first cmdspecial command loads the DACS maintained rules. The second cmdspecial merges
in the local rules (saved by the run of geniptables-save) for the tables currently defined in the
DACS controlled iptables config.

7.10.1.5 Test/Check in the changes

Running make in the firewalls directory should create all the firewall files in the dist directory.
You can run geniptables-save on the hosts and diff the output against the generated files to verify
that they are correct.
When you are satisfied with the generated firewalls you can run:
svn ci Config/distfile/distfile.base firewalls
to check-in the changes. Then you need to prime the new firewalls directory by running:

cd /config
sudo env -i /usr/bin/svn up firewalls

Then you can run sudo /config/Rdist -v firewalls if you want to do some more testing, or
just run sudo /config/Rdist firewalls to push the new firewalls.

7.10.2 Implement file verification rules

The firewalls-verify rules is implemented similarly to the firewalls rules except the file that is
updated is not used by the operating system. This is consistent with the requirement that -verify
targets never make operational changes to the system. So it should always be safe to run -verify
targets.
Since we want to report differences between the DACS and local config, we need two files:

• the DACS file is installed in: /tmp/iptables.config rather than
/etc/sysconfig/iptables

• then currently running config is dumped to /tmp/iptables.current.

Now we have to force the update of /tmp/iptables.current and the generation of the diff. We
can do this in a single stanza with:

firewalls-verify:
$C/firewalls/dist/host.example.com -> (host.example.com) - ${MANUAL_FIREWALL}

FORCERUN;
install -ocompare /tmp/iptables.config;
cmdspecial "umask 077; /etc/config/bin/geniptables-save > \

/tmp/iptables.current RDIST_SPECIAL_FILTER";
cmdspecial "diff -u /tmp/iptables.current \

/tmp/iptables.config; \
if [$? -eq 2]; then exit 2; \
fi RDIST_SPECIAL_FILTER";

143

The FORCERUN filepp macro forces the cmdspecials to run regardless of whether
/tmp/iptables.config is up to date or not. Cmdspecials are always run after all files have been
installed, and they are run in order, so we get:

1. push $C/firewalls/dist/host.example.com -> some random file. This is always pushed.

2. push $C/firewalls/dist/host.example.com to /tmp/iptables.config if the files are
different. This will push the file only if the client file is different.

3. execute cmdspecial to dump the running config to /etc/sysconfig/iptables.current (and filter
this command from the report due to the addition of RDIST SPECIAL FILTER). This will
always occur due to 1.

4. execute diff. If there are differences, diff exits with exit code 1. Suppress the non-zero exit
code unless it exits with exit code 2 (something went wrong, missing file, permissions error
etc.)

the output is in unified diff format where a leading - sign means the line will be deleted, a leading
+ sign means the rule will be added and a leading space means the line is unchanged and just
provides some context around the changed lines.
Sample output from running sudo /config/Rdist -S v -m a.example.com firewalls-verify
looks like:

a.example.com: --- /tmp/iptables.current 2008-12-04 19:46:59.941823400 -0500
a.example.com: +++ /tmp/iptables.config 2008-12-04 19:44:16.904700900 -0500
a.example.com: @@ -30,11 +28,11 @@
a.example.com: -A IN -m state --state RELATED,ESTABLISHED -j ACCEPT
a.example.com: -A IN -i lo -j ACCEPT
a.example.com: -A IN -p icmp -m icmp --icmp-type any -j ACCEPT
a.example.com:--A IN -p tcp -m tcp --dport 22 -m state --state NEW -j ACCEPT
a.example.com:+-A IN -s 192.168.0.0/255.255.0.0 -p tcp -m tcp --dport 22 -m state --state NEW -j ACCEPT
a.example.com: -A IN -s 192.168.12.13 -p udp -m udp --dport 161 -j ACCEPT
a.example.com: -A IN -s 192.168.9.20 -p udp -m udp --dport 161 -j ACCEPT

Which shows that the next update will remove a rule (look for the ’–’ in the 7th line from the
top) that allows ssh access from everywhere and replaces that rule (look for ’+-’ at line 8) with
one that permits ssh access only from 192.168.0.0/16.

7.11 DACS Invocation tips

There are a number of useful functions that you can use to generate lists of hosts by:

• the values to the cluster keyword

• the values to the service keyword

• the values to the uses keyword

The bash shell definitions are:

144

bysite ()
{ # select by site value in the cluster keyword

SITE=$1;
shift;
HOSTS=‘dbreport -l -s "rdist:/yes/|cluster:/${SITE}/" "$@"‘;
if [-z "$HOSTS"]; then

echo "no hosts";
return 1;

else
echo $HOSTS;

fi
}
bysrv ()
{ # select by service value in the services keyword

SERVICE=$1;
shift;
HOSTS=‘dbreport -l -s "rdist:/yes/|services:/${SERVICE}/" "$@"‘;
if [-z "$HOSTS"]; then

echo "no hosts";
return 1;

else
echo $HOSTS;

fi
}
byuse ()
{ # select by uses value in uses keyword

USES=$1;
shift;
HOSTS=‘dbreport -l -s "rdist:/yes/|uses:/${USES}/" "$@"‘;
if [-z "$HOSTS"]; then

echo "no hosts";
return 1;

else
echo $HOSTS;

fi
}

These can be used to do some simple host selections. For example if you want to distribute files
to just APACHE servers, you can use:

/config/Rdist ... -m "‘bysrv APACHE‘"

which is easier than specifying each host using individual -m options. To update just the hosts at
the lax1 site:

/config/Rdist ... -m "‘bysite site_lax1‘"

To update hosts that use LDAP:

/config/Rdist ... -m "‘byuse LDAP‘"

145

You can also use these functions in shell scripts entered at the command line as well. If all your
hosts run sshd and you want to run a command on all the hosts you can run:

for host in ‘bysrv SSHD‘
do
ssh $host some command

done

7.12 Renumbering a network and a caution about automation

A number of years ago I heard about a modified version of Config (the DACS precursor) that was
used to manage the renumbering of an entire network of hosts (approx. 1000). As a result of this
discussion the current inheritance (via the base keyword) and the support for Ethernet interface
names (enet if) was added.
They set up Config to manage network interfaces with netmasks, routes and IP addresses. To
perform the changeover they renumbered the entire network to it’s final state in the database and
checked in the changes. Starting from the point furthest away from the Config master they
updated the hosts and activated the new address configuration by rebooting the hosts
At this point they were unable to contact those hosts until the entire readdressing was done as
the hosts did not have valid routes or other network connectivity back to the Config master host.
They continued to push out the configuration changes to other hosts and network devices getting
closer to the configuration master until the final set of systems and devices were reconfigured.
At which point all the routes established in the Config system were active and the systems started
coming on line. Apparently they lost only a handful (10-20) machines some of which failed on
reboot. I claim their success had much more to do with the disciplined preparation and inventory
of systems and networks than the Config tool. Indeed I would be scared to try that myself and
they may well have succeeded despite Config tool. However Config provided a structure and plan
of operation for the conversion which may have resulted in their high degree of preparation.
However their deployment does bring up one particularly important issue. Because all of the
information in DACS is contained in the database, you can get a final configuration that won’t
work until all of the parts are deployed. Hence the order of deployment is critical and must be
actively managed. E.G.

[Config Master] -> [router] -> [client host]

what happens if the router gets it’s new network configuration before the client host? At that
point the client host is unreachable and will never be able to get the proper configuration update
from DACS.
There are three choices:

• roll back the configuration in the VCS and put the router back to the way it was before the
update to establish connectivity to the client host. Then roll forward the configuration so
that the Config master now has the new client configuration to use to update the client host.

• manually reconfigure (which required a trip to a remote site) the client host to re-establish
enough connectivity to allow DACS to push a full update.

146

• manually reconfigure the router (which should still be accessible from the DACS master
host I hope) to re-establish connectivity.

From what I understood, the automation they had in place obtained the default route for a host
from the IP address assigned to the router on that subnet. So simply changing the IP address on
the router interface also updated/added default routes for the clients. So to get the right default
route on the client host, you modified (one of) the router’s IP address which means that the
router configuration was also updated in Config to impose the new address. There was no easy
way to create a configuration state where the router had it’s original IP address but the client
hosts got the new router IP address.
Because of this coupling, the order of updates had to be carefully managed. Fortunately using -m
and --exclude (their idea) along with labels they succeeded.
But what does this mean for the less adventuresome?
Looking at the ntp deployment example earlier in this section, what happens if you move the
NTP1 token from s1.example.com to s7.example.com and then update the ntp configuration on a
client host (say a1.example.com)?
Well a1.example.com will look at s7.example.com for it’s ntp service, but s7 doesn’t yet have the
proper configuration to provide that service. It will work itself out eventually, and in this case s7
is merely one of three servers so operationally there are still two valid servers. But the problem of
creating two dependent configurations from a single change still stands.
We can work around this issue in DACS by deploying to s7.example.com first (then to the
NTP2/NTP3 servers) and then deploying to the NTPCLIENT SLAVES. Which avoids the
problem by establishing the NTP services before the client use those services.
However if we manually maintained the ntp client configuration, you could check-in the database
change and no client configurations would change. Then once the server was configured you would
change the client configuration and let everything update.
Having to check-in the intermediate states of the network to the VCS to perform this staged
deployment is one solution to the problem, but also one that prevents a high degree of automation.
Another solution is to have some sort of validation mechanism so that the generated client
ntp.conf is recognized as invalid and is not activated until the s7.example.com server is
synchronized and responds to ntp requests.
I am not sure which is better:

• the ability to explicitly order configuration changes

• the ability to stage intermediate configurations

• the ability to verify invalid updates and not apply them

or if there is an even better way of handling this issue that:

• preserves the high degree of automation without the planning burden associated with
having to find an explicit ordering for the updates

• reduces the risk of having incorrect/incomplete configurations caused by lack of automation
and storing duplicate information in multiple locations

147

• eliminates the effort required to write/test/execute validation mechanisms for each
individual configuration file and file option before applying them

(Note: if anybody recognizes this story, or the gentleman (possibly named Peter) who came to a
laser show at the Brevard Community College planetarium in Cocoa, Florida in 1999. Please get
in touch with me as I would like to be able to attribute this properly and be able to gather
further details.)

148

Chapter 8

Advanced Topics

This includes some advanced topics not covered elsewhere.

8.1 Using multiple DACS master trees

There are four reasons to use multiple master trees:

• Split production/work

• Redundancy

• Load Distribution

• Test trees (per admin trees)

Split production/work trees are used when implementing a process for moving tested changes to a
production network.
Redundancy is useful in recovering when the main DACS server goes down, or when you have
multiple networks or sites and you want to be able to use DACS even if you lose connectivity
between networks.
Load distribution is still a work in progress but is designed to handle the scaling issues of DACS
to larger networks.
Test trees are used to limit access of DACS to particular hosts in the network. It can also be used
to allow DACS to scale to multiple admins in the cases where there is extensive DACS update
traffic.

8.1.1 Split production/work CCM master trees

Some sites don’t permit changes to be pushed to production without a QA/change review. DACS
can work in this mode, however with subversion it is somewhat problematic. The workflow is
described for subversion in Workflow in a split test/production implementation section 4.5.1 in
the DACS Vcs chapter.
That section also describes the issues involved in implementing this using CVS.
This senario uses multiple master trees similar to the test trees discussed below. The major
difference between the multiple master in this senario and the others in this section is that the

149

source for the files in the split production/work master trees are selected/updated based on
different criteria.
In the subversion case, the work master tree where testing is done and check-ins occur is not the
source for the production master tree. Files are promoted from the work master tree to the
production master tree using a seperate process that can include QA steps.
In the ”Test trees” senario below, all the masters share the common work tree, so changes that
are checked in will propigate to all the trees.

8.1.2 Redundancy

What happens if your only DACS master machine dies? Well you can recreate it from backups
and possibly from individual admin’s check out trees. However it is useful to have an automatic
mechanism for maintaining a backup DACS master.
If your DACS master host has the service: DACS1, and your backup masters host(s) have the
service: DACS2. Adding a rule similar to (wrapped for display section 6.4.5):

#if "THISHOST" eq "FILEPP_DACS1_HOSTS"
POSTINSTALL-ACTIONS:
$C/.empty_file -> ${DACS1_HOSTS}

FORCERUN;
cmdspecial "for host in FILEPP_DACS2_HOSTS; do \

rsync -a --delete --delete-excluded --exclude .locked/ \
-v /config/. $host:/config/. 2>&1; \

ssh $host touch /config/Config/database/db; done";
#endif

makes any Rdist of the master sync itself to the client hosts.
It uses rsync rather than a nomal rdist install command because rsync is a faster method of
pushing the tree. But if you use the most restrictive ssh setup, then you will have to use the
slower method by using rdist directly:

#if "THISHOST" eq "FILEPP_DACS1_HOSTS"
POSTINSTALL-ACTIONS:
$C -> ${DACS2_HOSTS}

install -o numchowner,numchkgroup,remove,quiet /config;
except_pat (.locked)
cmdspecial "touch /config/Config/database/db";

#endif

which updates the backup master hosts any time Rdist to the backup hosts occur.
The Makefile supplied in the distribution creates the THISHOST macro. The #if filepp command
makes sure that THISHOST is the host that is defined as the DACS1 (i.e. master) host. This makes
synchronization occur only from the master to the backups (because this rule will be not be
present on any Distfile generated on the bckup servers).
We exclude any directories called .locked as they are the locks put in place by the running Rdist
and we don’t want to replicate the locks to the unused replica filesystems.
The touch of the db database makes sure that a full rebuild occurs (including the Distfile). Thus
the Distfile on the backup system will be rebuilt if it is used to distribute files.

150

The install command will make a backup copy of the whole tree to one or more machines. Now
certain configuration files on the clients like:

• root’s /.ssh/authorized hosts file

• hosts files

and maybe some others depending on your local setup will have to be modified to allow both the
primary and backups DACS masters to ssh in as root on the clients.
Don’t make the mistake of thinking that you can use DACS to switch to the backup DACS
master server. This works only when you have a controlled changover. If you have switch due to a
machine crash you will be out of luck.
The default distribution includes distributing the id rsa key file from the master DACS host to
master and standby DACS replicas so that key changes from the master will propigate to the
standby replicas. You may wish to use different keys for each DACS replica.
If you are using the rdist install command to maintain your backup servers, note that it doesn’t
save backups because the backup files would cause an Rdist to fail. It uses remove to delete any
files that have been removed from the master tree. It also uses numchkowner and numchkgroup so
that it creats a uid/gid identical copy of the files. If your master has a different uid/gid mapping
from the backup you will have issues. However if you maintain constant uid/gid mappings even if
the backup server is missing some mappings the sync will still work right. However you should
maintain identical configurations of

• password and group files

• installed software (filepp, make ...)

among the backup masters.
You will also want to replicate your svn repository. More info on this is located in DacsAppendix.
Also there are some excellent articles on the web about using subversion replication, or you can
use rdist after locking the repository from check-in to make sure you get a consistant copy. If you
lose your svn repository you will need to perform an svn switch operation as root to move to the
backup svn repository before you run Rdist from the backup server. this is detailed in the
DacsAppendix.
If you are going to maintain backup servers, I strongly urge you to run Rdist -v operations on a
regular basis from all your backups and compare them to the Rdist -v report run on your
master. This can identify failing disks (corrupting data), incorrect setup and other problems
before you find out your backup DACS server won’t work.
Some sites use the VCS mechanism to replicate files rather then pushing a processed tree. In this
case the stanza looks like

POSTINSTALL-ACTIONS:
$C -> ${DACS2_HOSTS}

FORCERUN;
cmdspecial "svn up /config";

this does perform the updates successfully (although it may time out if there is a large number of
files to update). But because the other config tree is totally seperate, the modification dates on

151

the files updated by svn are different. So pushing from that tree will result in regenerating and
upating more files than the method that copies the master CCM tree.
There is one issue with this setup. If the master or backup hosts are not distributed to, then the
updates won’t occur. So if you update some set of hosts that doesn’t include the DACS master,
those updates won’t be distributed to the backup master hosts. One way to handle this is to
create an alias for the master host and modify Rdist to make sure that the host is always
updated. For example add an entry for the machine masterhost to the DACS database, and add
the stanza:

#if "THISHOST" eq "FILEPP_DACS1_HOSTS"
POSTINSTALL-ACTIONS:
$C/.empty_file -> (masterhost)

FORCERUN;
cmdspecial "for host in FILEPP_DACS2_HOSTS; do \

rsync -a --delete --delete-excluded --exclude .locked/ \
-v /config/. $host:/config/. 2>&1; \

ssh $host touch /config/Config/database/db; done";
#endif

to distfile.base. Also add -m masterhost to the definition of ”@DEFARGS” in the Rdist
command. This will distribute to masterhost anytime Rdist is run.
You can do something similar for the DACS2 hosts if you use the rdist ”install” command to sync
the changes.

8.1.3 Load distribution (work in progress)

A similar although different reason for having multiple DACS CCM master trees is to distribute
the load. Since DACS is a push system it can take a while to update thousands of hosts. If you
are running across a WAN, it would be nice to be able to push one copy of the files to each
remote site and update the hundreds of hosts at each site from a local master.
I have not used this setup, but from what I understand the basic idea is to set up replication like
above, and trigger a subset of hosts to run from each location. Then a series of distfile stanzas
like (wrapped for display section 6.4.5):

Distribute:
/tmp/rdistargs -> ${DACSDIST_HOSTS}

install /tmp/rdistargs;

Distribute:
$C -> ${DACSDIST_HOSTS} & ${site_lax1_C_HOSTS}

install -o numchowner,numchkgroup,quiet /config.lax1/. ;
cmdspecial "SUDO_USER=${SUDO_USER}; export SUDO_USER; \

/config.lax1/Rdist ‘cat /tmp/rdistargs‘";

Distribute:
$C -> ${DACSDIST_HOSTS} & ${site_mia1_C_HOSTS}

install -o numchowner,numchkgroup,quiet /config.mia1/. ;
cmdspecial "SUDO_USER=${SUDO_USER}; export SUDO_USER; \

/config.mia1/Rdist ‘cat /tmp/rdistargs‘";

152

Distribute:
$C -> ${DACSDIST_HOSTS} & ${DACSMASTER_HOSTS}

FORCERUN;
cmdspecial "SUDO_USER=${SUDO_USER}; export SUDO_USER; \

/config/Rdist ‘cat /tmp/rdistargs‘";

where /tmp/rdistargs is a copy of the command line passed to the Rdist command except for the
–distribute flag (note the DACS 2.0 Rdist command doesn’t have any of this functionality). The
SUDO USERS variable is needed by Rdist to emulate the environment that would normally occur
when it is run under sudo. It propigates the username of the user on the master system so it can
be used for logging or other purposes.
Then the Rdist command runs ’rdist Distribute’ as a result of being passed the –distribute option
to start the distribution.
Each tree is pushed to a different root location. Then this root location is used an an index into
the %config_roots associative array in Rdist. This array sets arguments for dbreport to limit the
hosts that are returned. If the host is not reported from dbreport, it can’t be updated using Rdist.
As an example you would edit Rdist to add the entry to the %config_roots array

’^/config.mia1$’ => ’|cluster:/site_mia1/’,

to permit only hosts with the site mia1 cluster value if the root of the config tree is /config.mia1.
Thus the miami site’s master pushes only to it’s own hosts.
To pick up the hosts that are not part of any submaster the final Distribute stanza triggers (and
is missing –distribute so it acts just like a normal distribution) you set up an entry:

’^/config$’ => ’|cluster:/site_nyc1/|cluster:/site_bos1/’,

that permits the master DACS server to update all the hosts except the ones handled by the
distributed hosts. Note that besides geographical distribution you could restrict by organization
boundaries using something like ’cluster:/qa/’, ’cluster:/dev/’ etc. (See Test Trees section 8.1.4
for a more descriptive example of changing the %config roots associative array.)
Now while this is doable, the current DACS Rdist is not set up to do it in a reasonable fashion.
Also the reporting of updates is made more confusing by the multiple layers of distributing hosts.
If you are working at a site that has over 300 hosts, you may want to consider an alternate CCM
system to handle these scaling issues.

8.1.4 Test trees

The directory that Rdist is in determines the distribution tree it uses as well as the list of hosts
that it can distribute to.
This is an easy way of allowing junior admins to test changes on a subset of hosts without being
able to push them to all the hosts.
Any directory tree can be set up to limit it’s access to a subset of the hosts in the database.
When running sudo /config.test/Rdist... the only hosts that can be updated are hosts with
the TESTHOST service defined in the database.

153

There is one location for a test tree defined by default. It should be checked out to
/config.test. (See Creating DACS CCM master trees section 9.4 for how to check out a DACS
CCM master tree.)
If you want to check out another tree at say /var/DACS/test you can establish this by modifying
the %config roots associative array. Add a line like:

’^/var/DACS/test\$’ => ’|services:/TESTHOST/’,

after the default line of:

’the_default’ => ’|machine:/NoSuchHost/’,

and before the close parenthesis ’)’.
The line you added consists of a key and value separated by an arrow => . The key is matched
against the path used to call the Rdist command and the value is used to modify the -s option in
a dbreport call. So the |services:/TESTHOST/ addition will only allow the selection of hosts that
have a service TESTHOST.
Note this mechanism DOES NOT prevent somebody with access to all hosts from pushing the
changes done by the junior administrator as both the restricted and full access trees follow the
head version of the same repository.
To prevent a junior admin from checking something in that is not available for production
immediately requires a split work/production senario to be set up in the version control system.
This setup is described above and in Workflow in a split test/production implementation
section 4.5.1.
Since Rdist locks the repository to guard against unsynchronized changes a single CCM master
tree only allows serial access. Using the test tree mechanism (with or without the host
restrictions), multiple admins can work in parallel since each master tree is independent of the
others and the locks done by Rdist are unique to each tree.
In addition this mechanism may be useful when delegating file changes to a third party. If these
file changes are destined for a limited number of systems, a restricted master tree can simplify
allowing that user the ability to change and distribute those files.

8.2 Handling network devices

Handling network devices looks a lot like handling a dynamic service section 7.10 with one twist
as in both cases you need to:

1. Have the device create a file with a standard format that records the running configuration
and that can be used to load the configuration on reboot.

2. Generate in DACS a copy of the file(s) in 1 from your managed configuration files and build
system

3. Run a pre-command from DACS/Rdist that dumps the current state of the service to the
file(s) in 1.

154

4. Set up a DACS rule to compare your generated file (in 2) to the file that was updated in 3.
If the compare fails, the file will be overwritten and a command can be executed to
implement the new configuration.

The trick is that network devices aren’t general purpose computers. The configuration file
generated by step 1 is usually obtained from the console or something insecure like tftp and
requires a login to the device or snmp access or some other method of interaction besides ssh.
Also almost none of these boxes will run rdist (well some linux based terminal servers have a
developer kit which can be used to build an rdist client), so some alterate management
mechanism is needed.
Usually it takes the form of subsidiary scripts that are run on a proxy host. The proxy host is a
host that is a standard DACS client, but that can access the network device.
Let’s look at the setup of just such a proxy using the DACS master host. To do this you create a
dummy hostname for the proxy host. E.G. to manage the device ciscortr01.example.com, you use
the host name: =ciscortr01.example.com.proxy=. Then in your /etc/hosts file use:

127.0.0.1 ciscortr01.example.com.proxy

to push files destined for the Cisco router to the local host.
In the database you use:

Machine = ciscortr01.example.com
ip = 192.168.9.1/24
os = IOS 12.3.6
rdist = yes
services = ROUTER
uses = PROXY

this will place the router in the classes:

• ROUTER HOSTS

• PROXY SLAVES

• IOS HOSTS

• IOS 12.X HOSTS

• IOS 12.X HOSTS

• IOS 12.3.X HOSTS

• IOS 12.3.6 HOSTS

Then you can create rdist stanza’s like (wrapped for display section 6.4.5):

#foreach CISCO FILEPP_PROXY_SLAVES
#if " FILEPP_IOS_HOSTS " =~ / CISCO / && \

" FILEPP_ROUTER_HOSTS " =~ / CISCO /
only applied for PROXY_SLAVES that run IOS and are routers
(i.e. are Cisco routers)

155

pre command to dump the running config
cisco:
$C/cisco/CISCO -> (CISCO.proxy)
FORCERUN;
cmdspecial "/etc/config/bin/cisco-access getrunning \

/dist/cisco/CISCO.config";
if the running config is different from the one in DACS push the
DACS version and update the cisco.

cisco:
$C/cisco/CISCO -> (CISCO.proxy)
SAVEINSTALL(/dist/cisco/CISCO.config, 10, compare);

cmdspecial "/etc/config/bin/cisco-access setrunning \
/dist/cisco/CISCO.config";

cmdspecial "/etc/config/bin/cisco-access setstartup \
/dist/cisco/CISCO.config";

pre command to dump the running config to some alternate location
cisco-verify:
$C/cisco/CISCO -> (CISCO.proxy)
FORCERUN;
cmdspecial "/etc/config/bin/cisco-access getrunning \

/dist/cisco/CISCO.config.verify";

diff the two Cisco configs if they are different. The version
dumped from the router is in the SAVED file.

cisco-verify:
$C/cisco/CISCO -> (CISCO.proxy)
SAVEINSTALL(/dist/cisco/CISCO.config, 10, compare);

cmdspecial "diff -u
/dist/cisco/CISCO.config.verify.SAVED \

/dist/cisco/CISCO.config.verify";
#endif

#endforeach

So we use a pre command to dump the running configuration on the device, if that diferes from
the version in DACS the file is updated and we execute commands to either diff the files (in verify
mode) or put the configuration (in update mode)
The script that talks to the device (cisco-access in this case) can be written in expect, perl or any
other language and can use ssh, telnet or some other protocol to perform the update. Also it can
use information from the database that is generated and pushed using a pre command.
The access command needs the following functions:

get gets the configuration in standard form and saves to a file

set takes the configuration in standard form and loads to the

activate a command to activate what was installed by the set command if set doesn’t activate it
immediately.

verify takes some external information about the device (IOS version, hostname etc) generated
from the database and verifies that it is valid.

156

since some devices differentiate between a running and startup configurations and they can be set
seperately it may be useful to add those as special cases. Also the access command is repsonsible
for any manipulations needed to get the dumped configuration into a standard form (e.g. remove
any datestamps in the output, clear counters if they are included). It may also be responsible
for merging the DACS supplied config and the current running config (which is available in the
.SAVED backup file). An explict difference or change mode may be needed if the device can’t
dump a textual version of the file.
Using a tool like NS4 to build the access methods may be a useful shortcut. Cisco’s lend
themselves to this method of management quite well as they have a text based config that is
easily parsed.
The DACS version of Rdist doesn’t support proxy operation just yet. There are two changes that
are needed to make this work cleanly:

1. in the database add the keyword proxyhost which will hold the proxy hostname (and it can
validate the proxy hostname againt a valid host).

2. change Rdist to substitue for the real hostname the proxyhost name, so it would change
Rist -m ciscortr01.example.com to rdist -m ciscortr01.example.com.proxy when it
calls rdist(1) internally.

These changes haven’t been done yet in any released Rdist version.
Supporting the automatic generation of the hosts file to map proxy hosts to IP addresses can be
done using the standard DACS mechanisms:

Machine = ciscortr01.example.com.proxy
ip = 127.0.0.1/32
os = NS 4.2
rdist = no
services = PROXY

where NS 4.2 indicates that it runs ns version 4.2 and may be useful for further validation.
However generating the hosts file is now as simple as: dbreport -h -s ’services:/PROXY/’.
Note that rdist=no in the database stanza for the proxy. This is fine as the original
ciscortr01.example.com is set up to use rdist, and Rdist (when it has proxy support will)
transparently replace the original host name with the proxy name.

157

Chapter 9

Appendices

The appendicies include operational aspects of DACS that are handled outside of day to day
DACS operation.This includes:

• inital setup and importation of the DACS distribution

• setting up ssh access between hosts

• creating working trees and CCM master trees

• setting up replication

• links to other documentation

9.1 Importing the DACS repository tree

The repository subdirectory of the DACS distribution is designed to become the root of a
repository and it includes support for managing:

• services under linux and solaris

• firewalls under linux

• ntp files

• root id rsa and id rsa.pub keys

• some additional files

as well as a starter set of cluster definitions, a sample database and subversion hooks scripts and
authentication files.
Note that this tree includes id rsa and authorized keys files in the
repository/Config/work/users/root/home/.ssh directory. Although the distributed
distfile.base.examples file has the rule to push these commented out you should replace the
id_rsa* files with new keys by running ssh-keygen -t rsa in the directory, and edit
authorized_keys replacing the distributed public key.
To check the distribution in for personal testing use:

158

svnadmin create /place/for/repository
cd repository
svn import -m "DACS 2.0 import" file:///place/for/repository

then use: svn co file:///place/for/repository/Config/work to get a working tree. Change
into the working tree and run the set_ignore script from the distribution. This will set the
svn:ignore properties on varios generated files. Running set properties will set the svn:owner,
svn:group and svn:unix-mode properties. Then do an
svn ci -m "setting ignore and perms" to commit the changes.
You will be able to browse files, check in changes and generate files. As root you can also check
out a working copy into /config and use /config/Rdist to distribute files once you set up ssh
access.

9.1.1 Subversion hook scripts

The subversion hook scripts are built for an svn+ssh access method and won’t work well when
the file access method is used. But you can check them out and look at them.
If you want to set this up for ssh access, you can move /place/for/repository to the home
directory of your dacsuser in the repo subdirectory. You will need to remove the conf and hooks
directory and check them out:

cd ~dacsuser/repo
rm -rf hooks
svn co file:///home/dacsuser/repo/SVN/hooks .

Similarly for the /place/for/repository/conf tree:

rm -rf conf
svn co file:///home/dacsuser/repo/SVN/conf .

9.1.2 Finish svn setup

Then recursively change the owner of the repository to dacsuser. Chmod 700 the
dacuser/repository directory so only dacsuser and root can access the directory.
In the home directory of the dedicated dacsuser user, set up a dacsuser/.ssh/authorized keys file
so that it runs a forced svn command. There is an authorized_keys.example file supplied in the
DACS release at repository/SVN/conf/authorized keys.example. If it is moved to
authorized_keys the post-commit hook script will copy that file into place so that all the
changes to that file occur under subversion control. You should check out the file and put valid
keys into it for root on the DACS masters and other authorized users of DACS.
The entry will look like:

no-agent-forwarding,no-X11-forwarding,no-port-forwarding,
command="/usr/bin/svnserve -t -r ~user --tunnel-user=fred"
ssh-rsa AAAA... ssh public key for fred ...== user_comment

no-agent-forwarding,no-X11-forwarding,no-port-forwarding,
command="/usr/bin/svnserve -t -r ~user --tunnel-user=admin"
ssh-rsa AAAA... ssh public key for admin ...== user_comment

159

This is split across multiple lines for display. In the authorized keys file, all three displayed lines
must be a single line. Also the path to /usr/bin/svnserv may be different on your machine. ~user
is the path to the parent directory of the owner of the repository.
There is one line for each user of the repository. For example the line with the ”fred” tunnel user
will display name fred in svn log as the author of changes and the name fred is used in the
subversion access control file to authorize access to files in the repository.
An ssh public key can be created using ssh-keygen. The part of the file indicated by:

ssh-rsa AAAA... ssh public key for fred ...== user_comment

is the contents of the id rsa file for that user. Each user should have a unique entry in the
authorized keys file so that there is only one person who is able to authenticate. Without this it is
impossible to assign changes to particular people and the auditing capability of the system is
seriously impaired.
See the section ”SSH configuration tricks” at
http://svnbook.red-bean.com/en/1.1/ch06s03.html in the subversion manual for details on
setup.
If you deploy DACS remember you need to handle backups of the svn repository. See the
subversion documentation for safe mechanisms (using hot-backup.py) to do this.

9.2 Setting up ssh access from the master to clients

The rdist version 6 program uses ssh to provide remote access to other systems. This section
describes two different mechanisms for setting up ssh to permit rdist to access files and run
remote commands. The first method is more restrictive than the second, but the second is more
flexible for other administration tasks.
The DACS distribution file
repository/Config/work/Config/distfile/distfile.base.example includes two commented
out rdist stanzas under the user label that push the users/root/home directory (which includes
.ssh/authorized_keys) to all DACS hosts. It also has a second commented out stanza that
pushes the root public and private ssh keys to DACS master and DACS standby setups. This
allows DACS to verify and change the ssh keys that allow access to all it’s managed hosts.
There are two ways to set up ssh access. The less secure and more useful, and the more secure
and less useful. The less secure but more useful method will be discussed first because the DACS
distribution implements this method.

9.2.1 Somewhat less secure

If you have been automating system administration chances are this is very close to what you
already implement. There are two parts to this setup:

• set up each sshd config file to permit only public key authentication but allow any command
to be run.

• set up root/.ssh/authorized keys to accept the public key from a limited set of hosts

The sshd config file on your system (/etc/ssh/sshd config or /etc/sshd config most likely) should
have the:

160

http://svnbook.red-bean.com/en/1.1/ch06s03.html

PermitRootLogin = without-password

This prevents password authentication and permits only public key authentication.
Root’s .ssh/authorized keys file should look like:

no-port-forwarding,no-agent-forwarding,no-X11-forwarding,
from="192.168.10.5,dacs.example.com,localhost,127.0.0.1"
ssh-rsa AAA... ssh public key ...== root@dacsmaster

(all on one line) where the from value lists all the addresses/names of all the DACS master and
standby (if used) hosts.
In order for an connection to occur:

1. the connecting ssh client must have the access to the private key that corresponds to the ssh
public key.

2. the connection must come from one of the addresses in the from section

If a user uses sudo ssh host this setup will provide a shell for interactive use. Also with this
setup, running sudo ssh host ls will perform a directory listing. When the rdist client
connect’s it runs ’ssh host rdist -S’ to spawn the server that it can talk to.

9.2.2 Most secure setup

There are two parts to this setup:

• set up the sshd config file to permit root authentication via public key that runs a forced
command (the rdist client program). This prevents the running of arbitrary commands as
root.

• set up root/.ssh/authorized keys to accept the public key from a limited set of hosts and
run the rdist client as a forced command.

The sshd config file on your system (/etc/ssh/sshd config or /etc/sshd config most likely) should
have the setting:

PermitRootLogin = forced-commands-only

This prevents password authentication and permits only public key authentication but only for
keys associated with a command.
Root’s .ssh/authorized keys file should look like:

no-port-forwarding,no-agent-forwarding,no-X11-forwarding,
from="192.168.10.5,dacs.example.com,localhost,127.0.0.1",
command="/usr/bin/rdistd -S"
ssh-rsa AAA... ssh public key ...== root@dacsmaster

(all on one line) where the addresses in the from section are all possible address and names for the
DACS master and standby (if used) hosts. The IP addresses allow access even if DNS is failing
(in case you need to fix a broken /etc/resolv.conf via DACS). The command paramter specifies
that this key can be used only to run the rdist command in server mode.
In order for a connection and update to occur:

161

1. the connecting ssh client must have access to the private key that corresponds to the ssh
public key.

2. the connection must come from one of the addresses in the from section

3. the client must speak the rdist protocol to perform an update or remote command.

Although almost any change can be done using the rdist protocol, attempts to run commands
from the DACS master host using: sudo ssh host run this command will fail. Also attempts to
get an interactive shell using sudo ssh host from the DACS master server will fail.

9.3 Creating DACS working trees

Normally you create a working copy using:
svn co svn+ssh://dacsuser@dacsmaster:/repo/Config/work DACS
where DACS is an arbitrary directory path. Note that you should not push files from this tree.

9.4 Creating DACS CCM master trees

A DACS CCM master tree is just a working copy of the DACS repository, except it’s done as root
and the path to the root of the working copy must be known to the Rdist script.
You create a normal working copy using:

svn co svn+ssh://dacsuser@dacsmaster:/repo/Config/work DACS

where DACS is an arbitrary directory path. For creating master trees, do the same thing but as
root:

sudo svn co svn+ssh://dacsuser@dacsmaster:/repo/Config/work /config

This creates a DACS CCM master tree tied to the working tree that can update all hosts.
Using /config or /DACS as the master tree’s root allows you to access all the hosts defined in the
DACS database that are eligible for update. If you choose some other directory, you have to
update the %config_roots associative array in the Rdist script.
If you want to use split production/test trees check out a production tree using:

sudo svn co svn+ssh://dacsuser@dacsmaster:/repo/Config/production
/config

and a test tree to:

sudo svn co svn+ssh://dacsuser@dacsmaster:/repo/Config/work /config.test

Then the changes that are done to a working tree will show up when /config.test/Rdist is run to
allow pushing the changes to the set of hosts tagged as providing the service TESTHOST. Again
/config.test is a recognized root that permits only a subset of the available hosts to be updated.
The working tree should be the only tree that people check out and work in. All changes to the
production tree should be copied from entries in the checked in working tree. I do not believe that
svn can enforce this. However it should record an audit trail that will show when this has been
violated if you use the DACS recommended promotion mechanism.
Also you can check out partial DACS CCM master trees. This can be useful when you have a lot
file delegation as it provides a limited subset of files available for a user to push. To set up a
partial master tree execute:

162

sudo svn co -n svn+ssh://dacsuser@dacsmaster:/repo/Config/work /partial.tree
sudo svn up /partial.tree/Config
sudo svn up /partial.tree/other_dir

and repeat for all the directories you want. If you want to use this method, note that the Distfile
generation mechanism requires a few changes as well to remove references to the missing
directories. Generally this can be done using a perl or sed script to remove the entries from the
filepp expanded distfile.base.

9.5 Replicating (synchronizing) DACS svn master repository

If you are using subversion 1.4 or newer, you can use svnsync to maintain a replica of the svn
repository. The distribution includes subversion hook files that will synchronize a DACS master
svn repository to replica repositories for redundancy.
To set up replication over ssh, create ssh keys for the DACS subverion repository owner (called
dacsuser in the distribution) on the master server. Use sudo -u dacsuser ssh-keygen -t rsa
on the master host to place the files in dacsuser/.ssh/id rsa and id rsa.pub. (Note you can also
set these keys up in DACS so that they are installed on all the replicas as well in case you have to
make a replica into the master svn tree. See how the users/root/home directory is pushed to the
DACS HOSTS and set up something similar for your dacsuser.) Add the id rsa.pub to the
dacsuser’s authorized keys file by editing the SVN/conf/authorized keys file installed as part of
the repository. See the ”Importing the DACS repository tree” section above for more details.
Once the key is installed, we can set up the replica repositories using the user dacsuser with the
repository in the ~dacsuser/repo directory. First in the DACS database:

• add SVNDACS STANDBY to the host(s) running the replicas and check-in the change

then

• manually or using DACS set up the dacsuser account

• copy the existing dacsuser/.ssh/* files on the master to the replicas dacsuser/.ssh/
directory

• chown -R dacsuser dacsuser on the replicas

On the DACS subversion master, dump the unique universal identifier (uuid) using:

• svnadmin dump dacsuser/repo -r 0 > uuid

This allows svn switch --relocate (discussed below) on a checked out DACS tree to work
when swapping to the replica repository.
This part is done as the user dacsuser on the replicas:

• svnadmin create dacsuser/repo

• svnadmin load dacsuser/repo < uuid
where uuid is the file generated above.

163

• chmod 700 dacsuser
to protect the information in the repository

• ln -s /bin/true dacsuser/repo/hooks/pre-revprop-change
this permits the sync operations from the master to work. It will be replaced with the
normal hook scripts when the inital synchronization is done. The normal hook scripts could
be used but they make the initial synchronization take longer.

Then on the dacsmaster host where the svn repository is located start the replication process:

• sudo -u dacsuser env -i /usr/bin/svnsync init –non-interactive
svn+ssh://dacsuser@replica1/repo
file:///home/dacsuser/repo

This initializes revision 0 of the replica repository with the properties needed to make svnsync
work. The env -i command clears the environment of the svnsync process. This makes ssh use
the ~dacsuser/.ssh/id_rsa key for access even if there is an ssh-agent running. Now start the
sync process from the dacs master as the dacsuser. This replays every commit to the master
repository on the replica and will take a while for large repositories:

• sudo -u dacsuser env -i /usr/bin/svnsync sync –non-interactive
svn+ssh://dacsuser@replica1/repo

When that completes, check out the standard hook and configuration files on the replica server.
On the replica server as the dacsuser run:

• rm -rf dacsuser/repo/conf

• rm -rf dacsuser/repo/hooks

• svn co file:///home/dacsuser/repo/SVN/conf
/home/dacsuser/repo/conf

• svn co file:///home/dacsuser/repo/SVN/hooks
/home/dacsuser/repo/hooks

This deploys the hooks and conf directories and they will be automatically maintained from now
on by the post-commit script. Note that the automatic maintainance does not validate the
scripts, it merely does an svn update, so changing the files directly in the hooks directory can
cause problems if the changes cause the scripts to become invalid after an update.
Copy the file dacsuser/repo/commit-log from the master to the same place on the slave. This file
logs all the commits to the repo.
All replicas should be locked using:

echo "repository is replica" | sudo tee ~dacsuser/repo/conf/LOCKED

The existance of the LOCKED file prevents updates to the repository unless the author of the
changes is the repository owner which is used ONLY to commit replication information to the
repository.
Note that Rdist users will push the LOCKED file to all replicas and will warn when a master
host has a locked file.

164

9.5.1 Configuring the replicas in SVN

You need to create the slave urls file in the subversion conf directory (a sample file is provided in
the distribution as slave urls.example).
Populate that file with the svn+ssh url’s used for the svnsync operations above. E.G.
svn+ssh://dacsuser@replica1/repo where dacsuser and replica1 are replaced with a real user
and host on your network. There should be one url per line in the file.

9.5.2 Using replication

Replication should be pretty automatic once it is set up. Root will receive email if there are
replication errors (so you want to forward root email on your DACS subversion master to
somebody who will read it).
The hook scripts recognize when the repository access is done by the repository owner (dacsuser
in the distribution) and will update the operational files on the replicas to match the master. So
ssh access (if you use the config/authorized keys file), authorization and hook scripts will be
identical on the replicas and the master.
Check-ins not done as part of replication are done only on the master and trigger email
notifcations and replication operations to the replicas.

9.5.2.1 Switching masters (replica becomes a master)

When you lose the DACS subversion server, you need to relocate the DACS master tree to the
replica server. Change to the root of the DACS master tree and run:

sudo env -i /usr/bin/svn switch --relocate \
svn+ssh://dacsuser@dacsmaster svn+ssh://dacsuser@replica1

replacing dacsmaster and replica1 with real host names.
Now when Rdist runs it will sync from the replica repository rather than the master repository.
Now to enable check-ins to the replica, you need to remove the file
~dacsuser/repo/config/LOCKED. Also you should move the SVNDACS MASTER service from
the dead master to the replica you are using as a new master and remove the
SVNDACS STANDBY token from the replica. After this change running Rdist users will warn
you if you forgot to unlock the master repository.
The command svn switch --relocate needs to be used on any DACS working copy that
wishes to access (e.g. for checking in changes) the new repository.
You should also update the slave urls’s file and remove the url for the replica that is now the
master. The new master will try to update itself, and this will fail generating an email to root.
Exiting the slave urls file will prevent this email.

9.5.2.2 Moving masters

To move back to the original master, delete it and set it up as a replica of the current master then
execute the steps in ”Switching masters” to make it a new master.
You can use svnsync and other commands to bring it back in sync but starting over from scratch
is the most foolproof method.

165

9.6 Other documentation

The table of contents for the automatically generated documention (from robodoc comments) for
the Config tree is located in the release repository directory under Config/docs/toc index.html.
That page also provides links to the other documentation indexes.
For access to the dacs defined classes documentation see Config/docs/bin/dbreport.html.

166

Chapter 10

Glossary

CCM acronym for Computer Configuration Management cf. SCM

CNCM acronym for Computer and Network Configuration Management. Another name for
CCM cf. SCM

CCM (repository) tree see master tree or repository tree.

class see class variable (rdist) or class macro (filepp)

class variable (rdist) This is just a normal rdist variable that has contents generated by the
DACS class mechanism. It is a space separated list of hostnames that all match some
specific criteria.

class macro (filepp) A space separated list of hostnames all matching some criteria. The
naming matches that for ”class varibles (rdist)” but with FILEPP_ prepended to the rdist
class name.

client see client host

client host a system that has files or services managed by DACS.

CMDB configuration management database

DACS CCM tree see master tree or repository tree.

DACS server the system or systems that are allowed root access to a client host to update and
manage files on the client.

dacsmaster a hypothetical host that has the dacsuser account and provides access via ssh to the
DACS subversion repository.

dacsuser a hypothetical account that provides access via ssh to the subversion repository for
DACS.

implementer person responsible for defining new system configurations in DACS. This person
defines new tokens in the database and maps files to those configurations.

167

label a mechanism to allow selection of rdist stanzas in a Distfile. It is specified on the rdist or
Rdist command line: Rdist label1 label2...

master repository a VCS repository that allows commits from users and is used to update a
master tree.

master tree a copy of the VCS tree done as root that will not have any local modifications done
to it. It will not be used for checkins to the VCS. It is used as the master tree from which
files are distributed to client machines. Compare to ’working copy’.

replica repository a VCS repository that receives updates from a master repository and can be
used as a master repository if the master repository dies.

repository tree a generic term for the set of files in a working copy or master tree.

slave repository see replica repository

SCM software configuration management cf. CCM

svn the command used to invoke the subversion VCS. Also used as an abbreviation for
subversion.

ticket trouble ticket/work order/change request ...

target see target (make) or labels if you are discussing rdist

target (make) the item that is to be made by the make system. It is specified on the make
command line: make target.

VCS version control system. Either CVS (concurrent versioning system) or subversion.

user a person who interacts with DACS by running dbreport, Rdist and changing the files that
exist under DACS control.

working copy a copy of the VCS repository checked out as a local user and created for the
purpose of performing updates to files and checking those changes into the VCS.

168

Index

169

Index

FTPEXTSVCIP, 68

macros, 73

170

	Contents
	List of Tables
	List of Figures
	DACS Introduction
	Should you deploy DACS?
	Why you should deploy DACS
	The Components
	DACS Documentation
	Basic introduction and concepts
	Training docs
	Reference section

	Getting Started
	Acknowledgments

	Using DACS
	Use case troubleshooting a problem
	Use case recovering from a dead host
	Use case modifying a managed resolv.conf
	Use case setting up to manage sudoers file
	Use case set up to manage ntp.conf on all hosts from database
	Planning the network time protocol setup

	The "database" system
	What does the database provide
	The database file
	Keyword definitions
	Further comments on the service, users, cluster and os keywords
	Inheriting information from another host (creating child host)
	Representing multiple IP addresses for a host
	Using a unique IP address for a service (e.g. DNS)

	Database output (class definitions)
	Class Types

	dbreport
	The command line
	Examples of dbreport usage
	Changing dbreport

	Special circumstances and configurations
	Deploying multiple redundant servers

	Standard database reports: wiring, asset, labels
	Obtain a report of all your assets in the database
	Print labels to apply to hosts
	Obtain a report of the wiring layout for your systems

	The Version Control System (VCS)
	What does the VCS provide
	Which VCS
	VCS anatomy
	VCS setup
	Repository file structure
	Sample SVN configuration and hook files
	SVN Access controls
	Delegation of access to a non-admin user
	Setting owners, groups and permissions

	Workflow under the two VCS
	Workflow in a split work/production implementation
	Promoting from work to production
	Tracking vendor releases

	The Build System
	What does the Build System provide
	Build system setup
	Makefile template
	Setting modes, owner and groups
	Implementation notes

	Reducing dbreport invocations (using a per host cache)
	VCS Interaction
	Adding new data to the host caches
	The internals
	Performance of caching

	Using templates and other file processing tasks
	Using filepp
	Basic directive/command examples
	Performing set operations with host classes

	Distribution of files
	What does the distribution system provide
	Running Rdist
	Other Rdist options
	Host selection and verification

	Target Overrides and Rdist fragments
	Controlling Rdist: the Distfile
	The anatomy of a Distfile entry
	Distfile Label Types and Special Purpose Labels
	Distfile Macros
	Distfile set operations
	Distfile.base Examples

	Supporting Legacy hosts that have part of their configuration unmanaged
	Why you shouldn't do this

	Troubleshooting distribution errors
	Rdist/distfile errors

	Distribution Reports
	Host-target report
	Files-report report
	Files audit report

	Examples
	Changing a managed file
	Adding a new file (simple case)
	File installation (basic step 3)
	Distfile.base setup (basic step 4)
	The finish (basic step 5, 6, 7, 8)
	Some Variations

	Adding a new host
	Managing the ssh keys
	Updating the host

	Setting up location specific timezone files
	Setting up a database driven ntp configuration (new top level directory)
	Files and services
	Database changes
	The build system and file generation
	Distributing the generated files
	Testing
	Check in the changes
	Update the master tree with a new top level directory
	Update the hosts

	Integrating external tools into DACS
	Adding new file or files (complex case)
	Identifying the file(s)
	Where should the files live in the DACS CCM tree
	Automatic or manual file maintenance
	Add the unmodified file to the vendor tree
	Distribute from the CCM tree to the hosts
	Testing the files
	Commiting the changes
	Pushing the files

	Configuring Solaris Zones or VMware guest OS
	Configuring MASTER/STANDBY services
	Conditions
	Implementation: single master, disabled standby
	Enabled, but idled standby
	Multi-master variant

	Configuring dynamically reconfigurable services (firewalls, routing,...)
	Implementing the file update rules
	Implement file verification rules

	DACS Invocation tips
	Renumbering a network and a caution about automation

	Advanced Topics
	Using multiple DACS master trees
	Split production/work CCM master trees
	Redundancy
	Load distribution (work in progress)
	Test trees

	Handling network devices

	Appendices
	Importing the DACS repository tree
	Subversion hook scripts
	Finish svn setup

	Setting up ssh access from the master to clients
	Somewhat less secure
	Most secure setup

	Creating DACS working trees
	Creating DACS CCM master trees
	Replicating (synchronizing) DACS svn master repository
	Configuring the replicas in SVN
	Using replication

	Other documentation

	Glossary

