
Real-time log file analysis using the Simple Event Correlator (SEC)

John P. Rouillard
University of Massachusetts at Boston

For LISA 2004 Conference: Atlanta, GA

November 2004

Abstract

Log analysis is an important way to keep track of
computers and networks. The use of automated anal-
ysis always results in false reports, however these can
be minimized by proper specification of recognition
criteria. Current analysis approaches fail to provide
sufficient support for the recognizing the temporal
component of log analysis. Temporal recognition of
event sequences fall into distinct patterns that can be
used to reduce false alerts and improve the efficiency
of response to problems. This paper discusses these
patterns while describing the rationale behind and
implementation of a ruleset created at the CS depart-
ment of the University of Massachusetts at Boston for
SEC - the Simple Event Correlation program.

1 Introduction

With today’s restricted IT budgets, we are all trying
to do more with less. One of the more time consum-
ing, and therefore neglected, tasks is the monitoring
of log files for problems. Identifying and resolving
these problems is the first step in keeping one’s sys-
tems, users, and bosses happy and healthy. Failure
to identify and resolve these problems quickly leads
to downtime and loss of productivity. Log files can
be verbose with errors hidden among the various sta-
tus events indicating normal operation. For a human,
finding errors among the routine events can be diffi-
cult, time consuming, boring, and very prone to error.
This is exacerbated when aggregating events, using a

mechanism such as syslog, due to the intermingling
of events from different hosts that can submerge pat-
terns in the event streams.

Many monitoring solutions rely on summarizing
the log files for the previous days logs. This is very
useful for accounting and statistics gathering. Sadly,
if the goal is problem determination and resolution
then reviewing these events the day after they are
generated is less helpful. Systems administrators can-
not proactively resolve or quickly respond to prob-
lems unless they are aware that there is a problem.
It is not useful to find out in the next morning’s sum-
mary that a primary NFS server was reporting prob-
lems five minutes before it went down. This is es-
pecially bad if the critical server takes a dozen other
systems down with it. The sysadmin staff needs to
discover these problems while there is still time to fix
the problem and avert a catastrophic loss of service.

The operation of computers and computer net-
works evolves over time and requires a solution to log
file analysis that address this temporal nature. This
paper describes some of the current issues in log anal-
ysis and presents the rationale behind an analysis rule
set developed at the Computer Science Department
at the University of Massachusetts at Boston. This
ruleset is implemented for the Simple Event Corre-
lator (SEC), which is a Perl based tool designed to
perform analysis of plain text logs.

1.1 Current Approaches

There are many programs that try to isolate error
events by automatically condensing or eliminating

1

routine log entries. In this paper, I do not consider
interactive analysis tools like MieLog[Takada02]. I
separate automatic analysis tools into offline or batch
monitoring and on-line or real-time monitoring.

1.1.1 Offline Monitoring

Offline solutions include: logwatch[logwatch],
SLAPS-2[SLAPS-2], or Addamark LMS[Sah02].
Batch solutions have to be invoked on a regular ba-
sis to analyze logs. They can be run once a day,
or many times an hour. Offline tools are useful for
isolating events for further analysis by real time re-
porting tools. In addition they provide statistics that
allow the system administrator to identify the high-
est event sources for remedial action. However, offline
tools do not provide the ability to provide automatic
reactions to problems. Adam Sah in discussing the
Addamark LMS[Sah02, p. 130] claims that real-
time analysis is not required because a human being,
with slow reaction times, is involved in solving the
problem. I disagree with this claim. While it is true
that initially a human is required to identify, isolate
and solve the problem, once it has been identified,
it is a candidate for being automatically addressed
or solved. If a human would simply restart apache
when a particular sequence of events occur, why not
have the computer automatically restart apache in-
stead? Automatic problem responses coupled with
administrative practices can provide a longer window
before the impact of the problem is felt. An “out of
disk space” condition can be addressed by removing
buffer files placed in the file system for this purpose.
This buys the system administrator a longer response
window in which to locate the cause of the disk full
condition minimizing the impact to the computing
environment.

Most offline tools do not provide explicit support
for analyzing the log entries with respect to the time
they were received. While they could be extended
to try to parse timestamps from the log messages,
this is difficult in general, especially with multiple
log files and multiple machines, as ordering the events
requires normalizing the time for all log messages to
the same timezone. Performing analysis on log files
that do not have timestamps eliminates the ability of

these batch tools to perform analysis by time. Solu-
tions such as the Addamark LMS[Sah02] parse and
record the generation time, but the lack of real-time
event-driven, as opposed to polled, triggers reduces
its utility.

1.1.2 Online Monitoring

Online solutions include: logsurfer[logsurfer],
logsurfer+[logsurfer+], swatch[swatch,
Hansen1993], 2swatch[2swatch], SHARP[Bing00],
ruleCore[ruleCore], LoGS[LoGS] and SEC[SEC].
All of these programs run continuously watching one
or more log files, or receiving input from some other
program.

Swatch is one of the better known tools. Swatch
provides support for ignoring duplicate events and
for changing rules based on the time of arrival. How-
ever, swatch’s configuration language does not pro-
vide the ability to relate arbitrary events in time.
Also, it lacks the ability to activate/deactivate rules
based on the existence of other events other than sup-
pressing duplicate events using its throttle action.

Logsurfer dynamically changes its rules based on
events or time. This provides much of the flexibility
needed to relate events. However, I found its syn-
tax difficult to use (similar to the earliest 1.x version
of SEC) and I never could get complex correlations
across multiple applications to work properly. The
dynamic nature of the rules made debugging difficult.
I was never able to come up with a clean, understand-
able, and reliable method of performing counting op-
erations without resorting to external programs. Us-
ing SEC, I have been able to perform all of the op-
erations I implemented in logsurfer with much less
confusion.

LoGS is an analysis program written in Lisp that
is still maturing. While other programs create their
own configuration language, LoGS’s rules are also
written in Lisp. This provides more flexibility in de-
signing rules than SEC, but may require too much
programming experience on the part of the rule de-
signers. I believe this reduces the likelihood of its
widespread deployment. However, it is an exciting
addition to the tools for log analysis research.

The Simple Event Correlator (SEC) by Risto

2

Vaarandi uses static rules unlike logsurfer, but pro-
vides higher level correlation operations such as ex-
plicit pair matching and counting operations. These
correlation operations respond to a triggering event
and persist for some amount of time until they time-
out, or the conditions of the correlation are met. SEC
also provides a mechanism for aggregating events and
modifying rule application based on the responses to
prior events. Although it does not have the dynamic
rule creation of logsurfer, I have been able to easily
generate rules in SEC that provide the same func-
tionality as my logsurfer rules.

1.1.3 Filter in vs. filter out

Should rules be defined to report just recognized
errors, or should routine traffic be eliminated from
the logs and the residue reported? There appear to
be people who advocate using one strategy over the
other.

I claim that both approaches need to be used and
in more or less equal parts. I am aware of systems
that are monitored for only known problems. This
seems risky as it is more likely an unknown prob-
lem will sneak up and bite the unwary systems ad-
ministrator. However, very specific error recognition
is needed when using automatic responses to ensure
that the best solution is chosen. Why restart apache
if killing a stuck cgi program will solve the problem?

Filtering out normal event traffic and reporting the
residue allows the system administrator to find signa-
tures of new unexpected problems with the system.
Defining “normal traffic” in such a way that we can
be sure its routine is tricky especially if the filter-
ing program does not have support for the temporal
component of event analysis.

I have seen filters that ignore abnormal reboot traf-
fic as a side effect of trying to ignore the normal re-
boot traffic. One system was scheduled to reboot at
6PM and had an extensive list of “normal traffic”.
These events were filtered out of the data stream
so that alerts were not raised for a normal sched-
uled occurrence. The data processing run started
at 6:30PM, and the system rebooted unexpectedly
around 9PM. This reboot and subsequent loss of the
analyzed data was not detected until 7AM the next

> CMD: /usr/lib/sendmail -q

> root 25453 c Sun May 23 03:31:00 2004

< root 25453 c Sun May 23 03:31:00 2004

Figure 1: Events indicating normal activity for a
scheduled cron job.

morning when an expected “analysis done” event was
found to be missing. If the filter had provided the
ability to to ignore reboot events during just the 6-
6:15 PM window, or it reported reboot events that
occurred during a data processing run, the opera-
tor could have restarted the data analysis getting the
data to the department with a less of a delay.

2 Event Modeling

Modeling normal or abnormal events requires the
ability to fully specify every aspect of the event. This
includes recognizing the content of the event as well
as its relationship to other events in time. With this
ability, we can recognize a composite or correlated
event that is synthesized from one or more primitive
events. Normal activity is usually defined by these
composite events. For example a normal activity may
be expressed as:

’sendmail -q’ is run once an hour by root
at 31 minutes after the hour. It must take
less than 1 minute to complete.

This activity is shown by the cron log entries in
Figure 1 and requires the following analysis opera-
tions:

• Find the sendmail CMD line verifying its arrival
time is around 31 minutes after the hour. If the
line does not come in, send a warning.

• The next line always indicates the user, process
id and start time. Make sure that this line indi-
cates that the command was run by root.

• The time between the CMD line arrival and the
final line must be less than 1 minute. Because
other events may occur between the start and

3

end entries for the job, we recognize the last line
by its use of the unique number from the second
field of the second line.

This simple example shows how a tool can analyze
the event log in time. Tools that do not not allow
the specification of events in the temporal realm as
well as in the textual/content space can suffer from
the following problems:

• matching the right event at the wrong time. This
could be caused by an inadvertent edit of the
cron file, or a clock skew on the source or ana-
lyzing host.

• not noticing that the event took too long to run.

• not noticing that the event failed to complete at
all.

2.1 Temporal relationships

The cron example mentions one type of temporal re-
striction that I call a schedule restriction. Schedule
restrictions are defined by working on a defined (al-
though potentially complex) schedule. Typical sched-
ule restrictions include: every hour at 31 minutes past
the hour, Tuesday morning at 10AM, every weekday
morning between 1 and 3AM.

In addition to schedule restrictions, event recogni-
tion requires accounting for inter-event timing. The
events may be from a single source such as the se-
quence of events generated by a system reboot. The
statement that the first to last event in a boot se-
quence should complete in five minutes is an inter-
event timing restriction. Also, events may arise from
multiple sources. Multi-source inter-event timing re-
strictions might include multiple routers sending an
SNMP authentication trap in five minutes, or exces-
sive “connection denied” events spread across multi-
ple hosts and multiple ports indicating a port scan of
the network.

These temporal relationships can be explicit within
a correlation rule: specifying a time window for
counting the number of events, suppressing events
for a specified time after an initial event. The tim-
ing relationship can also be implicit when one event
triggers the search for subsequent events.

2.2 Event threading

Analysis of a single event often fails to provide a com-
plete picture of the incident. In the example above,
reporting only the final cron event is not as useful as
reporting all three events when trying to diagnose a
cause. Lack of proper grouping can lead to under-
estimating the severity of the events. Consider the
following scenario:

1. A user logs in using ssh from a location that s/he
has never logged in from before.

2. The ssh login was done using public key authen-
tication.

3. The ssh session tries to open port 512 on the
server. It is denied.

4. Somebody tries to run a program called
“crackme” that tries to execute code on the
stack.

5. The user logs out.

Looking at this sequence implies that somebody
broke in and tried to execute an unsuccessful attempt
to gain root privileges. However, in looking at indi-
vidual events, it is easy to miss the connections.

• A user logs in using ssh from a location that s/he
has never logged in from before.

Login/logouts are routine traffic that we want to
filter out unless something strange happens. Is
the login from a new location a problem by it-
self? This depends on local policy, but probably
not. However, this information is needed to de-
termine who logged in, in case something weird
does happen.

• The ssh login was done using public key authen-
tication.

Useful info if the user never used public key be-
fore and always used password authentication in
the past. However, it may easily be dismissed
as the person may be learning to use public key
authentication. This event again falls under rou-
tine traffic.

4

• The ssh session tries to open port 512 on the
server. It is denied.

This is a bit weird, but did somebody just com-
mit a typo and mean 5912, a VNC server port,
or did they really want to bind to the exec port?.

This ssh event does not include identifying in-
formation, specifically it does not include the
user or the source address for the ssh process.
The sshd event is labeled with the PID of the
child sshd process, so the administrator can try
to manually correlate the child PID to the parent
process’s login event that reports the username.

• Somebody tries to run a program called
“crackme” that tries to execute code on the
stack.

We do obtain a username from here, but is it a
(poorly named) CS 240 project that ran amok
on a bad pointer dereference, or is it a hacking
attempt?

• The user logs out.

Did the user immediately log out after running
the program in an attempt to escape detection?
Did the user stay logged in for a while to try to
debug the program? Logouts again fall into the
routine traffic category.

Taken in isolation, each event could be easily dis-
missed, or even filtered out of the reports. Report-
ing them as discrete events, as many analysis tools
do, may even contribute to an increased chance of
missing the pattern. Taken together they indicate a
problem that needs to be investigated. A log analysis
tool needs to provide some way to link these disparate
messages from different programs into a single thread
that paints a picture of the complete incident.

2.3 Missing Events

Log analysis programs must be able to detect miss-
ing log events[Finke2002]. These missing events are
critical errors since they indicate a departure from
normal operation that can result in a many prob-
lems. For example, cron reports the daily log rota-
tion at 12:01AM. If this job is not done (say, because

cron crashed), it is better to notice the failure im-
mediately rather than three months later when the
partition with the log files fills up.

The problem with detecting missing events is that
log monitoring is – by its nature – an event-driven
operation: if there is no event, there is no operation.
The log analysis tool should provide some mechanism
for detecting a missing event. One of the simpler
ways to handle this problem is to generate an event
or action on a regular basis to look for a missing
event. An event-driven mechanism can be created
using external tools such as cron to synthesize events,
but I fail to see a mechanism that the log analysis tool
can use to detect the failure of the external tool to
generate these events.

2.4 Handling False Positives/False
Negatives

A false negative occurs when an event that indicates
a problem is not reported. A false positive results
when a benign event is reported as a problem. False
negatives impact the computing environment by fail-
ing to detect a problem. False positives must be in-
vestigated and impact the person(s) maintaining the
computing environment. A false positive also has an-
other danger. It can lead to the “boy who cried wolf”
syndrome, causing a true positive to be ignored as a
false positive.

Two scenarios for generating false negatives are
mentioned above. Both are caused by incorrectly
specifying the conditions under which the events are
considered routine.

False positives are another problem caused by in-
sufficiently specifying the conditions under which the
event is a problem. In either case, it may not be pos-
sible to fully specify the problem conditions because:

• Not all of the conditions are known.

• Some conditions are not able to be monitored
and cannot be added to the model.

It may be possible to find correlative conditions
that occur to provide a higher degree of discrimina-
tion in the model. These correlative events can be

5

use to change the application of the rules that cause
the false positive to inhibit the false report.

I had a problem many years ago where one router
in a redundant pair of routers would effectively loose
its routing entries. Monitoring was in place to report
routing changes on the routers. However, no routing
changes were reported. We were able to detect the
problem by watching the throughput of the down-
stream interfaces. However, variations in traffic, and
background routing updates and other traffic inter-
fered with the ability to detect the problem using this
method. As a correlative event, we set up a sniffer
to watch for router redirect events. When the router
redirect events were detected without a correspond-
ing routing change event, we rebooted the router.

To reduce these false positives and false negatives,
the analysis program needs to have some way of gen-
erating and receiving these correlative events.

Above, I claimed that it is currently impossible
to eliminate all false events. I have generated false
events during my manual log analysis. Even though
computers do appear more intelligent than I am, I
contend that this is an illusion. Computers will have
to exhibit far greater intelligence than humans to
eliminate false events. However, by proper specifica-
tion of event parameters, false events can be greatly
reduced.

2.5 Single vs. Multiple Line Events

Programs can spread their error reports across multi-
ple lines in a logfile. Recognizing a problem in these
circumstances requires the ability to scan not just a
single line, but a series of lines as a single instance.
The series of lines can be treated as individual events,
but key pieces of information needed to trigger a re-
sponse or recognize an event sequence may occur on
multiple lines. Consider the cron example of Figure 1:
the first two lines provide the information needed to
determine that it is an entry for sendmail started by
root, and the process id is used in discovering the
matching end event. Handling this multi-line event
as multiple single line events complicates the rules for
recognizing the events.

Multi-line error messages seem to be more preva-
lent in application and device logs that do not use

the Unix standard syslog reporting method, but some
syslog versions split long syslog messages into multi-
ple parts when they store them in the logfile. For-
tunately, when I have seen this happen, the log lines
always occur adjacent to one other without any inter-
vening events from other sources. This allows recog-
nition provided that the split does not occur in the
middle of a field of interest.

With syslog and other log aggregation tools, a sin-
gle multi-line message can be distorted by the injec-
tion of messages from other sources. The logs from
applications that produce multi-line messages should
be directed to their own log file so that they are not
distorted. Then a separate SEC process can ana-
lyze the log file and create single line events that are
passed to a parent SEC for global correlation. This
is similar to the method used by Addamark[Sah02].

Although keeping the log streams separate simpli-
fies some log analysis tasks, it prevents the recogni-
tion of conditions that affect multiple event streams.
Although SEC provides a mechanism for identifying
the source of an event, performing event recognition
across streams requires that the event streams be
merged.

2.6 State persistence

Since log monitoring and correlation is the result of
tracing the various states of the system, we would like
some way to initialize the state information quickly
so that we can begin our correlation operations as
soon as possible after startup or reconfiguration of
the log analysis tool.

Loading a saved state upon startup is dangerous
unless we have a mechanism that can verify that the
state we loaded matches the current state of the sys-
tem. The longer the period of time between the state
being saved and being reused, the greater the chance
that we no longer have a valid state and will make
mistakes using these facts to make decisions.

Systems such as HPOV NNM have a “settling
time” where they learn the state of the network. This
learning interval can be found in many tools and I
believe it increases with the complexity of the cor-
relation operation, since more complex correlations
require more state information that takes longer to

6

gather. Correlation rules are influenced by the con-
text or state information that is available to them.
The correlations then change their operation based
on their context. When the correlation engine starts
up, rules to detect the occurrence of three events in
a 5 minute window may not fire, because there is no
longer a contextual record of one of the events that
was processed before the engine shutdown. Hence the
correlation engine has made an incorrect decisions be-
cause it has not yet learned enough context to make
the correct decision.

A similar problem occurs with active correlation
operations. On correlation engine restarts, active
correlation operations are no longer present. For ex-
ample, Event1 is processed. This starts a correla-
tion operation that takes some action and suppresses
Event1 for the next two hours. Ten minutes later, the
correlation engine is restarted. After the software
restarts, the active correlation operation is not ac-
tive anymore, so the next occurrence of Event1 takes
some actions and activates the suppression rule even
though it should not have had any effect.

SEC has the ability to perform a soft reconfigu-
ration that preserves the state of contexts while the
state of active correlations are lost.

3 Sec correlation idioms and
strategies

This section describes particular event scenarios that
I have seen in my analysis of logs. It demonstrates
idioms for SEC that model and recognize these sce-
narios.

3.1 SEC primer

A basic knowledge of SEC’s configuration language
is required to understand the rules presented below.
There are nine basic rule types. I break them into two
groups: basic and complex rules. Basic rules types
perform actions and do not start an active correlation
operation that persists in time. These basic types are
described in the SEC man page as:

Suppress: suppress matching input event (used to

keep the event from being matched by later
rules).

Single: match input event and immediately execute
an action that is specified by rule.

Calendar: execute an action at specific times using
a cron like syntax.

Complex rules start a multi-part operation that ex-
ists for some time after the initial event. The simplest
example is a SingleWithSuppress rule. It triggers
on an event and remains active for some time to sup-
press further occurrences of the triggering event. A
Pair rule recognizes a triggering event and initiates
a search for a second (paired) event. It reduces two
separate but linked events to a single event pair. The
complex types are described in the SEC man page as:

SingleWithScript: match input event and depend-
ing on the exit value of an external script, exe-
cute an action.

SingleWithSuppress: match input event and exe-
cute an action immediately, but ignore following
matching events for the next T seconds.

Pair: match input event, execute the first action im-
mediately, and ignore following matching events
until some other input event arrives (within an
optional time window T). On arrival of the sec-
ond event execute the second action.

PairWithWindow: match input event and wait for
T seconds for another input event to arrive. If
that event is not observed within a given time
window, execute the first action. If the event
arrives on time, execute the second action.

SingleWithThreshold: count matching input
events during T seconds and if given threshold
is exceeded, execute an action and ignore all
matching events during rest of the time window.

SingleWith2Thresholds: count matching input
events during T1 seconds and if a given thresh-
old is exceeded, execute an action. Now start to
count matching events again and if their number
per T2 seconds drops below second threshold,
execute another action.

7

SEC rules start with a type keyword and continue
to the next type keyword. In the example rules be-
low, ... are used to take the place of keywords that
are not needed for the example, they do not span
rules. The order of the keywords is unimportant in a
rule definition.

SEC uses Perl regular expressions to parse and
recognize events. Data is extracted from events
by using subexpressions in the Perl regular expres-
sion. The extracted data is assigned to numeric vari-
ables $1, $2,. . . ,$N where N is the number of subex-
pressions in the Perl regular expression. The nu-
meric variable $0 is the entire event. For example,
applying the regular expression “([A-z]*): test
number ([0-9]*)” to the event “HostOne: test
number 34” will assign $1 the value “HostOne”, $2
the value “34”, and $0 will be assigned the entire
event line.

Because complex rule types create ongoing correla-
tion operations, a single rule can spawn many active
correlation operations. Using the regular expression
above, we could have one correlation that counted
the number of events for Host and another separate
correlation that counted events for HostTwo. Both
counting correlations would be formed from the same
rule, but by extracting data from the event the two
correlations become separate entities.

This data allows the creation of unique contexts,
correlation descriptions and coupled patterns linked
to the originating event. We will explore these items
in more detail later. Remember that when applying
a rule, the regular expression or pattern is always ap-
plied first regardless of the ordering of the keywords.
As a result, references to $1, $2,. . . ,$N anywhere else
in the rule refer to the data extracted by the regular
expression.

SEC provides a flow control and data storage mech-
anism called contexts. As a flow control mechanism,
contexts allow rules to influence the application of
other rules. Contexts have the following features:

• Contexts are dynamically created and often
named using data extracted from an event to
make names unique.

• Contexts have a defined lifetime that may be infi-
nite. This lifetime can be increased or decreased

as a result of rules or timeouts.

• Multiple contexts can exist at any one time.

• A context can execute actions when its lifetime
expires.

• Contexts can be deleted without executing any
end-of-lifetime actions.

• Rules (and the correlations they spawn) can use
boolean expressions involving contexts to deter-
mine if they should apply. Existing contexts re-
turn a true value; non-existent contexts return a
false value. If the boolean expression is true, the
rule will execute, if false the rule will not execute
(be suppressed).

In addition to a flow control mechanism, contexts
also serve as storage areas for data. This data can
be events, parts of events or arbitrary strings. All
contexts have an associated data store. In this paper,
the word “context” is used for both the flow control
entity and its associated data store. When a context
is deleted, its associated data store is also deleted.
Contexts are most often used to gather related events,
for example login and logout events for a user. These
contexts can be reported to the system administrator
if certain conditions are detected (e.g., the user tried
to perform a su during the login session).

The above description might seem to imply that a
single context has a single data store; this is not al-
ways the case. Multiple contexts can share the same
data store using the alias mechanism. This allows
events from different streams to be gathered together
for reporting or further analysis. The ability to ex-
tract data from an event and linking the context by
name to that event provides a mechanism for com-
bining multiple event streams into a single context
that can be reported. For example, if I extract the
process ID 345 from syslog events, I can create a con-
text called: process 345 and add all of the syslog
events with the same PID to that event. If I now link
the context process 346 to the process 345 con-
text, I can add all of the syslog events with the pid
346 to the same context (data store). So now the
process 345/process 346 context contains all of the
syslog events from both processes.

8

type=suppress

desc=ignore non-specific paper problem report \

since prior events have given us all we need.

ptype=regexp

pattern=. printer: paper problem$

Figure 2: A suppress rule that is used to ignore a
noise event sent during a printer error.

In the paper, I use the term session. A session
is simply a record of events of interest. In general
these events will be stored in one or more contexts.
If ssh errors are of interest, a session will record all the
ssh events into a context (technically a context data
store that may be known by multiple names/aliases)
and report that context. If tracing the identities that
a user assumes during a login is needed, a different
series of data is recorded in a context (data store):
the initial ssh connection information is recorded, the
login event, the su event as the user tries to go from
one user ID to another.

The rest of the elements of SEC rules will be pre-
sented as needed by the examples.

3.2 Responding to or filtering single
events

The majority of items that we deal with in process-
ing a log file are single items that we have to either
discard or act upon. Discardable events are the typ-
ical noise where the problem is either not fixable, for
example a failing reverse DNS lookups on remote do-
mains from tcp wrappers, or are valueless information
that we wish to discard.

Discardable events can be handled using the sup-
press rule. Figure 2 is an example of such a rule.
Since all of my rule sets report anything that is not
handled, we want to explicitly ignore all noise lines to
prevent them from making it to the default “report
everything” rule.

This is a good time to look at the basic anatomy
of a SEC rule. All rules start with a type option as
described in section 3.1. All rules have a desc option
that documents the rule’s purpose. For the complex
correlation rules, the description is used differentiate

between correlation operations derived from a single
rule. We will see an example of this when we look at
the horizontal port scan detection rules.

Most rules have a pattern option that is applied
to the event depending on the ptype option. The
pattern can be a regular expression, a substring, or
a truth value (TRUE or FALSE). The ptype op-
tion specifies how the pattern option is to be inter-
preted: a regular expression (regexp), a substring
(substr), or a truth value (TValue). It also de-
termines if the pattern is successfully applied if it
matches the event match (regexp/substr), or does
not match (nregexp/nsubstr) the event. For TValue
type patterns, TRUE matches any event (successfull
application), while FALSE (not successfully applied)
does not match any input event. If the pattern does
not successfully apply, the rule is skipped and the
next rule in the configuration file is applied.

A number can be added to the end of any of the
nregexp, regexp, substr, or nsubstr values to make
the pattern match across that many lines. So a ptype
value of regexp2 would apply the pattern across two
lines of input.

By default when an event triggers a rule, the event
is not compared against other rules in the same file.
This can be changed on a per rule basis by using the
continue option1.

After single event suppression, the next basic rule
type is the single rule. This is used to take ac-
tion when a particular event is received. Actionable
events can interact with other higher level correlation
events: adding the event to a storage area (context),
changing existing contexts to activate or deactivate
other rules, activating a command to deal with the
event, or just reporting the event. Figure 3 is an ex-
ample of a single rule that will generate a warning if
the printer is offline from an unknown cause.

In Figure 3 we see two more rule options: context
and action. The context option is a boolean ex-
pression of contexts that further constrains the rule.

When processing the event “lj2.cs.umb.edu:
printer: Report Printer Offline if needed”,
the single rule in Figure 3 checks to see if the

1Note: continue is not supported for the suppress rule
type.

9

type=single

continue=dontcont

desc = Report Printer Offline if needed

ptype=regexp

pattern=^([\w._-]+): printer: Report Printer Offline if needed

context = Report_Printer_$1_Offline

action = write - "printer $1 offline, unknown cause" ; \

delete Report_Printer_$1_Offline

Figure 3: A single command that writes a warning message and deletes a context that determines if it should
execute.

pattern applies successfully. In this case the pattern
matches the event, but if the Report Printer -
lj2.cs.umb.edu Offline context does not exist,
then the actions will not be executed. The con-
text Report Printer lj2.cs.umb.edu Offline is
deleted by other rules in the ruleset (not shown) if a
more exact diagnosis of the cause is detected. This
suppresses the default (and incorrect) report of the
problem.

The action option specifies the actions to take
when the rule fires. In this case it writes the mes-
sage printer lj2.cs.umb.edu offline, unknown
cause to standard output (specified by the file name
“-”) . Then it deletes the context Report Printer -
lj2.cs.umb.edu Offline since it is no longer
needed.

There are many potential actions, including:

• creating, deleting, and performing other opera-
tions on contexts

• invoking external programs

• piping data or current contexts to external pro-
grams

• resetting active correlations

• evaluating Perl mini-programs

• setting and using variables

• creating new events

• running child processes and using the output
from the child as a new event stream.

We will discuss and use many of these actions later
in this paper.

3.3 Scheduling events with with finer
granularity

Part of modeling normal system activity includes ac-
counting for scheduled activities that create events.
For example, a scheduled weekly reboot is not worth
reporting if the reboot occurs during the scheduled
window, however it is worth reporting if it occurs at
any other time.

For this we use the calendar rule. It allows the
reader to schedule and execute actions on a cron like
schedule. In place of the ptype and pattern options
it has a time option that has five cron-like fields. It is
wonderful for executing actions or starting intervals
on a minute boundary. Sometimes we need to start
intervals with resolution of a second rather than a
minute.

Figure 4 shows a mechanism for generating a win-
dow that starts 15 seconds after the minute and lasts
for 30 seconds. The key is to create two contexts and
use both of them in the rules that should be active (or
inactive) only during the given window. One context
wait for window expires to begin the timed interval.
The window context expires marking the end of the
interval.

Creating an event on a non-minute boundary is
trivial once the reader learns that the event command
has a built in delay mechanism. Figure 5 shows the
trivial example of generating an event at 30 seconds
after the minute and a single rule reacting to the

10

type=calendar

time=30 3 * * *

desc=create 30 second window

action=create window 45; \

create wait_for_window 15

type=single

...

context=window && !wait_for_window

Figure 4: A mechanism for creating an timed interval
that starts on a non-minute boundary.

type=calendar

time=30 3 * * *

desc=create an event with 30 second delay

action=event 30 Here is the event

type=single

...

pattern=^Here is the event$

...

Figure 5: A mechanism for sending an event on a
non-minute boundary.

event. Triggering events generated by calendar rules
or by expiring contexts can execute actions, define in-
tervals, trigger rules or pass messages between rules.
Triggering events are used extensively to detect miss-
ing events.

3.4 Detecting missing events

The ability to generate arbitrary events and windows
with arbitrary start and stop times is useful when
detecting missing events. The rules in Figure 6 report
a problem if a ’sendmail -q’ command is not run
by root near 31 minutes after the hour. Because of
natural variance in the schedule, I expect and accept
a sendmail start event from 5 seconds before to 10
seconds after the 31st minute.

The event stream from Figure 1 is used as input
to the rules. Figure 7 displays the changes that oc-
cur while processing the events in time. Contexts
are represented by rectangles, the length of the rect-

angle is the context’s lifetime. Upside down trian-
gles represent the arrival of events. Regular triangles
represent actions within SEC. The top graph shows
the sequence when the sendmail event fails to arrive,
while the bottom graph shows the sequence when the
sendmail program is run.

The correlation starts when rule 2 (the calendar
rule) creating the context sendmail 31 minute that
will execute an action (write a message to standard
output) when it times out after 70 seconds (near 31
minutes and 10 seconds) ending the interval. The
calendar rule creates a second context, sendmail 31 -
minute inhibit, that will timeout in 55 seconds (near
30 minutes and 55 seconds) starting the 15 second
interval for the arrival of the sendmail event. Look-
ing at the top graph in Figure 7, we see the cre-
ation of the two contexts on the second and third
lines. No event arrives within the 15 second window,
so the sendmail 31 minute expires and executes the
“write” action. The bottom graph shows what hap-
pens if the sendmail event is detected. Rule 1 is
triggered by the sendmail event occurring in the 15
seconds window and deletes the sendmail 31 minute
context. The deletion also prevents the “write” ac-
tion associated with the context from being executed.

Note that the boolean context of rule 1 pre-
vents its execution if the sendmail event were to
occur less than 5 seconds before the 31st minute
since ! sendmail 31 minute inhibit is false be-
cause sendmail 31 minute inhibit exists and is
therefore true. If the sendmail event occurs after
31 minutes and 10 seconds, the context is again
false since sendmail 31 minute does not exist, and
is false.

The example rules use the write action to report a
problem. In a real ruleset, the systems administrator
could use the SEC shellcmd action to invoke log-
ger(1) to generate a syslog event to be forwarded to
a central syslog server. This event would be found
by SEC running on the syslog master. The rule
matching the event could notify the administrator via
email, pager, wall(1) or send a trap to an NMS like
HPOV or Nagios. Besides reporting, the event could
be further processed with a threshold rule that would
try to restart cron as soon as two or more “missed
sendmail events” events are reported, and report a

11

rule 1: detect the sendmail event

type = single

desc = sendmail has run, don’t report it as failed

ptype = regexp2

pattern = ^\> CMD: /usr/lib/sendmail -q.*\n\> root ([0-9]+) c .*

context = sendmail_31_minute && ! sendmail_31_minute_inhibit

action = delete sendmail_31_minute

rule 2: define the time window and prep to report a missing event

type = calendar

desc = Start searching for sendmail invocation at 31 past hour

time=30 * * * *

action = create sendmail_31_minute 70 write - \

Sendmail failed to run detected at %t; \

create sendmail_31_minute_inhibit 55

Figure 6: Rules to detect a missed execution of a sendmail process at the appointed time.

Start 30 minutes after hour

50 60 70 802010 30 40 750 seconds

50 60 70 802010 30 40 750 seconds

Calendar rules fires at 30 minutes after the hour

sendmail_31_minute_inhibit

sendmail_31_minute

Write message when sendmail_31_minute expires

Calendar rules fires at 30 minutes after the hour

sendmail_31_minute_inhibit

Sendmail CMD line detected

sendmail_31_minute

Delete sendmail_31_minute when CMD event arrives

Ends 31 minutes and 10 seconds after hour

Figure 7: Two timelines showing the events and contexts involved in detecting a missing, or present,
sendmail invocation from cron.

12

problem only if a third consecutive “missed sendmail
event” arrived.

Another way to perform missing event detection is
to use a pair rule to detect the missing event.

The ruleset of Figure 8 again uses a calendar rule
to start the operation. However rather than using
contexts, it generates an event at 30:55 to start the
15 second window. This event triggers/arms the
PairWithWindow rule for 15 seconds. If the sendmail
CMD event occurs within the 15 second window of
the PairWithWindow rule, the action2 action is ex-
ecuted, which simply logs the successful detection of
the sendmail event. If the 15 second window expires
without the sendmail event, the write action defined
by the action option is executed.

3.5 Counting correlation

The simplest correlations are counting calculations.
A certain number (N) of matching events (E) occur in
a given (potentially infinite) time period (T) and are
reported as a single composite event (C). This type
of correlation reduces reported events by buffering
errors until they have reached a critical threshold.
Counting correlations have four main variants based
on how they reset.

1. The first type of counting correlation uses a slid-
ing window of T seconds. It reuses received
events to try to find an interval in which the
threshold of N events will be exceeded. The win-
dow initially starts at the first occurrence of E.
If the time T expires without seeing N items,
a new window T starts at the arrival time as-
sociated with the next event (E+1) to be seen.
The window continues to slide over the arriving
events until no more events are available causing
the correlation to end. If N items are seen in T
seconds, the composite event C is generated and
further occurrences of the event E are ignored
until the time period T expires.

2. The second type of counting correlation uses a
single fixed time period T. The counting oper-
ation expires exactly T seconds after the first
occurrence of E. This is used when the following
events occur in a fixed relationship to the initial

event. It is used for tests where the distribution
of events within the window is important, for ex-
ample if the test requires at least two events per
minute for the last 10 minutes. This is quite dif-
ferent from saying that there must be 20 events
in 10 minutes.

3. The third type of counting correlation resets im-
mediately upon receiving N events within T sec-
onds. It does not suppress the events for the
rest of the time window T. When N events are
seen, the event C is generated. The rule resets
so the next event E starts a new window T. This
threshold rule generates 1/N as many events as
the original event stream. It keeps generating
C events until a time period T has passed. The
window T at that point can be sliding or fixed. It
is useful for reducing the event flow to upstream
correlators while doing a better job of preserving
event rate information. This is the closest to a
pure counting operation as it generates the event
C in a pure ratio to the original incoming events.

4. The last type of counting correlation resets when
E’s rate of arrival falls below a threshold once
the initial threshold has passed. After the first
threshold has passed, the correlation continues
to suppress the event E until the arrival rate
falls below some number N2 in time T2. A
version of this type of correlation operation is
seen in well-known applications such as HPOV
NNM[NNM] where it is referred to as thresh-
old/rearm. This counting operation is useful
for software like apache, or logins that have a
standard connection/activity rate. Exceeding
that rate should trigger a warning that stays ac-
tive until the event rate drops back to a normal
range. Denial of service attacks often exhibit this
pattern.

Sadly, the most widely used tool on Unix machines
for logging – syslog – causes problems with counting
correlations by suppressing duplicate events. We are
all familiar with the “Last message repeated N times”
entry from syslog that destroys useful information
that can be used for threshold modeling. Attempts
to work around this problem can generate the proper

13

rule 1: report a missing event, or log successful detection

type = PairWithWindow

desc = Report failed sendmail

ptype=regexp

pattern= sendmail_31_minute

action = write - Sendmail failed to run detected at %t

desc2 = found sendmail startup entry

ptype2 = regexp2

pattern2 = ^\> CMD: /usr/lib/sendmail -q.*\n\> root ([0-9]+) c .*

action2 = logonly

window=15

rule 2: trigger the detection operation at 30:55.

type = calendar

desc = Start searching for sendmail invocation at 31 past hour

time=30 * * * *

action = event 55 sendmail_31_minute

Figure 8: A rule to detect a failed execution of a sendmail process at the appointed time using the
PairWithWindow rule.

number of events, but cannot recover the inter-event
timing information between the duplicate events that
is lost forever.

3.5.1 Implementing a cooling-off period

One problem with counting is that there may be
an initial flurry of events that stops automatically
as the problem is diagnosed and solved by the per-
son or device that caused it. I see this with “disk
quota exceeded” events. A flurry of alerts is gener-
ated immediately as the user’s program tries to write
to the filesystem. Depending on the experience level
of the user, this may occur for a minute or so. I
wish to receive an alert when there have been more
than three quota exceeded messages for the same
user/machine/filesystem triplet. These three events
must occur in a fixed 2-minute window that starts
1 minute after the first quota exceeded message oc-
curs. This counting operation is of the second type
explained above.

If after this amount of time, the user is still expe-
riencing a problem, then they may not realize what
is happening or be able to deal with the problem. In
any case, they can use some assistance.

A simple counting rule will include the initial one
minute period where I expect a flurry of activity. This
makes it difficult to set thresholds because of the wide
variance in the number of events that can occur. By
deferring the count to a sampling range that has a
lower variance, I am able to reduce the number of
false positives.

Figure 9 shows the rules that I use to implement
this type of operation, and Figure 10 shows the time
graph of two event streams using these three rules.
In Figure 10 we add a new item to the graph. The
rectangular contexts, upside down event triangles and
regular action triangles are present, but we also have
rectangles with triangular ends. These 6 sided figures
represent active correlation operations. The length of
the hextangle represents the lifetime of the correla-
tion operation. We see two separate event streams
in Figure 10. Both streams come from the same user
on the same host, but occur on different filesystems.
The E1 stream is caused by a quota on the /home
filesystem, while the E2 stream is on the /var filesys-
tem.

Starting at the left hand side of Figure 10,
we see the first event of the E1 stream arrive.
It triggers rule 1 of Figure 9 and causes the

14

Example Input:

Jul 11 11:50:38 host1.example.org ufs: [ID 725924 \

kern.notice] quota_ufs: over hard disk limit \

(pid 0, uid 4816, inum 505699, fs /mount/sd0f)

rule 1: perform the count after the one minute interval

type=SingleWithThreshold

desc=Detect user pid $2 on $1 (fs $3) quota issue

continue=takenext

ptype=regexp

pattern=([\w._-]+) ufs: \[.*uid (\d+).*, fs ([\w/._-]+)

context= ! wait_a_minute_$1_$2_$3

action= write - Quota issue $0;

thresh=4

window=180

rule 2: define the beginning of the one minute interval

and define a fixed three minute counting window.

type=single

desc=Wait one minute for $1 $2 $3

ptype=regexp

pattern=([\w._-]+) ufs: \[.*uid (\d+).*, fs ([\w/._-]+)

context= ! in_threshold_for_$1_$2_$3

action=create in_threshold_for_$1_$2_$3 180 \

reset Detect user pid $2 on $1 (fs $3) quota issue ;\

create wait_a_minute_$1_$2_$3 60

rule 3: discard events during the three minute correlation interval

type=suppress

desc=Trap events

ptype=regexp

pattern=([\w._-]+) ufs: \[.*uid (\d+).*, fs ([\w/._-]+)

Figure 9: Rules to handle the flurry of activity that occurs when exceeding a quota. Reports when more
than 3 events received in two minutes after a one minute delay.

15

0 min 1 min 2 min 3 min 4 min
Event 1/1 E1/2 E1/3 E1/4 E1/5 E1/6

Event 2 −host1 ufs: ... uid 4130..., fs /var

inside of SEC.

Event 2/1 E2/3E2/2

in_threshold_for_host1_4130_/var

Note each events has its own set of correlations and contexts. Each event gives rise to different correlations/contexts

in_threshold_for_host1_4130_/home

Detected 4 events in 180 seconds, Write quota warning for /home

wait_a_minute_host1_4130_/var

Event 1 − host1 ufs: ... uid 4130...,fs /home − E1/2 is event 1 second time. E1/3 third copy of event 1 etc.

wait_a_minute_host1_4130_/home

Note 1: expiration of in_threshold_for_host1_4130_/home resets (deletes) 4130−host1−/home correlation
Note 2: Correlation "Detect user 4130 on host1 (fs /home) quota issue"
Note 3: E2/4 starts new "/var" correlation (not shown)
Note 4: Context in_threshold_for_host1_4130_/var expires deleting correlation
Note 5: Correlation "Detect user 4130 on host1 (fs /var) quota issue"

Note 2

Note 1

Note 5

Note 4

E2/4 Note 3

Figure 10: Time graph of two event streams E1 and E2 using the rules of Figure 9.

creation of the Detect user 4130 on host1 (fs
/home) quota issue correlation represented on line
5 of Figure 10. It will trigger when it counts three
more events (for a total of 4 events) in the next
three minutes. Because rule 1 has the continue op-
tion set to takenext, the E1/1 event also triggers
rule 2. Rule 2 creates the context in threshold -
for host1 4130 /home for 180 seconds. It also cre-
ates the wait a minute host1 4130 /home for 60
seconds.

The E1/2 event arrives while the wait a -
minute host1 4130 /home still exists, so rule 1’s con-
text prevents the event from being counted (note
the lack of a vertical line), and the existence of the
in threshold for host1 4130 /home context pre-
vents rule 2 from firing. So rule 3 fires suppressing
the E1/2 event.

When the E1/3 event occurs, the wait a -
minute host1 4130 /home has expired, so the event
is counted by the Detect user 4130 on host1 (fs
/home) quota issue correlation operation on line 5.
Due to the continue setting, the event is passed
to rule 2 that ignores it, since the in threshold -

for host1 4130 /home context is still active. So rule
3 consumes the event. The E1/4 and E1/5 events fol-
low the same pattern as the E1/3 event, and causes
the correlation to reach its threshold of 4 events. At
this point the quota warning is written as shown by
the triangle on line 6 of Figure 10. Event E1/6 is ig-
nored by rule 1 since the threshold has been exceeded.
The event is then passed to rule 2 and ignored by the
context. The event is finally consumed by rule 3.

After three minutes, the in threshold -
for host1 4130 /home context expires causing
its action to fire, which resets the Detect user
4130 on host1 (fs /home) quota issue correla-
tion. The next time an event from the E1 stream
occurs, it will cause a new chain of correlations and
counting.

Note that while we were busy with the E1
stream, the E2 stream was also being pro-
cessed. However only three events arrived before
the in threshold for host1 4130 /var context ex-
pired deleting the Detect user 4130 on host1 (fs
/var) quota issue context before it reached the
threshold to execute its action. It is important to

16

note that two different and separate correlation op-
erations were in effect with both of them using the
same rules. The dynamic extraction of data from the
events allowed the creation of these two unique cor-
relation operations even though they were spawned
from the same series of three rules.

3.5.2 Reporting too few events in a time pe-
riod

Sometimes we want to take action when too few
events have occurred. Figure 11 demonstrates a rule-
set that sends an alert if less than 50 HTTP GET
requests arrive in a hour. This problem can have mul-
tiple causes, including DNS failure, abnormal server
exit, and network connectivity problems.

Figure 11 combines a SingleWithThreshold rule
with a single rule that are both triggered by the same
event. The single rule (rule 1) creates a context that:

• generates an event to to report the problem.

• resets the SingleWithThreshold rule (rule 2)
so that the time periods for the too few -
http accesses context and counting correla-
tion are synchronized.

• generates a GET event to start a new corre-
lation window and initialize a new too few -
http accesses context.

Rule 1 creates a context that generates an event to
trigger a report rather than using the write action to
report a problem directly. Generating a report event
allows the suppression of the report by another rule
(rule 3) based upon other factors (e.g., at 2AM, 50
gets/hour is not realistic.)

This ruleset is similar to other rules that detect a
missing event. In this case the “event” we are missing
is a sufficient number of GET requests. In this ex-
ample a rule 4, a calendar rule, is used to prime the
ruleset so that its window starts on the hour. Ev-
ery hour we reset the correlation operation created
by rule 2 and cause the expiration of the too few -
http accesses context using the obsolete action. If
the too few http accesses context exists, then it
will execute its action list. If the context does not

exist, then nothing will happen. Lastly, rule 4 gen-
erates a new event that triggers (primes) rules 1 and
2.

Another variant of this rule does not use a calen-
dar rule to start counting at a regular interval. It
starts counting after another event has been seen.
For example, you can make sure that all the embed-
ded images on a web page are transferred by using
the get of the web page as the triggering event, and
then counting the number of files transferred to the
IP address in the following N minutes. This cre-
ates cross event counting since the single rule does
not have to have the same triggering event as the
SingleWithThreshold rule.

3.6 Repeat Elimination/Compression

I have dealt with real-time log file reporters that gen-
erated 300 emails when a partition filled up overnight.
Thus, there must be a method to condense, de-
duplicate or eliminate repeated events to provide a
better picture of a problem, and reduce the number
of messages to prevent the monitoring system from
spamming the administrators.

The SingleWithSuppress rule fills this de-
duplication need. To handle file system full errors,
the rule in Figure 12 is used.

This rule reports that the filesystem is full when it
receives its first event. It then suppresses the event
message for the next hour. Note that the desc key-
word includes the filesystem and hostname ($2 and
$1 respectively). This makes the correlation opera-
tion that is generated from the rule unique so that a
disk full condition on the same host for the filesystem
/mount/fs2 will generate an error event if it occurs 5
minutes after the /mount/sd0f event. If the filesys-
tem was not included in the desc option, then only
one alert for a full filesystem would be generated re-
gardless of how many filesystems actually filled up
during the hour.

Another way of performing duplicate elimination
is to use a SingleWith2Thresholds rule. Figure 13
shows handling the same error using this rule. The
SingleWith2Thresholds rule does not reset on a
time basis like SingleWithSuppress. It resets when
the number of events coming in drops below the sec-

17

rule 1

type = single

continue = takenext

desc = report not enough http requests

ptype = substr

pattern = GET

context = ! too_few_http_accesses

action = create too_few_http_accesses 3600 \

(event 0 REPORT_TOO_FEW_HTTP_ACCESSES ; \

reset Look for enough http accesses ; \

event 0 GET)

rule 2 - count the number of events and delete report

context if enough events have occurred.

type = SingleWithThreshold

desc = Look for enough http accesses

ptype=substr

pattern = GET

action = delete too_few_http_accesses

thresh = 50

window= 3600

rule 3 - generate the report if we are in the correct time

window

type= single

desc = report too few get events

...

pattern = ^REPORT_TOO_FEW_HTTP_ACCESSES$

context = ! inhibit_low_http_report_between_midnight_and_7am

action = write - low http get count

rule 4 - A priming rule to start measurements every hour on the hour.

type=calendar

desc = trigger ruleset looking for too few http requests

...

time=0 * * * *

action= obsolete too_few_http_accesses ; \

reset Look for enough http accesses ; \

event GET

Figure 11: A rule to detect too few HTTP get events in a time period. The obsolete action causes the
context to time out, thus running its actions.

18

Example:
Apr 13 15:08:52 host4.example.org ufs: [ID 845546 \
kern.notice] NOTICE: alloc: /mount/sd0f: file system full
type=SingleWithSuppress
desc=Full filesystem $2 on $1
ptype=regexp
pattern=([\w._-]+) ufs: \[.* NOTICE: alloc: ([\w/._-]+): file system full
action= write - filesystem $2 on host $1 full
window=3600

Figure 12: A rule to report a file system full error and suppress further errors for 60 minutes.

Example:

Apr 13 15:08:52 host4.example.org ufs: [ID 845546 \

kern.notice] NOTICE: alloc: /mount/sd0f: file system full

type=SingleWith2Thresholds

desc=Detect full filesystem $2 on $1

ptype=regexp

pattern=([\w._-]+) ufs: \[.* NOTICE: alloc: ([\w/._-]+): file system full

action= write - filesystem $2 on host $1 full

thresh=10

window=60

desc2=Detect end of full filesystem $2 on $1 condition

action2= write - full filesystem $2 on host $1 is resolved

thresh2=1

window2=3600

Figure 13: A rule to report a file system full error when more than 10 events are received in 1 minute.
Further problems reports are suppressed until the rule resets. The rule resets when no events (less than 1
event) are received in 60 minutes.

19

ond threshold. In Figure 13 the alert is sent when
more than ten “disk full” events occur in a minute.
The rule considers the problem to have disappeared
if there are no events in one hour. This one hour
period could be at 8AM on the Tuesday morning af-
ter a long weekend. If the filesystem filled up Fri-
day night at 9PM, and the “disk full” event was re-
ported via email, the sysadmin will most likely only
receive one email, assuming that at least one file sys-
tem full message is generated every 60 minutes. Using
the SingleWithSuppress rule, the administrator will
have 59 emails, one for every one hour period. The
worst case for the two thresholds rule is no worse than
the SingleWithSuppress implementation, and may
be better.

Looking at this, the reader must wonder when
to use SingleWithSuppress. It is useful when the
status of a device needs constant refreshing. For
example, sending traps to a network management
station indicates that the problem is still ongoing.
SingleWithSuppress can be combined with other
correlation rules by generating an event when the rule
fires. This generated event can be thresholded to per-
form more complex counting actions. For example, if
a SingleWithSuppress rule detects and suppresses
NFS errors for an hour, the staff can be alerted if it
has triggered once an hour for the last 5 hours.

3.7 Report on analysis of event con-
tents

Unlike most other programs, SEC allows the reader
to extract and analyze data contained within an
event. One simple example is the rule that ana-
lyzes NTP time adjustments. Many of the systems
at UMB are housed in offices rather than in the com-
puter room. Temperature changes and other factors
contribute to clock drift. With the frequency of time
adjustments, I consider any clock with less than 1/4
a second difference from the NTP controlled time
sources to be within a normal range. Figure 14 shows
the rules that are applied to analyze the xntpd time
adjustment events. We extract the value of the time
change from the step messages. This value is assigned
to the variable $1. The context expression executes a
Perl mini-program to see if the absolute value of the

change is larger than the threshold of 0.25 seconds.
If it is, the context is satisfied and the rule’s actions
fire.

The context expression uses a mechanism to run
arbitrary Perl code. It then uses the result of the
expression to determine if the rule should fire. It can
be used to match networks after applying a netmask,
perform calculations with fields of the event or other
tasks to properly analyze the events.

Although this idea is illustrated using a Single
rule, this particular tests would be better imple-
mented using a SingleWithThreshold rule. That
way an alert is generated only if a certain number of
time changes in the past 6 hours failed, the adminis-
trator can check the machine, make sure the air con-
ditioner is working properly etc. This also allows mul-
tiple parameters, for example, changes greater than
10 seconds are handled by a single rule that immedi-
ately notifies the admins, while smaller changes are
handled by a threshold rule that allows for some vari-
ance in the readings.

3.8 Detect identical events occurring
across multiple hosts

A single incident can affect multiple hosts. Detecting
a series of identical events on multiple hosts provides
a measure of the scope of the problem. The prob-
lem can be an NFS server failure affecting only one
host that does not need to be paged out in the mid-
dle of the night, or it may affect 100 hosts, which
requires recovery procedures to occur immediately.
Other problems such as time synchronization, or de-
tection of port scans also fall into this realm.

One typical example of this rule is to detect hori-
zontal port scans. The rules in Figure 15 identify a
horizontal port scan as three or more connection de-
nied events from different server hosts within 5 min-
utes from a particular external host or network. So 20
connections to different ports on the same host would
not result in the detection of a horizontal scan. In the
example, I assume that the hosts are equipped with
TCP wrappers that report denied connections. The
set of rules in Figure 15 implements the detection
of a horizontal port scan by counting unique client
host/server host combinations.

20

type=single

desc = report large xntpd corrections for host $1

continue = dontcont

ptype=regexp

context= =(abs($2) > 0.25)

pattern=([A-z0-9._-]+) xntpd\[[0-9]+\]:.*time reset \(step\) ([-]?[0-9.]+) s

action= write - "large xntpd correction($2) on $1"

Figure 14: Rule to analyze time corrections in NTP time adjustment events. The absolute value of the time
adjustment must be greater than 0.25 seconds to generate a warning.

A timeline of these three rules is shown in Fig-
ure 16.

The key to understanding these rules is to re-
alize that the description field is used to match
events with correlation operations. When rule 1,
the threshold correlation rule, sees the first rejected
connection from 192.168.1.1 to 10.1.2.3, it generates
a Count denied events from 192.168.1.1 corre-
lation. The next time a deny for 192.168.1.1 ar-
rives, it will be tested by rule 1, the description
field generated from this new event will match an
ongoing correlation threshold operation and it will
be considered part of the Count denied events
from 192.168.1.1 threshold correlation. If a re-
jection event for the source 193.1.1.1 arrives, the
generated description field will not match an ac-
tive threshold correlation, so a new correlation op-
eration will be started with the description Count
denied events from source2. Figure 16 shows a
correlation operation from start to finish. First
the event E1 reports a denial from host 192.168.1.1
to connect/scan 10.1.2.3. The correlation oper-
ation Count denied events from 192.168.1.1 is
started by rule 1, rule 2 is skipped because
the pattern does not match, and rule 3 cre-
ates the 5-minute-long context seen connection -
from 192.168.1.1 to 10.1.2.3 that is used to filter
arriving event to make sure that only unique events
are counted. The rest of rule 3’s actions will be dis-
cussed later.

The count for rule 1, the threshold corre-
lation operation, is incremented only if the
seen connection from 192.168.1.1 to 10.1.2.3
context does not exist. When the E1/2 (event 1

number 2) arrives, this context still exists and all
the rules ignore the event. When E2/1 arrives, it
triggers rule 1 and rule 3 creating the appropriate
context and incrementing the threshold operation’s
count.

When five minutes have passed since E1/1’s ar-
rival and the threshold rule has not been triggered
by the arrival of three events, the start of the
threshold rule is moved to the second event that it
counted, and the count is decremented by 1. This
occurs because the threshold rule uses a sliding win-
dow by default. When events 3/1 and 4/1 arrive,
they are counted by the shifted threshold correla-
tion operation started by rule 1. With the arrival
of E2/1, E3/1, and E4/1, three events have occurred
within five minutes and a horizontal port scan is de-
tected. As a result, the action reporting the con-
text conn deny from 192.168.1.1 is executed and
the events counted during the correlation operation
(maintained by the add action of rule 3) are reported
to the file report log.

Rule 2 and the final actions of rule 3 allow de-
tection of horizontal port scans even if they come
from different hosts such as: 192.168.3.1, 192.168.1.1,
and 192.168.7.1. If each of these hosts scans a dif-
ferent host on the 10 network, it will be detected
as a horizontal scan from the 192.168.0.0 network.
This is done by creating three events replacing the
real source address with a corresponding network ad-
dress. One event is created for each class A, B and
C network that the original host could belong to:
192.168.1.0, 192.168.0.0, and 192.0.0.0. The response
to these synthesized events are not shown in Fig-
ure 16, but they start a parallel series of correlation

21

Example input:

May 10 13:52:13 cyber TCPD-Event cyber:127.6.7.1:3424:sshd deny \

badguy.example.com:192.268.15.45 user unknown

Variable = description (value from example above)

$3 = server ip address (127.6.7.1)

$5 = daemon or service connected to on server (sshd)

$8 = ip address of client (attacking) machine (192.268.15.45)

$9 = 1st quad of client host ip address (192)

$10 = 2nd quad of client host ip address (6)

$11 = 3rd quad of client host ip address (7)

$12 = 4th quad of client host ip address (1)

Rule 1: Perform the counting of unique destinations by client host/net

type = SingleWithThreshold

desc = Count denied events from $8

continue = takenext

ptype = regexp

pattern = ^(.*) TCPD-Event ([A-z0-9_.]*):([0-9.]*):([0-9]*):([^]*) (deny) \

([^:]*):(([0-9]*)\.([0-9]*)\.([0-9]*)\.([0-9]*)) user (.*)

action = report conn_deny_from_$8 /bin/cat >> report_log

context = ! seen_connection_from_$8_to_$3

thresh = 3

window = 300

Rule 2: Insert a rule to capture synthesized network tcpd events.

type=single

...

pattern = ^(.*) TCPD-Event ([A-z0-9_.]*):([0-9.]*):([0-9]*):([^]*) (deny) \

([^:]*):(([0-9]*)\.([0-9]*)\.([0-9]*)\.([0-9]*)) user (.*) net$

action=none

Rule 3: Generate network counting rules and maintain contexts

type = single

desc = maintain counting contexts for deny service $5 from $8 event

continue = takenext

ptype = regexp

pattern = ^(.*) TCPD-Event ([A-z0-9_.]*):([0-9.]*):([0-9]*):([^]*) (deny) \

([^:]*):(([0-9]*)\.([0-9]*)\.([0-9]*)\.([0-9]*)) user (.*)

context = ! seen_connection_from_$8_to_$3

action = create seen_connection_from_$8_to_$3 300; \

add conn_deny_from_$8 $0 ; \

event 0 $1 TCPD-Event $2:$3:$4:$5 $6 $7:$9.$10.$11.0 user $13 net; \

event 0 $1 TCPD-Event $2:$3:$4:$5 $6 $7:$9.$10.0.0 user $13 net; \

event 0 $1 TCPD-Event $2:$3:$4:$5 $6 $7:$9.0.0.0 user $13 net; \

add conn_deny_from_$9.$10.$11.0 $0 ; \

add conn_deny_from_$9.$10.0.0 $0 ; \

add conn_deny_from_$9.0.0.0 $0

Figure 15: Rules to detect horizontal port scans defined by connections to 3 different server hosts from the
same client host within 5 minutes. Note: patterns are split for readability. This is not valid for sec input.

22

Generate network events Generate network events Generate network eventsGenerate network events

0 min 3 min 6 min1 min 2 min 4 min 5 min

Correlation "Count denied events from 192.168.1.1"

Correlation "Count denied events from 192.168.1.1" window shifted to next event.

5 Minute window for correlation shifts to encompass three events in 5 minutes

Report excessive denied events for 192.168.1.1

seen_connection_from_192.168.1.1_to_10.1.2.5

seen_connection_from_192.168.1.1_to_10.1.2.3

seen_connection_from_192.168.1.1_to_10.1.2.6

seen_connection_from_192.168.1.1_to_10.1.2.4

E1/1 E1/2 E2/1

Event1 TCPD−Event 192.168.1.1 to 10.1.2.3
Event 2 TCPD−Event 192.168.1.1 to 10.1.2.4

Event 4 TCPD−Event 192.168.1.1 to 10.1.2.6
Event 3 TCPD−Event 192.169.1.1 to 10.1.2.5

E3/1 E4/1

Event 1, number 2 is not counted because of the existance of the seen_connection_from_192.168.1.1_to_10.1.2.3 context.
Note start of event correlation shifts from E1/1 to E2/1 (which is second event counted) to detect 3 events/5min.

Figure 16: Timeline showing the application of rules to detect horizontal port scans.

operations and contexts using the network address of
the client in place of 192.168.1.1.

Vertical scans can use the same framework with
the following changes:

• the filtering context needs to include port num-
bers so that only unique client host/server
host/port triples are counted by the threshold
rule.

• the description of rule 1 to include the server
host IP so that it only counts connections to a
specific server host.

This will count the number of unique server ports
that are accessed on the server from the client host.

In general, using rules 1 and 3, you can count
unique occurrences of a value or group of values. The
context used to link the rules must include the unique
values in its name. The description used in rule 1 will
not include the unique values and will create a bucket
in which the events will be counted. In the horizontal
port scan case, case, my bucket was any connection
from the same client host. The unique value was the
server IP address connected to by the the client host.
In detecting a vertical port scan, the value is the num-
ber of unique ports connected to while the bucket is
the client/server host pair.

These two changes allow the counting ruleset to
count the number of unique occurrences of the pa-
rameter that is present in the filtering rule, but miss-
ing from the rule 1 description (the bucket). E.g., if
the context specifies serverhost, clienthost, serverport
and rule 1 specifies clienthost and serverhost in its de-
scription, then the rules above implement counting
of unique ports for a given clienthost and serverhost.
The rules as presented above specified clienthost and
serverhost, rule 1 specified the clienthost, so the rule-
set counted unique serverhost’s for a given clienthost.

Other counting methods can also be implemented
using mixtures of the vertical and horizontal counting
methods.

While I implemented a “pure” SEC solution, the
ability to use Perl functions and data structured from
SEC rules provides other solutions[Vaarandi7 2003]
to this problem.

3.9 Creating threads of events from
multiple sources

Many thread recognition operations involve using one
of the pair type rules. Pair rules allow identification
of a future (child) event by searching for identifying
information taken from the present (parent) event.

23

This provides the ability to stitch a thread through
various events by providing a series of pair rules.

There are three times when you need to trigger an
action with pair rules:

1. Take action upon receipt of the parent event

2. Take action upon receipt of the child event

3. Take action after some time when the child event
has not been received (expiration of the pair
rule).

The Pair rule provides actions for triggers 1 and 2.
The PairWithWindow rule provides actions for trig-
gers 2 and 3. None of the currently existing pair rules
provides a mechanism for taking actions on all three
triggers. Figure 17 shows a way to make up for this
limitation by using a context that expires when the
pair rule is due to be deleted. Since triggers 2 and
trigger 3 are mutually exclusive, part of trigger 2’s
action is to delete the context that implements the
action for to trigger three.

I have used this method for triggering an automatic
repair action upon receipt of the first event. The
arrival of the second event indicated that the repair
worked. If the second event failed to arrive, an alert
would be sent when the context timed out. Also, I
have triggered additional data gathering scripts from
the first event. The second event in this case reported
the event and additional data when the the end of the
additional data was seen. If the additional data did
not arrive on time, I wanted the event to be reported.

This mechanism can replace combinations of
PairWithWindow and Single rules. It simplifies the
rules by eliminating duplicate information, such as
patterns, that must be kept up to date in both rules.

3.9.1 Correlating across processes

One of more difficult correlation tasks involves cre-
ating a session made up of events from multiple pro-
cesses.

Figure 18 shows a ruleset that sets up a link be-
tween parent and child ssh processes. Its application
is show in Figure 19.

When a connection to ssh occurs, the parent pro-
cess, running as root, reports the authentication

events and generates information about a user’s lo-
gin. After the authentication process, a child sshd
is spawned that is responsible for other operations
including port forwarding and logout (disconnect)
events. The ruleset in Figure 18 captures all of the
events generated by the parent or child ssh process.
This includes errors generated by the parent and child
ssh processes.

A session starts with the initial network connection
to the parent sshd and ends with a connection closed
event from the child sshd. I accumulate all events
from both processes into a single context. I also have
rules (not shown in the example) to report the entire
context when unexpected events occur.

The tricky part is accumulating the events from
both processes into a single context. The connection
between the event streams is provided by a tie event
that encompasses unique identifying elements from
both event streams and thus ties together the two
streams into a single stream.

Each ssh process has its own unique event stream
stored in the context session log <hostname> -
<pid>. There is a Single rule, omitted for brevity,
that accumulates ssh events into this context. When
the tie event is seen, it provides the link between
the parent sshd session log context and the child
session log context. The data from the two con-
texts is merged and the two context names (with
the parent and child pid’s) are assigned to the same
underlying context. Hence the child’s session -
log <hostname> <child pid> context and the
parent’s session log <hostname> <parent pid>
contexts refer to the same data. After the contexts
are linked, actions using either the child context name
or the parent context name operate on the same un-
derlying context. Reporting or adding to the context
using one of the linked names acts the same regard-
less of which name is used.

In Figure 19 the first event E1 triggers rule 1 from
Figure 18, the PairWithWindow rule, to recognize the
start of the session. The second half of rule 1 looks
for a tie event for the following 60 seconds. There
may be many tie events, but there should be only one
tie event that contains the the pid of the parent sshd.
Since we have that stored in $2, we use it in pattern2.
The start of session event is passed onto additional

24

type=pair

...

action = write - rule triggered ;\

create take_action_on_pair_expiration 60 (write - rule expired)

...

pattern2=

action2 = write - pattern 2 seen ;\

delete take_action_on_pair_expiration

...

window=60

Figure 17: A method to take an action on all three trigger points in a pair rule.

rule 1 - recognize the start if an ssh session,

and link parent and child event contexts.

type=PairWithWindow

continue=takenext

desc=Recognize ssh session start for $1[$2]

ptype=regexp

pattern=([A-Za-z0-9._-]+) sshd\[([0-9]+)\]: \[[^]]+\] Connection from ([0-9.]+) port [0-9]+

action=report session_log_$1_$2 /bin/cat

desc2=Link parent and child contexts

ptype2=regexp

pattern2=([A-Za-z0-9._-]+) [A-z0-9]+\[[0-9]+\]: \[[^]]+\] SSHD child process +([0-9]+) spawned by $2

action2=copy session_log_$1_$2 %b; \

delete session_log_$1_$2; \

alias session_log_$1_%2 session_log_$1_$2; \

add session_log_$1_$2 $0; \

event 0 %b; \

alias session_log_owner_$1_%2 session_log_owner_$1_$2; \

window=60

rule 2 - recognize login event and save username for later use

type=single

desc=Start login timer

ptype=regexp

pattern=([A-Za-z0-9._-]+) sshd\[([0-9]+)\]: \[[^]]+\] Accepted (publickey|password) for ([A-z0-9_-]+) from [0-9.]+ port [0-9]+ (.*)

action=add session_log_$1_$2 $0; add session_log_owner_$1_$2 $4

rule 3 - handle logout

type=single

desc=Recognize ssh session end

ptype=regexp

pattern=([A-Za-z0-9._-]+) sshd\[([0-9]+)\]: \[[^]]+\] Closing connection to ([0-9.]+)

action= delete session_log_$1_$2; delete session_log_owner_$1_$2

Figure 18: Accumulating output from ssh into a single context.

25

... N min0 min 2 min1 min
E1 − Initial parent event: example.org sshd[10240]: [ID 800047 auth.info] Connection from 192.168.0.1 port 3500

is not shown in the ruleset.

Pair correlation"Recognize ssh session start for example.org[10240]"

Logout event
destroy’s context

E1 E2 E3 E4 E5 EN

Note 1, 2

Tie event causes two contexts to be aliased together into one context with two names

session_log_example.org_10245

session_log_example.org_10240

session_log_owner_example.org_10240

session_log_owner_example.org_10245

Recorded in context Recorded Recorded

EN − Logout child event: example.org sshd[10245]: [ID 800047auth.info] Closing connection to 192.168.0.1
E5 − Child event: example.org sshd[10245]: [ID 800047 auth.info] bind: Cannot assign requested address
E4 − Child event: example.org sshd[10245]: [ID 800047 auth.info] error: connect_to 127.0.0.1 port2401 failed
E3 − Tie event: example.org rouilj[10248]: [ID 702911 auth.notice] SSHD child process 10245 spawned by 10240
E2 − Parent event: example.org sshd[10240]: [ID 800047 auth.info] Accepted publickey for rouilj from 192.168.0.1 port 3500 ssh2

Note 1: creation of session_log_example.org_10240 context in response to E1 is done by a catchall rule that

Note 2: alias of two contexts is shown by the large box labeled with both context names.

Figure 19: The application of the ssh ruleset showing the key events in establishing the link between parent
and child processes.

rules (not shown) by setting the continue option on
rule 1 to takenext. These additional rules record the
events in the session log context identified by system
and pid, as in the session log example.org 10240
context of Figure 19.

If the tie event is not found within 60 seconds,
the session log example.org 10240 context is re-
ported. However, if the tie event is found as in Fig-
ure 19, then a number of other operations occur.
The tie event is generated by a script that is run
by the child sshd. Therefore it is possible for the
child sshd to generate events before the tie event is
created. Because of the default rule that adds events
to the session log example.org 10245, additional
work must be done when the tie event arrives to pre-
serve the data in the child’s session log. The second
part of rule 1 in Figure 18 copies child’s session log
context into the variable %b. The child’s session log
is then deleted and aliased to the parent session log.
The %2 variable is the value of $2 from the first pat-
tern, the parent process’s PID. After pattern2 is ap-
plied, the parent PID is referenced as %2 because $2
is now the second subexpression of pattern2. Next
the data copied from the child log is injected into the
event stream to allow re-analysis and reporting using

the combined parent and child context.
The last action for the tie event is to alias the lo-

gin username stored in the context session log -
owner <hostname> <parent pid> to a similar
context under the child pid. Then any rule that
analyzes a child event can obtain the login name
by referencing the alias context. Rule 2 in Fig-
ure 18 handles the login event and creates the
context session log owner <hostname> <parent
pid> where it stores the login name for use by the
other rules in the ruleset. Rule 2 also stores the login
event in the session log context.

The last rule is very simple. It detects the
“close connection” (logout) event and deletes the con-
texts created during the session. The delivery of
event N (EN) in Figure 19 causes deletion of con-
texts. Deleting an aliased contexts deletes the con-
text data store as well as all the names pointing
to the context data store. Rule 3 uses the child
PID to delete session log example.org 10245
and session log owner example.org 10245, which
cleans up all 4 context names (2 from the parent PID
and 2 from the child) and both context data stores.

This mechanism can be used for correlating any
series of events and passing information between the

26

rules that comprise an analysis mechanism. The trick
is to find suitable tie events to allow the thread to
be followed. The tie event must contains unique el-
ements found in the events streams that are to be
tied together. In the ssh correlation I create a tie
event using the pid’s of the parent and child events.
Every child event includes the PID of the child sshd
so that I can easily construct the context name that
points to the combined context data store. For the
ssh correlation, I create the tie event by running shell
commands using the sshrc mechanism and use the
logger(1) command to inject the tie event into the
data stream. This creates the possibility that the tie
event arrives after events from the child process. It
would make the correlation easier if I modified the
sshd code to provide this tie event since this would
generate the events in the correct order for correla-
tion.

Having the events arriving in the wrong order for
cross correlation is a problem that is not easily reme-
died. I suppress reporting of the child events while
waiting for the tie event (not shown). Then once the
tie event is received, the child events are resubmitted
for correlation. This is troublesome and error prone
and is an area that warrants further investigation.

3.9.2 Recognizing coinciding events

The pair rules by their nature force events to be or-
dered in time. The parent event must occur before
the child event. However, we often need to find out if
a group of events arrives in some window. For exam-
ple, an alert must be generated if any two interfaces
on a system have reported an interface down event
within 5 minutes of each other. Figure 20 shows a
method of testing for this situation using a series of
single rules. Each single rule recognizes one condi-
tion. It sets a context that exists for 5 minutes rec-
ognizing that condition. It then generates an event
that causes the last single rule to see if any two con-
ditions are still asserted. Since the time periods for
each created context can be different, it allows any
type of overlap between the coinciding events. To
detect an exact ordering for some of the events, use
a pair rule to create an “event a occurred within 5 -
minutes after event b” context. Then use this con-

type=single

...

pattern=interface eri0 down

action = create eri_0_down 300 ; \

event 0 check_for_eri_down

type=single

...

pattern=interface eri1 down

action = create eri_1_down 300 ; \

event 0 check_for_eri_down

type=single

...

pattern=interface eri2 down

action = create eri_2_down 300 ; \

event 0 check_for_eri_down

type=single

...

pattern= check_for_eri_down

context = (eri_1_down && eri_2_down) || \

(eri_1_down && eri_3_down) || \

(eri_2_down && eri_3_down)

action=...

Figure 20: Identify combinations of two events oc-
curring within a 5 minute window

text to detect the coincidence of this strict ordering
with other events.

3.9.3 Handling a sequence

I refer to a known explicitly ordered list of events from
a single application or device as a sequence. Much
of normal operation is expressed as a sequence. An
example is the sequence of events generated for a re-
booting system. There are many places where things
can go wrong, from failing hardware exposed by the
stress of rebooting, to failures caused by software and
configuration changes that are only tested on reboot.
In these types of sequences, there are a multitude of
factors to consider:

• What are the start and end events for the se-
quence? Examples include login and logout

27

events, or start of reboot to end of reboot phase
of a machine.

• Must the end event occur within a specific time
range after the start event? Examples include
email receipt for a local user to time of final de-
livery must take less then 1 minute, or the start
of backup cron job to end of cron job must take
longer than 10 minutes but less than 2 hours.

• Are there inter-event timing constraints? During
a system reboot, it should not take more than 10
seconds from the identification of the network
interface card till it is configured.

• What information from the sequence is needed
to aid diagnosis when a problem occurs? Do we
need the entire sequence or do we need to report
a fragment of the entire sequence?

• Are there known failure modes for the sequence
that require reporting?

• Are there optional items in the sequence that
need to be checked?

Setting up rules for a full sequence like a system re-
boot consisting of 80 lines can be a pain. But, failure
to fully specify the sequence can result in false neg-
atives. By blending verification of correct operation
and looking for known failure modes, the risk of false
negatives can be reduced. However, as was stated by
someone who shall remain anonymous:

we have no crystal ball to let us know there
is a new kernel error message saying ’the
CPU is melting!’.

A tool that would take a sequence, analyze it for time
interdependencies and generate a ruleset to detect the
sequence would be welcome.

Figure 21 is a partial example of the boot sequence
for a host2. It makes sure that all of the identified
components are present and places an overall timing
constraint (300 seconds) on the time from the first
line to the last in the reboot sequence.

2Greatly truncated for publication. A more complete ex-
ample is in the downloadable ruleset.

This demonstrates the use of a few things that
we have discussed previously. Rule 1 recognizes the
start/end of reboot using a three-trigger pair rule. A
context is created (look for line 2 <hostname>)
to make sure that the next recognized (and con-
sumed) line will be the Sun Microsystems copyright
notice. If some other line occurs, it will be captured
by the default report only rule (not shown) that fires
when the Reboot in Progress ... context for the
host is set. It also generates events that trigger rules
to search for the startup messages from xntpd, inetd
and sshd.

The PairWithWindows rules to detect daemon
startup (e.g. xntpd, sshd, inetd) are not shown, but
they consume one sequence of normal startup mes-
sages for 10 minutes after the reboot starts. They
alert if the startup messages for these services are
not found.

Rule 2 matches the Sun copyright notice if the prior
event from the host was the genunix version declara-
tion (matched by rule 1). It then creates a context
that enabled the rule looking for the third line in the
sequence.

Rule 3 matches the eri network interface detec-
tion event (again using a three trigger pair rule) and
makes sure that is successfully configured at 100 Mbs
within 10 seconds. It then sets a context to allow de-
tection of the device lines that occur after the eri
interfaces are detected.

I do not care about the order of the lines occurring
after the network interface is detected, I just want to
see that each device has been detected, so I used a
coincidence detector in rule 4. Each rule that detects
one of these devices generates a CHECK ERI LINES
<hostname> event.

4 Strategies to improve perfor-
mance

One major issue with real-time analysis and notifica-
tion is the load imposed on the system by the analysis
tool and the rate of event processing. The rules can
be restructured to reduce the computational load. In
other cases the rule analysis load can be distributed

28

Rule 1: detect reboot start and limit overall length of reboot

type= pair

desc= recognize start of reboot

...

pattern= ([^]*) genunix: .*SunOS Release 5.8 Version

action=add Reboot_in_Progress_$1 $0; create look_for_line_2_$1; \

create reboot_failed 300 (write - reboot of $1 failed.); \

event xntp: reboot startup; event inetd reboot startup;\

event sshd reboot startup

pattern2= $1 genunix: .* dump on /swapfile size

action2 = delete reboot_failed;

window=300

Rule 2: recognize second line in reboot sequence

type= single

desc= recognize second line of reboot

...

pattern= ([^]*) genunix: .* Copyright 1983-2001 Sun Microsystems, Inc.

context = Reboot_in_Progress_$1 && look_for_line_2_$1

action= delete look_for_line_2_$1; create look_for_line_3_$1

Rule 3: look for network interface and it must be up in <10 sec.

type=pair

desc = detect proper response of network card.

window=10

context=Reboot_in_Progress_$1 && look_for_line_32_$1

pattern= ([^]) genunix: .*eri([0-9]*) is /pci@1f,0/network

action= create failed_eri$2_config_$1 10 \

(write - Failed to detect eri0 operation within 10 seconds); \

delete look_for_line_32_$1; \

create look_for_line_following_eri_detection_$1

ptype2=regexp

pattern2 = $1 eri: .* SUNW,eri$2 : 100 Mbps full duplex link up

action2 = create look_for_line_39_%1; delete failed_eri%2_config_%1; \

add Reboot_in_Progress_$1 $0

Rule 4: Check for other device recognition messages after

the eri card has been detected.

type=single

desc = all three devices following eri detection present

...

pattern= CHECK ERI LINES ([^]*)

context= found_ds0_$1 && found_uata0_$1 && found_devinfo0_$1

action = delete found_ds0_$1;delete found_uata0_$1; delete found_devinfo0_$1

Figure 21: A partial ruleset for analyzing a boot sequence.

29

across multiple systems or across multiple processes
to reduce the load on the system or improve event
throughput for particular event streams.

The example rule set from UMB utilizes a num-
ber of performance enhancing techniques. Originally
these techniques were implemented in a locally mod-
ified version of SEC. As of SEC version 2.2.4, the
last of the performance improvements has been im-
plemented in the core code.

4.1 Rule construction

For SEC, construction of the rules file(s) plays a large
role in improving performance. In SEC, the major-
ity of computation time is occupied with recogniz-
ing events using Perl regular expressions. Optimiz-
ing these regular expressions to reduce the amount of
time needed to apply them improves performance.

However, understanding that SEC applies each rule
sequentially allows the reader to put the most often
matched rules first in the sequence. Putting the most
frequently used rules first reduces the search time
needed to find an applicable rule. Sending a USR1
signal to SEC causes it to dump its internal state
showing all active contexts, current buffers, and other
information including the number of times each rule
has been matched. This information is very useful in
efficiently restructuring a ruleset

Using rule segmentation to reduce the number of
rules that must be scanned before a match is found
proves the biggest gains for the least amount of work.

4.1.1 Rule Segmentation

In August 2003, I developed a method of using SEC’s
multiple configuration file mechanism to prune the
number of rules that SEC would have to test before
finding a matching rule.

This mechanism provides a limited branching fa-
cility within SEC’s ruleset. A single criteria filtering
rule is shown in Figure 22:

This rule depends on the Nregexp pattern type.
This causes the rule to match if the pattern does not
match. The pattern is crafted to filter out events that
can not possibly be acted upon by the other rules
in the file. In this example I show another guard

type=suppress

continue=dontcont

ptype=NRegExp

pattern=^[ABCD]

desc=guard for abcd rules

type=single

continue=dontcont

ptype=TValue

pattern=true

desc=guard for events handled by other \

ruleset files

action=logonly

context = [handled]

type=single

continue=takenext

ptype=TValue

pattern=true

desc=report handled

action=create handled

<rules here>

type=single

ptype=TValue

pattern=true

desc=Guess we didn’t handle this event after all

action=delete handled

Figure 22: A sample rule set to allow events to be
filtered and prevented from matching other rules in
the file.

30

that is used to prevent this ruleset from considering
the event if it has been handled. It consists of a
rule that matches all events3 and fires if the handle
context is set. If it does not eliminate the event from
consideration, I set the handled context to prevent
other rulesets from processing the event and pass the
event to the ruleset. If the final rule triggers, then
the event was not handled by any rule in the ruleset.
The final rule deletes the handled context so that the
following rulesets will have a chance to analyze the
event.

Note that this last rule is repeated in the final rule
file to be applied. There it resets the handled context
so that the next event will be properly processed by
the rulesets.

In addition to a single regexp, multiple patterns
can be applied and if any of them select the event,
the event will be passed through the rest of the rules
in the file. A rule chain to accept an event based on
multiple patterns is shown in Figure 23. The multiple
filter criteria can be set up to accept/reject the event
using complex boolean expressions so that the event
must match some patterns, but not other patterns.

The segmentation method can be arbitrary, how-
ever it is be most beneficial to group rules by some
common thread such as the generator, using a a
file/ruleset for analyzing sshd events and another one
for xntp events. Another segmentation may be by
host type. So hosts with similar hardware are ana-
lyzed by the same rules. Hostname is another good
segmentation property for rules that are applicable
to only one host.

The segmentation can be made more efficient by
grouping the input using SEC’s ability to monitor
multiple files. When SEC monitors multiple files,
each file can have a context associated with it. While
processing a line from the file, the context is set.
For example, reading a line from /var/adm/messages
may set the adm messages context, while reading a
line from /var/log/syslog would set the log syslog
context and clear the adm messages context. This al-
lows segmentation of rules by source file. Offloading
the work of grouping to an external application such

3The TValue ptype is only available in SEC 2.2.5 and newer.
Before that use regexp with a pattern of .̂?.

type= single

desc= Accept event if match2 is seen.

continue= takenext

ptype= regexp

pattern= match2

action= create accept_rule

type= single

desc= Accept event if match3 is seen.

continue= takenext

ptype= regexp

pattern= match3

action= create accept_rule

type= single

desc= Skipping ruleset because neither \

match2 or match3 were seen.

ptype= TValue

pattern= true

context= ! accept_rule

action= logonly

type= single

desc= Cleaning up accept_rule context \

since it has served its purpose.

continue=takenext

ptype= TValue

pattern= true

context= accept_rule

action= delete accept_rule; logonly

<other rules here>

Figure 23: A ruleset to filter the input event against
multiple criteria. The words “match2” or “match3”
must be seen in the input event to be processed by
the other rules.

31

as syslog-ng provides the ability to group the events
not only by facility and level as in classic syslog, but
also by other parameters including host name, pro-
gram, or by a matching regular expression. Since
syslog-ng operates on the components of a syslog mes-
sage rather than the entire message, it is expected to
be more efficient in segmenting the events than SEC.

Restructuring the rules for a single SEC process
using a simple 5 file segmentation based on the first
letter of the event using an 1800 rule ruleset increased
throughput by a factor of 3. On a fully optimized
ruleset of 50 example rules, running on a SunBlade
150 (128MB of memory, 650Mhz), I have seen rates
exceeding 300 lines/sec with less than 40% processor
utilization. In tests run under the Cygwin environ-
ment on Microsoft windows 2000, 40 rules produced
a throughput of 115 log entries per second. This sin-
gle file path of 40 rules is roughly equivalent to a
segmented ruleset of 17 files with 20 rules each for
a total of 340 rules, with events equally distributed
across the rulesets.

Note that these throughput numbers depend on
the event distribution, the length of the events etc.
Your mileage may vary.

4.2 Parallelization of rule processing

In addition to optimizing the rules, multiple SEC pro-
cesses can be run, feeding their composite events to a
parent SEC. SEC can watch multiple input streams.
It merges all these streams into a single stream for
analysis. This merging can interfere with recogni-
tion of multi-line events as well as acting to increase
the size of an event queue, slowing down the effective
throughput rate of a single event stream. Running a
child SEC process on an event stream allows faster
response to that stream.

SEC’s spawn action creates a process and creates
an event from every line emitted by the child process.
The events from these child processes are placed on
the front of the event queue for faster processing.

These features allow the creation of a hierarchy of
SEC processes to process multiple rules files. This
reduces the burden on the parent SEC process by
distributing the total number of rules across different
processes. In addition, it simplifies the creation of

rules when multi-line events must be considered, by
preventing the events from being distorted by the in-
jection of other events in the middle of the multi-line
event.

SEC is not threaded, so use of concurrent pro-
cesses is the way to make SEC utilize multiprocessor
systems. However, even on uniprocessor systems, it
seems to provide better throughput by reducing the
mean number of rules that SEC has to try before
finding a match.

4.3 Distribution across nodes

SEC has no built-in mechanism for distributing or
receiving events with other hosts. However, one can
be crafted using the ideas from the last two sections.
Although this has not been tested, it is expected to
provide a significant performance improvement.

The basic idea is to have the parent SEC process
use ssh to spawn child SEC processes on different
nodes. These nodes have rules files that handle a
portion of the event stream. The logging mechanisms
are set up to split the event streams to the nodes so
that each node has to work on only a portion of the
event stream. Even if the logs are not split across
nodes, the reduced number of rules on each node is
expected to allow greater throughput.

This can be used in a cluster to allow each host to
process its own event streams and report composite
events to the parent SEC process for cross-machine
correlation operations.

4.4 Redundancy

As with distribution, SEC has no built in redundancy
mechanism, however it should be possible to provide
a measure of redundancy by duplicating rules files on
a few hosts that receive the same event data. I have
not tested this in its entirety, but the basic blocks
have been tested.

Redundant SEC processes can generate heartbeat
events for each other. SEC is able to detect when the
events are missing and enable all of its rulesets.

While I have not set up the heartbeat mechanism,
I have a ruleset that can be easily modified for that
purpose. This ruleset was implemented because of a

32

limitation in classic syslog. If a host is a syslog master
and receives syslog events from child hosts, it cannot
send its own events to another master syslog host
without forwarding all of its child events. As a result
each master loghost must correlate its own events.
Newer versions of syslog (e.g. syslog-ng) address this
problem.

The ruleset suppresses all syslog events that do not
originate on the syslog master host using a mecha-
nism similar to the rule segmentation discussed in
section 4.1.1. It requires manual intervention to turn
on, but this could be modified to work in a redundant
environment.

5 Limitations

Like any tool, SEC is not without its limitations.
The serial nature of applying SEC’s rules limits its
throughput. Some form of tree-structured mecha-
nism for specifying the rules would allow faster ap-
plication. One idea that struck me as interesting
is the use of ripple-down rulesets for event correla-
tion[Clark2000] that could simply the creation and
maintenance or rulesets as well as speed up execu-
tion of complex correlation operations.

As can be seen above, a number of idioms consist
of mating a single rule to a more complex correla-
tion rule to receive the desired result. This makes it
easy to get lost in the interactions of more complex
rulesets. I think more research into commonly used
idioms, and the generation of new correlation opera-
tions to support these idioms will improve the read-
ability and maintainability of the correlation rules.

The power provided by the use of Perl regular ex-
pressions is tempered by the inability to treat the
event as a series of fields rather than a single entity.
For example, I would prefer to parse the event line
into a series of named fields, and use the presence,
absence and content of those fields to make the deci-
sions on what rules were executed. I think it would be
more efficient and less error prone to come up with a
standard form for the event messages and allow SEC
to tie pattern matches to particular elements of the
event rather then match the entire event. However,
implementation of the mechanism may have to wait

for the “One True Standard for Event Reporting”,
and I do not believe I will live long enough to see
that become a reality.

The choice of Perl as an implementation language
is a major plus because it is a more widely known
language than C among the audience for the SEC
tool this increases the pool of contributers to the ap-
plication. Also, Perl allows much more rapid devel-
opment than C. However, using an interpreted lan-
guage (even one turned into highly optimized byte-
code) does cause a slowdown in execution speed com-
pared to native executable.

SEC does not magically parse timestamps. Its tim-
ing is based on the arrival time of the event. This can
be a problem in a large network if the travel time can-
not be neglected in the event correlation operations.

6 Other Applications

Although I have explored its use as a system/network
administrator tool under Unix, SEC has other ap-
plications. One idea is to use SEC as a framework
for software performance testing. However, it may
not have sufficient granularity for jobs that require
sub second timing. SEC has also been proposed as a
mechanism for anonymizing log files [Brown5 2004].

Because SEC is written in Perl, it works on any
Unix system as well as Microsoft Windows. I have
tested it under the Cygwin environment. Although
this paper has dealt with its use on Unix systems, it
has been used to monitor the event log of a windows
2000 workstation and provide real-time notification of
events using the windows messenger service. Using a
tool such as snare [Snare], the windows event log can
be turned into syslog events and correlated either on
the Unix system, or on a Windows system by run-
ning a syslog daemon under windows (e.g. syslog-ng
compiled under the Cygwin environment) to capture
the event log and feed it to SEC.

7 Future Directions

Refinement of the available rule primitives and ac-
tions (e.g. the expire action) is an area for investiga-

33

tion. A number of idioms presented above are more
difficult to use than I would like. In some cases these
idioms could be made easier by adding new correla-
tion types to the language. In other cases a mech-
anism for storing and retrieving redundant informa-
tion (such as regular expressions and timing periods)
will simplify the idioms. This may be external using
a preprocessor such as filepp or m4, or may be an
internal mechanism.

Even though SEC development is ongoing, not ev-
ery idea needs to be implemented in the core. Using
available Perl modules and custom libraries it is pos-
sible to create functions and routines to enhance the
available functionality without making changes to the
SEC core. Developing libraries of add-on routines –
as well as standard ways of loading and accessing
these routines is an ongoing project. This form of
extension permits experimentation without bloating
SEC’s core.

I would like to see some work done in formalizing
the concept of rule segmentation and improving the
ability to branch within the rule sets to decrease the
time spent searching for applicable rules.

8 Availability

SEC is available from http://kodu.neti.ee/ risto/sec/
In addition to the resources at the primary

SEC site above, a very good tutorial has been
written by Jim Brown[Brown2003] and is avail-
able at: http://sixshooter.v6.thrupoint.net/SEC-
examples/article.html

An annotated collection of rules files is available
from http://www.cs.umb.edu/ rouilj/sec/sec rules-
1.0.tgz. This expands on the rules covered in this
talk and provides the tools for the performance test-
ing as well as a sample sshrc file for the ssh correlation
example.

9 Conclusion

SEC is a very flexible tool that allows many complex
correlations to be specified. Many of these complex
correlations can be used to model[Prewett] normal

and abnormal sequences of events. Precise model-
ing of events reduces both the false positive and false
negative rates easing the burden on system adminis-
trators.

The increased accuracy of the model provided by
SEC results in faster recognition of problems lead-
ing to reduced downtime, less stress and higher more
consistent service levels.

This paper has just scratched the surface of SEC’s
capabilities. Refinements in rule idioms and linkage
of SEC to databases are just a few of the future di-
rections for this tool. Just as prior log analysis appli-
cations such as logsurfer influenced the design and
capabilities of SEC, I believe SEC will serve to foster
research and push the envelope of current log analysis
and event correlation.

10 Author Biography

John Rouillard is a system administrator whose first
Unix experience was on a PDP-11/44 running BSD
Unix in 1978. He graduated with a B.S. in Physics
from the University of Massachusetts at Boston in
1990. He specializes in automation of sysadmin tasks
and as a result is always looking for his next chal-
lenging position.

In addition to his system administration job he is
also an emergency medical technician. Over the past
few years, when not working on an ambulance, he
has worked as a planetarium operator, and built test
beds for domestic hot water solar heating systems.
He has been a member of IEEE since 1987 and can
be reached at rouilj@ieee.org.

34

11 References

2swatch Homepage: ftp://ftp.sdsc.edu/pub/security/PICS/2swatch/README

Brown2003 Brown, Jim, “Working with SEC - the Simple Event Correlator”, Web publication, November
23, 2003. URL: http://sixshooter.v6.thrupoint.net/SEC-examples/article.html

Brown5 2004 Brown, Jim, “SEC Logfuscator Project Announcement”, simple-evcorr-users mailing list, 3
May 2004. URL: http://sourceforge.net/mailarchive/forum.php?thread id=2712448&forum id=2877

Clark2000 Clark, Veronica, “To Maintain an Alarm Correlator”, Bachelor’s thesis, The University of New
South Wales, 2000. URL: http://www.hermes.net.au/pvb/thesis/

Finke2002 Finke, John, ”Process Monitor: Detecting Events That Didn’t Happen”, USENIX Systems
Administration (LISA 16) Conference Proceedings, pp. 145-154, USENIX Association, 2002.

Hansen1993 Hansen, Stephen E. and E. Todd Atkins, ”Automated System Monitor-
ing and Notification with Swatch”, USENIX Systems Administration (LISA VII) Con-
ference Proceedings, pp. 145-156, USENIX Association, November 1993. URL
http://www.usenix.org/publications/library/proceedings/lisa93/hansen.html

logsurfer Homepage: http://www.cert.dfn.de/eng/logsurf/

LoGS Prewett, James E., ”Listening to Your Cluster with LoGS”, The 5th LCI International Con-
ference on Linux Clusters: The HPC Revolution 2004, Linux Cluster Institute, May 2004. URL:
http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/PDF04/05-Prewett J.pdf

logwatch Bauer, Kirk. Homepage: http://www.logwatch.org/

logsurfer+ Homepage: http://www.crypt.gen.nz/logsurfer/

NNM “Managing Your Network with HP OpenView Network Node Manager”, Hewlett-Packard Company,
January 2003. Part number J5323-90000.

Prewett Prewett, James E. via private email, March 2004.

ruleCore Homepage: http://www.rulecore.com

Sah02 Sah, Adam, ”A New Architecture for Managing Enterprise Log Data”, USENIX Systems Adminis-
tration (LISA XVI) Conference Proceedings, pp. 121-132, USENIX Association, November 2002.

SEC Vaarandi, Risto. Homepage: http://kodu.neti.ee/ risto/sec/

SECman Simple Event Correlator (SEC) manpage URL: http://kodu.neti.ee/ risto/sec/sec.pl.html

SLAPS-2 Homepage: SLAPS-2 http://www.openchannelfoundation.org/projects/SLAPS-2

SHARP Bing, Matt and Carl Erickson, ”Extending UNIX System Logging with
SHARP”, USENIX Systems Administration (LISA XIV) Conference Pro-
ceedings, pp. 101-108, USENIX Association, December 2000. URL:
http://www.usenix.org/publications/library/proceedings/lisa2000/full papers/bing/bing html/index.html

35

Snare InterSect Alliance. Homepage: http://www.intersectalliance.com/projects/SnareWindows/index.html

swatch Atkins, Todd. Homepage: http://swatch.sourceforge.net/

Takada02 Takada, Tetsuji and Hideki Koike, “MieLog A Highly Interactive Visual Log Browser Us-
ing Information Visualization and Statistical Analysis”, USENIX Systems Administration (LISA
XVI) Conference Proceedings, pp. 133-144, USENIX Association, November 2002. URL:
http://www.usenix.org/events/lisa02/tech/takada.html

Vaarandi7 2003 Vaarandi, Risto, “Re: is this possible with SEC”, simple-evcorr-users mailing list, 4 Jul
2003. URL: tt http://sourceforge.net/mailarchive/forum.php?thread id=2712448&forum id=2877

36

	Introduction
	Current Approaches
	Offline Monitoring
	Online Monitoring
	Filter in vs. filter out

	Event Modeling
	Temporal relationships
	Event threading
	Missing Events
	Handling False Positives/False Negatives
	Single vs. Multiple Line Events
	State persistence

	Sec correlation idioms and strategies
	SEC primer
	Responding to or filtering single events
	Scheduling events with with finer granularity
	Detecting missing events
	Counting correlation
	Implementing a cooling-off period
	Reporting too few events in a time period

	Repeat Elimination/Compression
	Report on analysis of event contents
	Detect identical events occurring across multiple hosts
	Creating threads of events from multiple sources
	Correlating across processes
	Recognizing coinciding events
	Handling a sequence

	Strategies to improve performance
	Rule construction
	Rule Segmentation

	Parallelization of rule processing
	Distribution across nodes
	Redundancy

	Limitations
	Other Applications
	Future Directions
	Availability
	Conclusion
	Author Biography
	References

