
April 6, 2005 8:23 WSPC/185-JBCB 00107

Journal of Bioinformatics and Computational Biology
Vol. 3, No. 2 (2005) 491–526
c© Imperial College Press

HIDDEN MARKOV MODELS, GRAMMARS, AND BIOLOGY:
A TUTORIAL

SHIBAJI MUKHERJEE

Association for Studies in Computational Biology
Kolkata 700 018, India

mshibaji@acm.org

SUSHMITA MITRA∗

Machine Intelligence Unit, Indian Statistical Institute
Kolkata 700 108, India
sushmita@isical.ac.in

Received 23 April 2004
1st Revision 2 September 2004
2nd Revision 20 December 2004

3rd Revision 5 January 2004
Accepted 6 January 2005

Biological sequences and structures have been modelled using various machine learn-
ing techniques and abstract mathematical concepts. This article surveys methods using
Hidden Markov Model and functional grammars for this purpose. We provide a for-
mal introduction to Hidden Markov Model and grammars, stressing on a comprehensive
mathematical description of the methods and their natural continuity. The basic algo-
rithms and their application to analyzing biological sequences and modelling structures
of bio-molecules like proteins and nucleic acids are discussed. A comparison of the dif-
ferent approaches is discussed, and possible areas of work and problems are highlighted.
Related databases and softwares, available on the internet, are also mentioned.

Keywords: Computational biology; machine learning; Hidden Markov Model; stochastic
grammars; biological structures.

1. Introduction

Hidden Markov Model (HMM) is a very important methodology for modelling pro-
tein structures and sequence analysis.28 It mostly involves local interaction mod-
elling. Functional grammars provide another important technique typically used
for modelling non-local interactions, as in nucleic acids.71 Higher order grammars,
like Graph grammars, have also been applied to biological problems mostly to
model cellular and filamentous structures.25 Other mathematical structures like

∗Corresponding author.

491

April 6, 2005 8:23 WSPC/185-JBCB 00107

492 S. Mukherjee & S. Mitra

knots, geometric curves and categories have been used to model DNA, protein
and cell structures.25,33 Another important area of research in this domain has
been the formulation of algorithms mostly based on Dynamic programming.39,84

The complexity analysis of the problems have also been done, and an impor-
tant class of problems have been shown to be NP hard. Most algorithms for
structure determination are computationally very much intensive, and their port-
ing to massively parallel systems and supercomputers is also an active area
of study.83

The present article concentrates on providing a review and a tutorial involving
two areas, viz., HMM’s and Functional grammars. We assume necessary molecular
biology background and focus on the mathematical foundation of the formalisms.
Attempt is made to provide a comprehensive survey of the field, with relevant refer-
ence to applications in the biological domain. The readership that we aim to target
in this article consists of biologists and bioinformaticians who are looking for the
necessary mathematical background and an introduction to the various modelling
techniques so that they can bridge the gap between introductory articles13 and
highly technical expositions.47 We will mainly focus on the mathematical aspects
of the problem in this tutorial and will try to look at the biological problems from
an analytical perspective. We have tried to provide easy explanation and relevant
biological examples at each stage wherever possible, while including an exhaustive
reference on applications of HMM and functional grammars to biological prob-
lems. However, due to space limitation, we do not discuss the methodologies or
the models in further detail. Our principal focus in this paper, therefore, is on the
algorithms and the structure of the mathematical representation of the problem
domain.

This paper is divided into two major parts. While Secs. 2–6 deal with HMM,
the Secs. 7–11 are concerned with grammar. Section 2 provides a summary of the
necessary mathematical results from probability theory from the viewpoint of com-
putational biology. Section 3 attempts to give a concise mathematical introduction
to HMM, and discusses possible extensions to the model. Section 4 discusses in con-
cise form the algorithms widely used for HMMs, viz., Expectation Maximization,
Viterbi and Forward Backward. Section 5 surveys applications in computational
biology, using HMMs, involving sequences and structures. Section 6 provides an
introduction to the tools based on the discussed algorithms, and their target bio-
logical databases. Section 7 attempts to give a concise mathematical introduction
to grammars, and Stochastic Context Free Grammar SCFG in particular. Section
8 compares HMM to SCFG, and discusses how HMMs can be shown as a special
case of regular stochastic grammars and functional grammars. Section 9 discusses
in concise form the widely used and generalized algorithms for SCFG, like Inside
Outside and Cocke Younger Kasami. Section 10 surveys applications in computa-
tional biology, using SCFG, particularly involving sequences and structure of RNA.
Section 11 provides an introduction to tools based on the discussed algorithms and
the RNA databases. Finally, Sec. 12 concludes the article.

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 493

2. Basics of Probability

In this section we provide important results and concepts from probability theory,
and language grammar that will be used throughout this paper. We assume that
the reader has the necessary background in molecular biology.56

Let us list the necessary nomenclature and mathematical results of probability
calculus that are needed for a study of HMM. We will discuss mainly results from
probability theory and language grammar from a computational biology perspec-
tive. The detailed analysis of probability theory can be found in the literature.22,32

We will follow the notations by Koski,47 as this monograph gives the details of the
mathematical formalism of HMM from a computational biology perspective.

Random variables are the building blocks in probability theory, assuming val-
ues from an alphabet set or state space. In biology, proteins are represented in
terms of the twenty amino acids, while deoxyribonucleic acid (DNA) [ribonucleic
acid (RNA)] is decoded in terms of four nucleotides adenine (A), cytosine (C),
thymine (T) [uracil (U)] and guanine (G). In this terminology, let S be an alpha-
bet set (S = A, C, T, G), with X being a random variable taking values in S.
Values taken up by X are generally denoted by xi and the probability of the
event is denoted as fX(xi) = P (X = xi). The whole sequence probability is often
denoted as fX = (fX(x1), fX(x2), fX(xi), . . . , fX(xL)), where L is the length of
the sequence. The boundary conditions on this probability function are fX(xi) ≥ 0
and

∑i=L
i=0 fX(xi) = 1. The notation is subsequently simplified to f(xi) to eliminate

clutter.
Probability of more than one event occurring simultaneously is determined by

a joint probability distribution, denoted as fX,Y (xi, yj) = P (X = xi, Y = yj), and
can be easily extended to n events. Conditional probability distribution gives the
probability of an event with respect to another, and is defined as

fX|Y =
fX,Y (xi, yj)

fY (yj)
. (1)

If X and Y are independent random variables, then we have

fX,Y (xi, yj) = fX(xi) × fY (yj). (2)

Bayes’ theorem is another fundamental result, which relates posterior and prior
probabilities of events. It provides a probability of the cause on the basis of the
observed effect, and is expressed as

fX|Y (xi, yj) =
fY |X(yj , xi) × fX(xi)∑i=L

i=1 fY |X(yj , xi) × fX(xi)
. (3)

Kullback distance is an important measure for comparison of probability distribu-
tions f and g, and is expressed as

D(f |g) =
i=L∑
i=1

f(xi) log
f(xi)
g(xi)

, (4)

April 6, 2005 8:23 WSPC/185-JBCB 00107

494 S. Mukherjee & S. Mitra

where 0 × log 0
g(xi)

= 0 and f(xi) × log f(xi)
0 = ∞. It can be thought of as the

relative distance between two distributions, but it is not a true metric since it
is not symmetric and does not satisfy the triangle inequality. It does not obey the
axioms of a metric, viz., d(x, x) ≥ 0, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y)+d(y, z).

Kullback distance is essentially a divergence measure of distributions, and is
used to measure the log likelihood ratios at DNA splice sites. So if distribution f

corresponds to a splice site, and g corresponds to background, then D(f |g) is the
average value in the log likelihood ratio when at a splice site. This can be used
as a measure of the effectiveness of the log likelihood ratio. We will be using this
measure in case of EM algorithms in Sec. 4.1.

3. Hidden Markov Model

An HMM is a powerful statistical technique for modelling signals and sources, and
was developed as a part of stochastic calculus. It can also be viewed as a connected
graph, with weighted edges representing state transition probabilities and the nodes
representing states. Baum et al.8–10 were mostly involved in developing the theory
of HMM’s. One of the earliest and widely reported applications of HMM was in
speech recognition problems.65 Application of HMM’s has been found to be very
suitable for a wide range of computational biology problems.6 We discuss these in
detail in Sec. 5.

A biological sequence is represented as transitions of states in an HMM. Here
each state corresponds to a certain biological context like exon and intron, and
emits a symbol such as a nucleotide or an amino acid. We observe the symbols
without knowing which state emitted them. A state has two kinds of parameters,
viz., (i) a symbol emission probability which describes the probabilities of the pos-
sible outputs from the state, and (ii) a state transition probability which specifies
the probability of moving to a new state from the current one. Starting at some
initial state, the transitions generate an observed sequence of symbols while mov-
ing probabilistically from one state to another until some terminal state is reached,
and also emit observable symbols from each state traversed. A sequence of states
is represented as a first order Markov Chain. However, because the state sequences
are being hidden here, with only the sequence of emitted symbols being observable
to the outside world, we term it a Hidden Markov Model. The parameters of the
HMM are generally learned from training sequences by means of the maximum
likelihood or maximum a posterior method to find the model that best fit.

Markov Chain is a stochastic model based on nearest neighbor interactions. It
assumes that the state at any instant of time is determined through a local correla-
tion, such that any stochastic event in the chain is determined by the immediate past
and does not depend on the whole chain path. The theory of Markov Chains was
known in the mathematics community for quite a long time in the form of Random
Walks.23,44 We provide here a brief mathematical account of Markov Chains,62

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 495

since HMM’s are a natural extension of Markov Chains when the observable states
are hidden or unknown.

Let us consider a sequence of random variables X0, X1, . . . , Xn having values
in an alphabet set S = s1, s2, . . . , sn. This sequence is called a Markov Chain if
∀n ≥ 1 and j0, j1, . . . , jn ∈ S, we have

P (Xn = jn | X0 = j0, . . . , Xn−1 = jn−1) = P (Xn = jn | Xn−1 = jn−1). (5)

This expression states that the probability of a random variable assuming a partic-
ular value, given that the other preceding variables have picked up a given set of
values, is dependent solely on the last immediate event and not on the whole set.
This is called the Markov property.

For example, let us consider a DNA sequence consisting of nucleotides A, C, T, G.
Suppose it has already been decoded upto the 100th nucleotide and the 100th
element is A. Then the probability that the 101th nucleotide will also be an A

is dependent only on the value picked up by the 100th nucleotide, and it is not
necessary to consider the values of the other 99 nucleotides. This is a stochastic
nearest neighbor interaction model. It is obvious that this sort of model maps
local interactions and local dependency, and trivially global dependency if that
is a constant. Most linear situations can be modelled using Markov Chains. The
only parameter of interest here is the transition probability of states, and if this is
stationary then it is called a homogenous Markov Chain. The transition matrix is
essentially stochastic.

The HMM literature is very extensive, with papers13,30,37,48 providing extensive
coverage from various viewpoints and Koski’s47 being a rigorous account of HMM’s.
A problem of fundamental interest is to characterize the relationship between sig-
nals and signal sources; i.e., determining what we can learn about a signal from
a given model of the source or vice versa. Signal models have been broadly char-
acterized as either discrete or stochastic in nature. In case of discrete models the
signal is generally provided as an exact algebraic representation, and the analysis is
relatively straightforward. In case of stochastic models, it is assumed that the signal
is a parametric random process, with its parameters being well defined. Generally
Gaussian, Poisson, Markovian and Hidden Markov distributions of sources are used
to model stochastic signals. We now describe simple situations where HMMs can
be applied, followed by a description of the mathematical aspects of the model.

A classic description of the situation where HMM is applied can be explained
by a coin toss experiment in a restricted situation.65 Let a person be tossing a coin,
observing the outcomes and publishing the information as a series of H and T out-
comes to another observer. The observer has neither any knowledge of the experi-
ment, nor is (s)he able to view the outcomes of the experiment (the states of the
experiment being hidden), but essentially gets information about a sequence chain.
Although the sequence is a Markov Chain, but to the second observer it assumes
a different meaning as the process is doubly stochastic; one level of stochasticity
being due to the coin toss outcome itself (H or T), and another level being due to

April 6, 2005 8:23 WSPC/185-JBCB 00107

496 S. Mukherjee & S. Mitra

the hidden experimenter, who introduces another level of uncertainty (the states
become stochastic). The simplest case can be that the experimenter is tossing one
single coin, such that we have only one unknown parameter and it is a two state
model. Again the experimenter may be tossing two coins and choosing any one of
the coins through some random event, maybe another coin toss. Then the number
of unknown parameter is four, with two states each corresponding to a different
coin. Similarly, the number of coins in the experiment can be increased and accord-
ingly the number of unknown parameters increases. Note that this stochasticity
is introduced only because the experimenter is “Hidden”. This situation describes
a typical scenario where an HMM is used.

In practical situations the HMM easily translates to speech recognition, com-
putational biology or gesture recognition problems. Figure 1 gives a schematic rep-
resentation of a HMM. In the figure, Si are the various states, with S1 being the
start state and S5 the end state. The aij ’s denote the elements of the transition
matrix, which are actually the transition probabilities pij between states i and j.

We now formally define an HMM. Our base model is a sequence of symbols
from an alphabet O = o1, o2, . . . , oK . An HMM is defined by the following three
properties.

(I) Hidden Markov Chain: This is a Markov Chain (Xn)∞n=0 having values in a finite
state space S = 1, 2, . . . , J . The conditional probabilities are defined as

pi|j = P (Xn = j | Xn−1 = i), n ≥ 1, i, j ∈ S (6)

and are assumed to be time-homogenous (no nonlinear dependency on time). The
transition matrix is a stochastic matrix defined by T = (pi|j)

J,J
i=1,j=1 with the bound-

ary conditions pi|j ≥ 0,
∑J

j=1

∑J
i=1 pi|j = 1. The initial state X0 is specified by the

probability distribution πj(0) = P (X0 = j), where π(0) = (π1(0), . . . , πJ (0)).

(II) Observable Random Process: Assume there is a random process (Yn)∞n=0, with
a finite state space Q = q1, . . . , qK , such that the two states S and Q may or may

S

Start
State

Final
State

1 2 4S S S aa 34a23a12 3 5S

a22 a33 a44

45

a aa 24 3513

Fig. 1. Hidden Markov Model.

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 497

not have the same cardinality. The two random variables X and Y , for any fixed n,
are related by a conditional probability distribution

ej(k) = P (Yn = qk | Xn = j). (7)

We define a matrix E = ej(k)J,K
j=1,k=1 as the emission probability matrix. This is

again a stochastic matrix with ej(k) ≥ 0 and
∑K

k=1 ej(k) = 1.

(III) Conditional Independence: This condition assumes that the emitted sym-
bols are conditionally independent for the state sequence. Given a sequence of
states j0, j1, . . . , jn, the probability of the sequence o0, o1, . . . , on is mathematically
expressed as

P (Y0 = o0, . . . , Yn = on | X0 = j0, . . . , Xn = jn, E) =
n∏

l=0

ejl
(l). (8)

Using these assumptions, we can formulate a definition of the joint probability
distribution of the symbols and the states o0, . . . , on and j0, . . . , jn as

P (Y0 = o0, . . . , Yn = on, X0 = j0, . . . , Xn = jn; T, E, π(0))

= P (Y0, . . . , Yn | X0, . . . , Xn, E) × P (x0, . . . , Xn, T, π(0))

= πj0 (0) ×
n∏

l=0

ejl
×

n∏
l=1

pjl−1|jl
. (9)

Summing over all possible paths of the state sequence, we get

P (Y0, . . . , Yn; T, E, π(0)) =
J∑

j0=1

. . .
J∑

jn=1

πj0(0)ej0(0)
n∏

l=1

pjl−1|jl
ejl

(l). (10)

This implies that the finite dimensional distributions of the observable random pro-
cess are fully specified by the choice of (i) the two stochastic matrices for transition
probability and emission probability, and (ii) the initial distribution. So the model
can be compactly represented as λ = (T, E, π(0)). Given an observation sequence
o = o0, . . . , on, which is doubly stochastic and Markovian in nature, a complete
model can be specified if we know the state transition probability matrix T , state
symbol distribution probability matrix E, and initial distribution π(0) specifying
the state at the start. So for an arbitrary sequence the probability of the sequence
o having this structure, given a model λ, is

P (o) = P (Y0 = o0, . . . , Yn = on; λ)

=
J∑

j0=1

. . .

J∑
jn=1

P (Y0 = o0, . . . , Yn = on, X0 = j0, . . . , Xn = jn; λ),

where

P (Y0 = o0, . . . , Yn = on, X0 = j0, . . . , Xn = jn; λ)

= πj0(0) ×
n∏

l=0

ejl
×

n∏
l=1

pjl−1|jl
. (11)

April 6, 2005 8:23 WSPC/185-JBCB 00107

498 S. Mukherjee & S. Mitra

Biological applications of these results are discussed in Sec. 5. Let us now classify
the three generic types of problems an HMM can model.47

Problem 1: Given an observation sequence and a model, how to efficiently com-
pute the probability of the observation sequence. This is also called the evaluation
or scoring problem. Mathematically, it deals with computational complexity. The
probability expression involves a summation over J (n+1) possible sequences, and the
order of computation is O(2(n + 1)J (n+1)). This is reduced to a solvable problem
by the Forward Backward algorithm, which we discuss in Sec. 4.2.

Problem 2: Given an observation sequence and a model, how to compute a state
sequence, which best explains the observations. This problem is called the alignment
or decoding problem. Mathematically, this reduces to finding an optimal sequence
j∗0 , . . . , j∗n, which maximizes P (X,Y, λ). This is solved by the Viterbi algorithm,
which we discuss in Sec. 4.3.

Problem 3: How to adjust the parameters in a given model, so that the conditional
probability of observation is maximum. This is called the training or estimation
problem. It is not essential to have a straightforward solution for all cases. Gener-
ally the Expectation Maximization (EM) algorithm, a variation the Baum Welch
algorithm, Maximum A Posteriori estimate, and Viterbi training are some of the
methods applied.65 We discuss these algorithms later, in Sec. 4.

In the following section we discuss the relationship between grammars and
HMMs. Section 5 directly deals with the application of HMMs to various com-
putational biology problems.

4. Algorithms for HMM

In this section we discuss the mathematical representation of each of the algo-
rithms mentioned in Sec. 3, viz., Expectation Maximization, Forward Backward
and Viterbi. We construct a very simple HMM and simulate a detailed numerical
calculation for the forward backward algorithm in Sec. 4.2. We provide relevant
biological examples, wherever it is simple and straightforward to represent.

Let us consider a five-state HMM, with the begin state being represented as
state 0 and the end state as state 5. The other states are indicated as states 1, 2, 3, 4
respectively, and correspond to possible transition states. The model is similar to
that shown in Fig. 1, with the addition of one more state to represent all possible
scenarios. We simplify the notations as much as possible neglecting mathematical
rigor to make things easier to understand, and depict it in Fig. 2. The figure can
be thought of as representing a sequence motif. The state transition probabilities
are represented as aij and the emission probabilities as ek(A), where aij represents
transition probability from state i to state j and ek(A) is the probability of emitting
character A in state k as explained in Sec. 3. We represent the transition matrix

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 499

0

1 3

2 4

5

Fig. 2. Example illustrating Hidden Markov Model.

a00 a01 a02 a03 a04 a05
a10 a11 a12 a13 a14 a15
a20 a21 a22 a23 a24 a25
a30 a31 a32 a33 a34 a35
a40 a41 a42 a43 a44 a45
a50 a51 a52 a53 a54 a55

, having values

0.0 0.5 0.5 0.0 0.0 0.0

0.0 0.2 0.0 0.8 0.0 0.0

0.0 0.0 0.6 0.0 0.2 0.0

0.0 0.0 0.0 0.4 0.0 0.6

0.0 0.0 0.0 0.0 0.1 0.9

0.0 0.0 0.0 0.0 0.0 0.0

 for the correspond-

ing elements. We observe from the value matrix that no self transition is possible
in either the end or start states, implying that neither can any state go back to
the start state nor can it revert back from the end state. Note that only transitions
between nearest states are allowed, and there is neither vertical or diagonal tran-
sition nor jumping of the nearest neighbor possible. Self transition in other states
is, however, allowed. Although the matrix is not symmetric, but all non nearest
neighbor terms are symmetric. Since the matrix contains a row and a column with
all zero elements, it is a singular matrix and will always be so unless reverse tran-
sitions from end and start states is permissible. Let us represent sample states as
follows:

State 1 = (A, C, G, T, 0.4, 0.1, 0.2, 0.3) State 2 = (A, C, G, T, 0.2, 0.3, 0.3, 0.2)
State 3 = (A, C, G, T, 0.4, 0.1, 0.1, 0.4) State 4 = (A, C, G, T, 0.1, 0.4, 0.4, 0.1).

The letters represent the possible emission symbols, while the numbers denote the
corresponding probabilities.

4.1. Expectation maximization

EM, or Expectation Maximization algorithms,26 form an important foundation of
HMM’s, where they are known in a modified form as Baum Welsch algorithm. EM
algorithms have been used in statistical genetics for a long time.53 They generally
model situations with hidden variables, particularly in mixture models (parameter
driven probabilistic models) and sequence analysis where part of the data is missing

April 6, 2005 8:23 WSPC/185-JBCB 00107

500 S. Mukherjee & S. Mitra

or unobserved. Generally the algorithm consists of two steps: (i) the E (Expecta-
tion) step computing the distribution of the hidden variables on the basis of the
observed data and the estimated model parameters; and (ii) the M (Maximization)
step calculating the optimized values of the parameters. We discuss here the math-
ematical foundation of EM algorithms and some selected applications. Interested
readers may refer to the literature12,47,61 for a more detailed coverage.

We base the analysis on a mixture model. Let there be two data distributions
y = (y1, y2, y3, . . . , yn) and x = (x1, x2, x3, . . . , xn), where y and x are the values
of two independent pair of random variables Y, X . Here we consider x to be the
hidden variable with probability P (Xl = xj) = αj , and y the observable variable
with conditional probability P (Yl = y | Xl = xj) = p(y | ϕj) where ϕj are some
parameter vectors of a parameter θ(α1, α2, . . . , αL; ϕ1, ϕ2, . . . , ϕL). The aim of EM
algorithm is to estimate θ in the situations where x is hidden and y is observable.
Assuming the variables to be pairwise independent, we have

p(x,y | θ) =
l=n∏
l=1

P (Yl = yl, Xl = xj l | θ) =
l=n∏
l=1

p(yl | ϕj l) × αj l. (12)

Rewriting the results in the framework of marginal distributions, we get for any
element in X and Y

f(y | θ) =
j=L∑
j=1

p(Xl = xj , Yl = y | θ) =
j=L∑
j=1

αj × p(y | ϕj). (13)

This probability distribution is called a finite mixture, while the distribution over
α is called a mixing distribution. The likelihood function for y with relation to θ

is thus

p(y | θ) = f(y1 | θ) × f(y2 | θ) × · · · × f(yn | θ). (14)

The Maximum Likelihood estimate or ML is

θML = argmax
θ

p(y | θ), (15)

where the probability or the estimate varies on the parameter θ which is to be
modelled. The computation of this estimate is not an exactly solvable algebraic
problem, and numeric methods have been constructed to solve it. Using posterior
probability we have from Eqs. (12) and (14)

p(x | y, θ) =
p(x,y | θ)
p(y | θ)

=
l=n∏
l=1

p(yl | ϕj l) × αj l

f(yl | θ)
. (16)

Expressing in terms of logarithms

log p(y | θ) = log p(x,y | θ) − log p(x | y, θ). (17)

Our target is to compute a lower bound on log p(y | θ) by estimating on θML.
Assume that there is an approximation θa =

(
αa

l , αa
2 , . . . , α

a
L; ϕa

1 , ϕ
a
2 , . . . , ϕ

L
1

)
, such

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 501

that we need to approximate θa → θML. Normalizing Eq. (17), using the factor∑
x p(x | y, θa), we get

log p(y | θ) =
∑

x

p(x | y, θa) log p(x,y | θ) −
∑

x

p(x | y, θa) log p(x | y, θ). (18)

Introducing compact notation in terms of an auxiliary function Q(θ | θa)
=

∑
x p(x | y, θa) log p(x,y | θ), we have

log p(y | θ) − log p(y | θa)

= Q(θ | θa) − Q(θa | θa) +
∑

x

p(x | y, θa) log
p(x | y, θa)
p(x | y, θ)

. (19)

The last term on the r.h.s. is the Kullback distance, and hence is ≥ 0. Therefore

log p(y | θ) − log p(y | θa) ≥ Q(θ | θa) − Q(θa | θa). (20)

If we estimate θa+1 = argmaxθ Q(θ | θa) in Eq. (15) then log p(y | θa+1)
≥ log p (y | θa) by Eq. (20). Thereby we improve on θa because the likelihood
is increased. The algorithmic steps can now be stated as follows:

Start: Get an estimate θa = (αa
l , αa

2 , . . . , αa
L; ϕa

1 , ϕa
2 , . . . , ϕL

1).

Step E: Calculate the conditional expectation
Q(θ | θa) =

∑
x p(x | y, θa) log p(x,y | θ).

Step M: Determine θa+1 = arg maxθ Q(θ | θa).
Let θa+1 → θa

Go to Step E.

Convergence of this algorithm has been studied in Boyles et al.15 and Wu et al.86

The expression Q(θ | θa) can be further analyzed to derive cases that lead to unique
solutions. Another approach to EM algorithm is in terms of free energy and the
Boltzmann-Gibbs distribution,6 with the function to be optimized being the free
energy of the model in terms of a parameter like θ.

There exist various applications of EM algorithms to computational biology, of
which we highlight some here. Let us now consider n sequences (say, fragments of
DNA sequences) sl, all of length N + 1. Assume that all of them contain some
special patterns called motifs (i.e., some particular arrangement of the nucleotides)
of length W . Consider that (i) the exact position of the pattern in the fragment is
not known, (ii) the pattern may be altered in a sequence, i.e., there are mutations,
and (iii) there are no insertions or deletions. All sequences contain a single copy
of the motif between two random sequences. We will mathematically model this
situation to demonstrate the use of EM algorithm. An extensive survey of pattern
detection in bio-sequences is provided in Brazma et al.16 and Rigoutsos et al.66

Let us represent the position of occurrence of the pattern by a hidden ran-
dom variable X , which is integer-valued, and the probabilities be denoted as
αt = P (X = t), t ∈ (0, 1, . . . , N − W + 1). Consider W independent random
variables Yt+i, i = 0, 1, . . . , W − 1, each assuming values in a finite discrete

April 6, 2005 8:23 WSPC/185-JBCB 00107

502 S. Mukherjee & S. Mitra

alphabet set A = s1, s2, s3, . . . , sK . Here, the si’s can represent the alphabet
set of nucleotides A, C, T, G. Let the output symbol probabilities be denoted by
bi(sl) = P (Yt+i = sl | X = t), l = 1, . . . , K; i = 0, 1, . . . , W − 1. These symbols
correspond to the letters in the sequence. We have

P (Yt = slt, . . . , Yt+W−1 = slt+W−1 | X = t) =
W−1∏
i=0

bi(slt+i). (21)

The random sequence (Yt, . . . , Yt+W−1), along with the probability distribution, is
called a motif of length W . The distribution Bi = bi(s1), bi(s2), . . . , bi(sK) defines
a probability distribution for the motifs.

As we have represented the sequence and the motif as a three-part model, viz.,
one random part followed by a motif and then another random part, therefore
we need to calculate the probability for the random parts as well. Let this be
given by another probability distribution p = (p1, p2, p3, . . . , pK). For the sequence
s = sj0 · · · sjt−1 | sjt · · · sjt+W−1 | sjt+W · · · sjN (the separators denoting the three
regions), the probability is computed as

P (Y 1
0 , . . . , Y l

N | X l = t, p, Bi) =
t−1∏
j=0

plj

W−1∏
i=0

bi(slt+i)
N∏

j=t+W

plj . (22)

The available information is (i) a training set of n sequences s(l) [(l) denoting the
set li] with length N + 1, and (ii) motifs of length W . The hidden information
is the starting position of the occurrence of these motifs. We have a mixture of
probabilities

p(s(l)) = P
(
Y

(l)
0 = sj

l
0, . . . , Y

(l)
N = sj

l
N | X l = t, p, Bi × αt

)
. (23)

This is a mixture model with the random variables X and Y taking the forms
Y = A × A × A × A × A × · · · × A and X = {0, 1, . . . , N − W + 1}.

The problem is to estimate the parameters and optimize them, as in the E
and M steps of the algorithm. This is done using the MEME2,4,18 approach. This
works with continuous replacement of motifs after identification, by applying a
new mixture model each time. This method has a limitation in the sense that
the motifs are not re-estimated. Application of EM algorithm to mixture problems
monotonically increases the likelihood function, the algorithm converges to a local
maxima of the function in most cases and get stuck there. This is a major problem
in applying the algorithm to a multiple component mixture model.

We discuss now a recent application of EM algorithms for the problem of multi-
ple motif discoveries.14 This demonstrates an improvement in the application of EM
algorithms to mixture models, as compared to the MEME approach. The authors
apply a recently discovered greedy method of incremental learning for Gaussian
mixtures.57,82 The method fixes a stopping criteria or a limit on the desired num-
ber of motifs, and the learning proceeds on an incremental fashion until convergence.
The algorithm selects an initialization for the parameters of a new motif by per-
forming a global search over the input sub-strings, combined with a local search

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 503

based on partial EM steps for fine tuning of the parameters of the new component.
A hierarchical clustering based on kd-tree technique11,81 is employed for partition-
ing the input dataset of sub-strings, thereby reducing the time complexity of the
algorithm. This approach, in contrast to MEME, is able to effectively fit multiple-
component mixture models. This is achieved through a combined scheme of global
and local search, which overcomes the existing problem of poor initialization of EM
that frequently gets stuck on local maxima of the likelihood function. The pro-
cedure also does a better exploration of the dataset, resulting in the discovery of
larger groups of motifs.

4.2. Forward backward

The Forward Backward algorithm is generally applied to the case of scoring a stan-
dard HMM. It also forms the mathematical basis for other dynamic programming
algorithms used in sequence analysis, and was originally proposed for speech recog-
nition problems.10 The algorithm is actually a combination of two, viz., the forward
and the backward algorithms. It is also referred to, in a variant form, as the Baum
Welsch algorithm.10 The algorithm is generally used to compute the likelihood of
a given observed DNA or protein sequence.

Assume we have a model λ = (T, E, π(0)). Our problem is to calculate the
simultaneous probability for a sequence of emitted symbols o = o0, o1, . . . , oN con-
ditioned on the given model. Using Eq. (11), the probability is expressed as

P (Y0, Y1, . . . , Yn; λ) =
J∑

j0=1

. . .

J∑
jn=1

πj0(0) × ej0(0)
n∏

l=1

pjl−1|jl
× ejl

(l). (24)

Let us denote this probability by LN . Note that this expression has an exponential
growth of operations in N in the summation. The forward-backward algorithm
allows its evaluation in such a way that the computational requirement becomes
linear in the sequence length L + 1. The idea is based on splitting the expression
into a forward and a backward variable, as

LN = P (Y0, Y1, . . . , Yn; λ) =
J∑

j=1

αn(j) × βn(j). (25)

The forward variable α is defined as the simultaneous probability of the emitted
sequence up to time n ≤ N and of the Hidden Markov Chain being in the state j

at time n. So α is defined as

αn(j) = P (Y0 = o0, Y1 = o1, . . . , Yn = on | Xn = j). (26)

Similarly the backward variable is defined for the other half of the time slice, as the
probability of the emitted subsequence from time n + 1 to N conditioned on the
model being in state j at time n. Mathematically,

βn(j) = P (Yn+1 = on+1, . . . , YN = oN | XN = j). (27)

April 6, 2005 8:23 WSPC/185-JBCB 00107

504 S. Mukherjee & S. Mitra

The idea of the problem is to set up a recursive relationship for the two variables and
follow with an iteration to solve the problem in the standard manner of dynamic
programming.

The recursion relations are given as
J∑

i=1

αn(i) × pi|j × ej(on+1) =

[
J∑

i=1

αn(i) × pi|j

]
× ej(on+1) (28)

and

βn(j) =
J∑

i=1

ei(on+1) × βn+1(i) × pj|i. (29)

The algorithmic steps are pretty simple and Koski47 provides a detailed description.
Both these algorithms scale as O(n2), thereby overcoming the evaluation problem.
The probability of the model being in state i at time t, given an observation sequence
o and model λ, is given as

P (Xt = i | o, λ) =
αi(t)
βi(t)

. (30)

This reduces the exponential computational complexity of the original problem to
one that is linear in sequence length.

Let us now discuss the situation in terms of the HMM model formulated in
Sec. 4, particularly with reference to Fig. 2. We are essentially trying to determine
‘how likely is a given sequence’ to occur in case of a simple state transition. We
illustrate a numerical approach to this problem, by finding the likelihood of a small
sequence TAGA. The probability of the sequence needs to be calculated, given a
model λ. One possibility follows the jumps 0 → 1 → 3 → 5. The probability is
calculated from Eq. (9), using the matrices in Sec. 4, as

P (TAGA, λ) = a01 × e1(T) × a11 × e1(A) × a13 × e3(G) × a33 × e3(A) × a35

= 0.5 × 0.3 × 0.2 × 0.4 × 0.8 × 0.3 × 0.4 × 0.2 × 0.6.

Practically we calculate the likelihood of the sequence TAGA by observing that
we are trying to find the probability of the event that we are in state five, having
observed four symbols. This is possible if we are either in state three and observe
four symbols or we are in state four and observe four symbols, and in both cases
transit to state five. This is the origin of the recursion, whereby we use the prior
states to get the probabilities for the next states and move one step at a time. Using
Eqs. (28) and (30), and simplifying them, we have f5(4) = f3(4)×a35 +f4(4)×a45,
where fA(k) denotes state A upon observing k symbols. We know the symbols we
are supposed to observe, viz. TAGA, and use this information and the boundary
conditions to recursively calculate the probabilities. Here the boundary conditions
are simple, f0(0) = 1, f1(0) = 0, f5(0) = 0, with their meanings being self-evident.

A likely sequence of steps is (i) going from state 0 to state 1 and emitting
a symbol T , (ii) doing a self transition and emitting a symbol A, (iii) making

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 505

a transition to state 3 and emitting a symbol G, and (iv) doing a self transition and
emitting a symbol A, before undergoing a transition to state 5. The other likely
possibility is (i) going from state 0 to state 2 and emitting a symbol T , (ii) doing
a self transition and emitting a symbol A, (iii) making a transition to state 4 and
emitting a symbol G, and (iv) doing a self transition and emitting a symbol A,
before undergoing a transition to state 5. The functions are evaluated as

f1(1) = e1(T) × (f0(0) × a01 + f1(0) × a11),

f2(1) = e2(T) × (f0(0) × a02 + f2(0) × a22), (31)

f1(2) = e1(A) × (f0(1) × a01 + f1(1) × a11),

and so on. The numeric values can be determined from the transition matrix and
the emission vectors, which we show as states. The rest of the lengthy calculation
can be done by repeating the process while using the recursion relations.

4.3. Viterbi

Viterbi algorithm34 solves the problem of computing the probability of the most
likely path in a model λ that generates a string S as well as the path itself. This
belongs to a class of dynamic algorithms that solves the problem by backtracking
along the state path. It works by gradually replacing calculations over all possible
paths with those over the most likely paths associated with each sequence. An
initial guess of the model parameters is refined by observation, thereby reducing
the errors of fitting the given data using gradient descent for minimizing an error
measure.

The Viterbi algorithm can be considered as a special form of the Forward-
Backward algorithm, where only the maximum path is considered at each time step
instead of all paths. For each state in an execution path, the algorithm computes
the forward probability of arriving at that state and the backward probability of
generating the final state of the model. This optimization reduces the computational
load and allows the recovery of the most likely state sequence. The amount of
storage is proportional to the number of states, and the amount of computation to
the number of transitions. So this algorithm works well for sequences having sharp
peaks, like in the case of modelling protein families. However, for DNA sequences
the results are not good because of lack of such sharp peaks. Viterbi learning and
algorithm have been extensively used in probabilistic sequence analysis problems
and profile HMM’s. Computing the Viterbi path of a sequence is generally called
the problem of aligning a sequence to a model. Its application to RNA structure
prediction is described in Sec. 10.

The algorithm makes a number of assumptions. First, both the observed events
and hidden events must be in a sequence. Secondly, these two sequences need to be
aligned, and an observed event needs to correspond to exactly one hidden event.
Third, computing the most likely hidden sequence up to a certain point t must only
depend on the observed event at point t, and the most likely sequence at point t−1.

April 6, 2005 8:23 WSPC/185-JBCB 00107

506 S. Mukherjee & S. Mitra

Generally the parameters in Viterbi algorithm come out to be very small, and the
calculations are mostly done using logarithms.

The probabilistic information about a given sequence is given by the posterior
probability, defined as

π̂j(n | N) = P (Xn = j | Y0 = o0, . . . , Yn = oN), j = 1, . . . , J. (32)

The alignment problem of HMM’s can be solved by finding for each n =
0, 1, 2, . . . , N the value of arg max1≤j≤J π̂j(n | N). Let us define

δn(j) = max
j0,...,jn−1

P (Y0 = o0, . . . , YN = on, X0 = j0, . . . , Xn = j). (33)

This measures the maximum probability along a single subsequence of states
accounting for the first n + 1 ≤ N emitted symbols. The property of conditional
independence of HMM can be applied using this expression, to get a multiplicative
score for the sequence. Viterbi algorithm utilizes this idea along with the concept
of backtracking from dynamic algorithm, to reconstruct the best possible state
sequence from a series of probabilistic observations on a state sequence. The con-
dition is given by the Bellman optimality principle47

δn(j) =
[

max
i=1,...,J

δn−1(i) × pi | j
]
× ej(on). (34)

At each iteration for each state, the transaction from the earlier state with the best
score is generated and the product is built up. This procedure yields the subsequence
δn(j), termed the survivor, and is denoted by ψn(j) = argmaxi=1,...,J δn−1(i)×pi|j.
Viterbi algorithm provides a recipe to solve this expression.

There are four major steps, consisting of start, recursive, termination and trace-
back states.47 The start state is an initialization step. This is followed by a recursive
state, where a state is calculated recursively in terms of its previous states and the
surviving states are stored to build up a matrix of likely states. The termination
state applies the condition to terminate a Viterbi walk. Finally, the traceback step
reconstructs the path by adding up all the surviving recursive steps.

A typical example of application of this algorithm is for parsing a query sequence
into its component exons and introns. The probability that the model will produce
a given sequence is also computed by the Viterbi algorithm. This represents deter-
mining the possibility that a given DNA sequence contains a gene.

The Viterbi algorithm, when applied to solve the learning problem of HMM’s,84

is called the Viterbi Learning algorithm. In this case, an initial HMM model is
chosen, and a probability matrix is constructed for state transitions either from
known values or heuristics. The Viterbi algorithm is then used to align the sequence
to the HMM. A set of statistical counts of the number of occurrences of states and
transition is counted, followed by a relative frequency estimation, and the model is
then recursively calibrated. The processes are repeated until the estimates converge.
This provides an estimate of the model parameters for the maximum probability

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 507

case. The parameters that are estimated include

• ni(k) = the number of times state i occurs in the alignment of the sequence;
• ni|j(k) = the number of transitions from i to j in the sequence alignment; and
• mj|l(k) = the number of times the symbol ol is emitted in state j by the sequence.

Then ni(k), ni|j(k) and mj|l(k) are computed over all possible k, and the relative
frequencies are calculated. We refer the reader to a good implementation of this
algorithm at http://coen.boisestate.edu/ssmith/biohw/CompCode/Viterbi.txt, using
Matlab.

5. Application of HMM to Protein Modelling and Sequence
Analysis

Application of HMMs to computational biology problems is quite an active field
of research and has been mainly concentrated to protein family profiling, protein
binding site recognition and gene finding in DNA.47,51 Baldi and Brunak6 define
three main groups of problems in computational biology for which HMMs have
been applied, namely the problem of multiple alignments of DNA sequences, the
problem of finding patterns in biological data, and the large set of classification
problems. Although HMMs provide a good probabilistic model of sequence and
position specific parameters, but the computational complexity of a large scale
model becomes very high due to the large number of parameters involved. The
hard optimization problem that HMM tries to solve is replaced by an equally hard
parameterization problem.

One of the earliest applications was by Churchill,24 who applied HMM to the
modelling of the coding and non-coding regions of DNA. This was extended to
DNA segmentation problem for the yeast genome.64 HMM’s have also been applied
to EM algorithms for determination of biopolymer sequences and protein binding
sites in DNA,18,55 mapping of genetic linkage map,52 protein secondary structure
prediction,1,79 and protein modelling.7,49

Gene-prediction HMMs model the process of pre-mRNA splicing and protein
translation. A DNA sequence is the input and the output is a parse tree of exons
and introns on the DNA sequence, from which the protein sequence of the gene
can be predicted. This implies a correct labelling of each element in the sequence
as belonging to either a coding region, non-coding region or intergenic region. The
standard problems of HMM are solved using gene finding programs [see Sec. 6].

Profile HMM,48 which is a generalization of profile analysis,38 is a very important
example of application of HMM to pattern finding problem in protein families.
This model has its basis in the approximate common substring (ACS) problem,
which tries to find out approximate common substrings in a set of randomly chosen
strings. Biologically, these are the motifs in a sequence family and correspond to
the strongly conserved regions. However the motifs may not be exactly identical,
and the probability of point (single nucleotide) mutation exists. This model does

April 6, 2005 8:23 WSPC/185-JBCB 00107

508 S. Mukherjee & S. Mitra

Fig. 3. HMM architecture for detecting motifs in DNA.

not incorporate insertion and deletion, and this is where the HMM provides a
better modelling. Biological sequences being very prone to insertion and deletion,
the HMM appears to be a better model in mapping motifs in a sequence family.

Extensive studies have been done by Krogh et al.,49 on the globin protein family,
for finding motifs by applying HMM. Profile models are designed to detect distant
similarities between different DNA sequences along the evolutionary chain. This
tries to model the biological proposition of sequence similarity in an evolutionary
hierarchy. An example of HMM architecture to model this situation is shown in
Fig. 3. It has a simple left-to-right structure in which there is a repetitive set
of three states, depicted as match (M), delete (D), and insert (I) in the figure.
The match state corresponds to a consensus amino acid for this position in the
protein family. The delete state is a non-emitting state, and represents skipping this
consensus position in the multiple alignment. The insert state models the insertion
of any number of residues after this consensus position. The standard problems
of HMM’s are overcome mainly by using the profile HMM modelling programs
[see Sec. 6].

6. Databases and Softwares for HMM

A library of Profile HMM’s49 (statistical models of the primary structure consen-
sus of a sequence family) is nowadays maintained in Public databases and new
sequences are searched against this sequence library. HMM databases are stored as
concatenated single HMM files. The most comprehensive library of profile HMM is
the PFAM database.76,77

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 509

Software tools for searching HMM databases and for sequence modelling are
freely available. Some of these tools are targeted to biological problems only, while
some are libraries to be used with other mathematical modelling tools. A good
number of tools for HMM also exist in the speech recognition community. Gollery36

provides a good survey on HMM databases.
HMMER29 is a freely distributable implementation of profile HMM software

for protein sequence analysis. The current version is HMMER 2.3.2 (3 Oct 2003)
and runs on Unix, Macintosh and Windows. Sequence Alignment and Mod-
elling System (SAM) is a collection of software tools for linear HMM modelling
(http://www.cse.ucsc.edu/research/compbio/sam.html). SAM runs essentially on
Unix, and the latest version SAM 3.4 is also freely downloadable.

Meta-MEME3,5 is a software toolkit for building and using motif-based HMMs of
DNA and proteins. The input to Meta-MEME is a set of similar protein sequences,
as well as a set of motif models discovered by MEME. Meta-MEME combines
these models into a single, motif-based HMM, and uses this to produce multiple
alignment of the original set of sequences and to search a sequence database for
homologs. The HMM’s generated by Meta-MEME’s differ from those produced
by SAM and HMMER in the sense that the former are motif-based. The toolkit
consists of five primary programs for doing five different types of jobs. There are
other utility programs, including a converter to change a Meta-MEME linear HMM
into an HMMER format. Meta-MEME has been tested on SunOS, Solaris, DEC
Alpha and SGI Irix systems. All code is written in ANSI C and can be easily ported
to other systems.

Matlab is a versatile mathematical modelling tool, and there exist various
extensible libraries that can be added to it as toolkits. A freely available tool-
box with Matlab (http://www.ai.mit.edu/∼murphyk/Software/HMM/hmm.html)
supports inference and learning for HMMs with discrete, Gaussian, or mixture
outputs. The Gaussians can be full, diagonal, or spherical (isotropic). It handles
discrete inputs, while the inference routines support filtering, smoothing, and fixed-
lag smoothing.

The HTK toolkit (http://htk.eng.cam.ac.uk/) is also a useful tool. Although
the code is copyrighted by Microsoft, the toolkit is freely downloadable, the lat-
est version being 3.2.1. HTK toolkit consists of a set of library modules and tools
available in C source form. The distributed version of HTK works on Solaris, IRIX,
HPUX, Linux, Windows 2000 and NT. The tools provide facilities for speech anal-
ysis, HMM training, testing and results analysis. The software supports HMM’s
using both continuous density mixture Gaussians and discrete distributions, and
can be used to build complex HMM systems. The toolkit is primarily targeted
to the speech recognition problem domain, but has also been used for sequence
analysis.

GENSCAN is another HMM based sequence analysis tool that is used
for the identification of complete exon/intron structures in genomic DNA’s.17

The GENSCAN Database and webserver are now maintained at MIT

April 6, 2005 8:23 WSPC/185-JBCB 00107

510 S. Mukherjee & S. Mitra

(http://genes.mit.edu/GENSCAN.html), and it is freely available for academic use.
Executables are currently available for the following Unix platforms: Sun/Solaris,
SGI/Irix, DEC/Tru64 and Intel/Linux.

7. Preliminaries from Grammars

All formal languages have a grammar, which defines the production rules of the
language. Language grammars have been applied to computational biology,6 par-
ticularly to the RNA folding problem. The whole biochemical behavior of a pro-
tein depends upon the three dimensional configuration it converges to, taking into
account local interactions between atoms and molecules within itself as well as in
the surrounding media. This is also termed protein folding, and involves the 3D
tertiary structure. While the primary structure is represented as 1D sequence of
amino acids, the secondary structure is typically 2D.

Given a defined alphabet with a set of some predefined symbols, and a set
of production rules defining how the alphabets in the language combine, one can
generate all possible expressions supported by the language. Thus expressions not
obeying the legal rules of the language can be discarded. Grammars can be applied
to RNA’s and DNA’s, because they have a well-defined alphabet consisting of the
four nucleotides. The possible combinations observed can give us an idea of the
production rules in the language of the nucleotides.

Alphabets are defined as a finite, non-empty set of symbols usually written as Σ.
An example may be the set of binary alphabets Σ = {1, 0} or the set of nucleotides
Σ = {A, C, T, G}. A combination of these alphabets is called a string or word, like
001111 is a string for the binary alphabets and AACTGGA is a string for the
nucleotides. The empty string is defined as a string with no symbols and is denoted
by ε. We denote Σ∗ as the set of all possible strings from the set Σ, and this is
generally not finite.

A language L is defined as a subset of the set Σ∗. Any language follows a set
of rules for production of strings, by concatenating the alphabets in the set. The
production rules give us the power to parse a string and check whether or not it is
a valid member of the language.

We provide here a brief introduction to formal language theory and types of
grammars. Hopcroft et al.41 and Harrison40 give a good coverage on the subject.
We will use results from computational linguistics, as discussed in Robert69 and
Wetherell.85

A formal grammar for a language is usually defined as a four tuple G =
(V, T, R, S). Here V represents the set of variables, also called non-terminals or
syntactic categories, and each variable represents a language or a set of strings. T

denotes the terminals or the finite set of symbols that forms the string. R repre-
sents the production rules that give a recursive definition of the language, with the
production symbol being →. S is the start symbol, which is a variable that repre-
sents the language being defined. Productions are further defined as consisting of a

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 511

variable called head, and a string of zero or one terminal symbols called body. Let
us consider a simple example.

Palindromes are strings that read same from both ends, such as AATAA or
TTAATT , etc. Palindromes have interesting applications in RNA structure deter-
mination. Let us consider the alphabet set {A, T }. Denoting the palindrome by X ,
the production rules (R) will be

X → ε |A | T |AXA | TXT.

The grammar G is G = ({X}, {A, T }, R, X). Any language L = L(G) is said to be
generated by the grammar G.

Chomsky20,21 has given a general theory of grammar classification called the
Chomsky hierarchy. Grammars are classified into four categories namely regular
grammars (RG), context free grammars (CFG), context sensitive grammars (CSG)
and unrestricted or phrase structure grammar (REG). Let any capital letter like
A, B denote nonterminals, small letters like a, b represent terminals, and Greek
letters like β, δ denote any string of terminals or non-terminals including the null
string. Here we have V = {A, B} and T = {a, b}.

RG’s have production rules of the form A → aA or A → a, which means that one
can go from a nonterminal to a single letter or a single letter followed by a variable.
So strings can grow only in one direction. Production rules of CFG’s are of the form
A → β. A typical example of CFG’s is the Palindromes.

The term “context-free” comes from the feature that the variable A can always
be replaced by a, in no matter what context it occurs. CFG’s are important because
they are powerful enough to describe the syntax of programming languages, and
almost all programming languages are defined via CFG’s. These are also simple
enough to allow the construction of efficient parsing algorithms which, for a given
string, determine whether and how it can be generated from the grammar. They
can be typically expressed in Chomsky Normal Form (CNF). Because of the simple
form of production rules in CNF grammars, this normal form has both theoretical
and practical implications. For instance, given a CFG, one can use the CNF to
construct a polynomial-time algorithm,a which decides whether a given string is in
the language represented by that grammar or not.

CSG’s have productions of the form βAδ → βγδ. If S is the start symbol then
the rule S → ε is allowed, provided S does not occur on the right hand side of any
other production rule. A typical example is copy language, of the form xxyzxxyz,
where a string is split into two substrings which are exact copies of each other.
REG’s have productions of the form βAδ → γ.

RG’s generally show short range dependencies and hence are good models for
HMM’s; CFG’s represent nested and long range dependencies and hence can model
RNA’s; CSG’s show crossing dependencies while REG’s demonstrate all type of
dependencies. Figure 4 summarizes these relationships.

aThis is the CYK algorithm used in RNA parsing, which we discuss in Sec. 9.2.

April 6, 2005 8:23 WSPC/185-JBCB 00107

512 S. Mukherjee & S. Mitra

Gb) Palindrome Language A C T G G T C A
RELATIONSHIP

a) Regular Language A C T T G G A C T
RELATIONSHIP

G TTC C AA

GGTC AA
Biological or Reverse Palindrome Language A C T G G A G U
RELATIONSHIP G U

c) Copy Language C P G C P G
RELATIONSHIP

C P G C P G

A C T T G G A C T

Fig. 4. Relationship rules for (a) Regular, (b) Palindrome, and (c) Copy language grammars.

Let us consider the sequence of events of a regular grammar generating a string.
Suppose we need to generate the string GCGCGCTG. The production rules will be

S → gA

A → cB

B → gC

C → cD

D → gE

E → gF

F → cG | aD | cD

G → tH

H → g.

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 513

Proceeding from the start symbol we generate

gA → gcB → gcgC → gcgcD → gcgcgE → gcgcggF.

There are three possible expansions. Considering the first one, we get

gcgcggF → gcgcggcG → gcgcgctH → gcgcgctg.

This is a valid string in the language defined by the above production rule. Con-
sidering the second possibility, we generate

gcgcggF → gcgcggaD → gcgcggagE → gcgcggaggF

→ gcgcggaggcG → gcgcggaggctH → gcgcggaggctg.

Similar patterns will be generated for the other cases. Diagrammatic representation
of derivation is often provided graphically, in terms of a construct called parse tree.
A derivation “⇒” represents zero or more derivation steps “→”, and they can be
leftmost or rightmost derivations depending upon whether one always replaces the
leftmost or the rightmost variables by one of its production bodies.

A parse tree shows how the symbols of a terminal string are grouped into sub-
strings belonging to the language of the grammar. Let G = (V, T, R, S) be a gram-
mar. The parse trees for G are trees with the following conditions:

(1) Each interior node is labelled by a variable in V .
(2) Each leaf is labelled by either a variable, a terminal or ε. However if the leaf is

labelled by ε, then it must be the only child of its parent.
(3) If an interior node is labelled Y and its children are labelled X1, X2, X3, . . . , Xk

from left, then Y → X1X2X3 · · ·Xk is a production in R.

The yield of a parse tree is a string, that we get by concatenating its leaves by
looking from the left. This is a terminal string such that all its leaves are either
labelled with a terminal or ε. Parse trees are very important for RNA’s and this is
discussed in Sec. 10. Algorithms can be constructed to solve various categories of
problems with parse trees. However, all the algorithms do not have exact or finite
solutions.

8. Grammars and HMMs

Grammars constitute a very natural model for biological sequence analysis, as they
can be very easily represented as strings. HMM’s are mainly restricted to mod-
elling local interactions and cannot map long range correlations. Grammars provide
the formalism for doing that. Although it is possible in principle to construct any
sequence from the alphabet set, yet nature allows only a reduced set and grammars
provide rules for these allowed sentences from the base alphabets. Searls made an
extensive study of this formalism,74 by mainly working on a variation of definite
clause named string variable grammar.75 A parser called GenLang has been devel-
oped for the grammar, and results on the parsing of Eukaryotic protein encoding
genes have been reported.27

April 6, 2005 8:23 WSPC/185-JBCB 00107

514 S. Mukherjee & S. Mitra

Table 1. Comparison of HMM and
SCFG.

HMM CFG

Hidden States Non-Terminals

Transition Matrix Rewriting Rules
Emission Matrix Terminals
Probabilities Probabilities

Generally palindrome grammars are applied for modelling the structure in RNA
palindromes. Recursive palindromes are used to map repeats in DNA, and secondary
stem structure of RNA.56 Context sensitive copy languages are used to model DNA
direct repeats. This relationship is depicted in Fig. 4.

We will not discuss the string variable grammar formalism any further, but con-
centrate on stochastic context free grammars (SCFG’s). These are a natural exten-
sion of HMM’s for higher order correlations in sequences. HMM’s can be viewed
as a stochastic version of regular languages, and SCFG’s as a stochastic version
of context-free languages.42 Table 1 lists an explicit mapping between HMM’s and
SCFG’s. SCFG’s have been mainly used to model nested correlation in RNA sec-
ondary structure. One of the main problem of using SCFG is the absence of efficient
algorithms and the intense computational requirements of the existing ones. An
application of SCFG’s to RNA structure prediction is described in detail in Sec. 10.

Let G be an SCFG in which all production rules a → b are assigned a prob-
ability PG(a → b), such that the sum of probabilities of all possible production
rules from any non-terminal is 1. The corresponding stochastic grammar defines
a probability distribution over the set of finite strings over the finite alphabet Σ.
The probability PG(s) of G generating string s is the sum of the probabilities of
all possible derivation of s from a start symbol. The probability of a derivation is
given by the product of the probabilities of all the derivation rules in the derivation
sequence. The corresponding SCFG can be transformed to an equivalent SCFG in
CNF. The problem of finding PG(s) can be solved by the Inside Outside algorithm,
while the most likely parse of s in G is determined by the Cocke–Younger–Kasami
(CYK) algorithm. These are explained in Secs. 9.1 and 9.2.

SCFG’s generally solve three classes of problems, viz.,

Alignment: Given a parameterized SCFG, what is the optimal alignment of a
sequence to it.
Scoring: Given a parameterized SCFG, what is the sequence of that model.
Training: Given a set of sequences, how to estimate the probability parameters
of an SCFG.

Algorithms for HMMs and grammars have a natural relationship to each other
in terms of complexity and methodology. Considering sequences having average

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 515

Table 2. Comparison of algorithms for HMM and SCFG.

Problem HMM CFG

Optimal Alignment Viterbi CYK
EM Parameter Estimation Forward Backward Inside Outside
P (s | λ) Forward Inside

observed length N and number of different non-terminals M , generally the mem-
ory complexity for HMM is O(MN) and for SCFG is O(MN2). The corresponding
time complexities are O(M2N) and O(M3N3) respectively. However both cases
involve polynomially bound algorithms, and hence are solvable. For the SCFG, the
alignment problem for SCFG is modelled using the CYK algorithm, the scoring
problem is handled using the Inside-Outside algorithm, and the training problem
is modelled using the EM algorithm. Table 2 lists the maps between different algo-
rithms for the HMM and SCFG.

9. Algorithms for Grammars

In this section, we outline two of the widely used and generalized algorithms for
SCFG’s, viz., Inside Outside and Cocke Younger Kasami.

9.1. Inside outside

The most popular algorithms for the estimation of the probabilities of a context
free grammar are the Inside Outside algorithm and the Viterbi algorithm, both
employing Maximum Likelihood approaches. The difference between the logarithm
of the likelihood of a string and the logarithm of the likelihood of the most probable
parse of a string is upper bounded linearly by the length of the string and the
logarithm of the number of non-terminal symbols.73

The use of the Inside Outside algorithm for the estimation of the probability
distributions of stochastic context free grammars in language modelling is restricted,
due to the time complexity per iteration and the large number of iterations that
are needed to converge.54 Its application to RNA structure prediction is described
in Sec. 10.

Let us now develop the steps of this algorithm. We will consider a CNF SCFG
with N different nonterminals S1, . . . , SN , where the start terminal is denoted by
S1. The production rules are of the form Wx → WyWz and Wx → a, where a

is a terminal symbol and Wi’s are nonterminals. Using Eqs. (6)–(7), the transition
and emission probabilities for these productions are px(y, z) and ex(a). We consider
the sequence o = (o1, o2, . . . , oL).

The Inside algorithm calculates the probability of a sequence defined by an
SCFG. The probability α(i, j, x) of a parse subtree, rooted at the nonterminal Sx,
is calculated for subsequence oi, . . . , oj over all x, i, j. This involves walking along

April 6, 2005 8:23 WSPC/185-JBCB 00107

516 S. Mukherjee & S. Mitra

an L × L× N dynamical programming matrix following standard procedures. The
computational complexity is O(L3N3) in time and O(L2N) in space. The steps of
this algorithm are similar to the Viterbi algorithm of Sec. 4.3, and consist of similar
stages involving initialization, recursion and termination.

The Outside algorithm does the same thing from the other end of the sequence.
Here we consider the probability β of a complete parse tree rooted at the start non-
terminal for the complete sequence o, excluding all parse subtrees for the sequence
o1, o2, . . . , oj rooted at the nonterminal Wx over all x, i, j. The Outside algorithm
recursively walks its way inward from the largest excluded subsequence, while the
Inside algorithm walks its way outward from the smallest subsequence. The com-
plexity orders are the same as that in the Inside algorithm. The Inside and Outside
variables can be used to re-estimate the probability parameters of an SCFG by the
EM algorithm.54

9.2. Cocke–Younger–Kasami

The CYK algorithm43 deals with the parsing problem for CFG’s. It determines
whether a given string can be generated by a given context-free grammar and, if so,
how it can be generated. The standard version of CYK can only recognize languages
defined by context-free grammars in CNF. Although CYK can be extended to parse
grammars that are not in CNF in some cases however, the algorithm then becomes
much more complicated.19 The application of CYK algorithm to RNA structure
prediction is highlighted in Sec. 10. Now we describe the CYK algorithm steps for
a CFG in CNF.

Let G be a CFG in CNF, and L be the language generated by G. Let n be the
number of alphabets or grammar symbols of G, denoted as x1, x2, . . . , xm. Assume
that the start symbol is x1, where x1, . . . , xr are variables, and that xr+1, . . . , xm are
the terminals. Consider a string S and let s[j, d] be a substring of length l starting
from the jth symbol of S. Let B[i, j, d] be the boolean array element, where xi

derives s[j, d]. The steps of the CYK algorithm are as follows:

Step 1. Initialize all B[i, j, d] to false.
Step 2. For all i from r + 1 to m and For all j from 1 to n, If xi = s[j, 1] Then

assign B[i, j, 1] to be true.
Step 3. For each production of the form xk → xi, where k is between 1 and j

(i.e., xk is a variable) and i is between r+1 and m (i.e., xi is a terminal),
For each j from 1 to n If B[i, j, 1] is true Then assign B[k, j, 1] to be true.

Step 4. Execute the following for all d, starting with d = 2 and ending
with d = n.

Step 4.1. Execute the following for every production of the form xk → xkxq.
Step 4.2. For all j from 1 to n − d + 1 and For all s from j + 1 to j + d − 1 If

B[k, j, s− j] and P [q, s, d + j − s] are true Then assign B[i, j, d] to true.
Step 5. If B[1, 1, n] is true Then return Yes Else return No. If response is Yes

then the string is a member of the language, otherwise it is not.

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 517

The worst case asymptotic time complexity of CYK is Θ(n3), where n is the
length of the parsed string, thereby making it the most efficient algorithm for rec-
ognizing a context-free language.

10. Application of SCFG to RNA Structure Prediction

The main domains of application of stochastic grammars in Bioinformatics
include protein secondary structure prediction,35,60 RNA secondary structure
prediction,45,68,72 and gene finding.17,50,58 In this section, we will mainly consider
the problem of RNA secondary structure modelling. These secondary structures
are formed by creation of hydrogen bonds between donor and acceptor sites on the
nucleotides A, C, G, U. The complementary bases, C − G and A − U form stable
base pairs, while in the weaker G − U pair, the bases bond in a skewed fashion.
These constitute the canonical base pairs. There are other non-canonical base pairs
as well.

Prediction of secondary structure is based upon two energy assumptions, viz.,
that (i) the total free energy of a given secondary structure is the sum of the
free energies of its loops, and (ii) the thermodynamic free energy of one loop is
independent of the free energies of all the other loops in the structure. The secondary
structure with the lowest free energy is always the most stable one. RNA also
forms pseudoknots,59 but these cannot be inferred from energy calculations. RNA
secondary structures show long range correlation and can be modelled well with
SCFG.80 Figure 5 depicts the various structural elements in RNA.b

Many computational models have been developed for predicting RNA structures
based on energy calculations and stochastic grammars. However, it is still not known
how to assign energies to the loops created by pseudoknots, and dynamic program-
ming methods that compute minimum energy structures break down. Covariance
methods, on the other hand, are able to predict pseudoknots from aligned, homol-
ogous RNA sequences.

A standard grammar for RNA will be based on the four alphabets set
(A, C, G, U), where X represents any nonterminal, with the following productions.

• X → XX , describing the branched secondary structure,
• X → aXa, describing the base pairing in RNA,
• X → aX , X → X , describing multiple alignments, and
• X → a.

Generally, SCFG-based algorithms are computationally intensive, with structural
alignment of an RNA to a sequence being O(N3) on memory and O(N4) on
time for a sequence of length L, as compared to O(N2) requirement for stan-
dard sequence alignment algorithms. Dynamic algorithms for structure calculations
based on energy principles have also been developed.63,87

bhttp://www.bioinfo.rpi.edu/∼zukerm/Bio-5495/RNAfold-html/node2.html.

April 6, 2005 8:23 WSPC/185-JBCB 00107

518 S. Mukherjee & S. Mitra

Fig. 5. RNA structure.

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 519

Knudsen and Hein45 developed an efficient algorithm, termed KH-99 for struc-
tural prediction in RNA sequences. The algorithm uses an SCFG to produce a prior
probability distribution of RNA structures. The Inside Outside algorithm described
in Sec. 9.1 is used to calculate the posterior probability of the structure given an
alignment and a phylogenetic tree. This probability is based on individual proba-
bilities for alignment columns and pairs of columns for base pairs. The most likely
structure is found by using the CYK algorithm of Sec. 9.2. This algorithm is mostly
useful for a limited number of sequences, due to its large computation time and
problems with gaps. The authors have further extended the algorithm by treat-
ing gaps as unknown nucleotides, and reported an improved version called Pfold.46

This algorithm improves on the KH-99 in terms of speed, robustness, computing
efficiency and treatment of gaps.

Sakakibara et al. have done important work in applying SCFG to RNA struc-
ture prediction,72 involving both primary and secondary structures. A generalized
version of the Forward Backward algorithm (Sec. 4.2), based on tree grammars, is
used to train unaligned sequences. This gives a better performance than the stan-
dard Inside Outside algorithm of Sec. 9.1. The model is tested on tRNA and gives
good results in predicting secondary structures of new sequences.

Pseudoknots in RNA cannot be modelled by a single context free grammar.68,78

However, formal transformational grammar and other algorithms for modelling
the situation have been developed.31,67 Covariance model, involving a probabilistic
approach, is used to construct the secondary structure and primary sequence con-
sensus of RNA’s from existing aligned or unaligned RNA sequences. The model is
based on an ordered tree, which can capture all the pairwise interactions of an RNA
secondary structure. But non-nested pairs like pseudoknots or base triples cannot be
modelled. It is actually a generalization of HMM, that is similarly described by a set
of states, and a set of emission and transition probabilities. The basic problem of
aligning an RNA sequence is handled using dynamic programming algorithms. This
is similar to the Inside Outside algorithm with the Viterbi assumption (Sec. 4.3),
that the probability of the model emitting the sequence is approximately equal to
the probability of the single best alignment of the model to the sequence.

RNA structure modelling using SCFG has predicted important results, but it
has its limitations in terms of computing power, size of sequences to be compared
and the type of structures to be predicted. Application of higher order grammars,
like graph grammar, will probably be able to better model long-range correlations.

11. Databases and Softwares for SCFG

Software for SCFG are very few in numbers and have been mostly devel-
oped privately in laboratories. All the SCFG tools that are available in the
bioinformatics domain are targeted to RNA secondary structure prediction. A com-
parative analysis of the various grammars has been recently done.70 A good

April 6, 2005 8:23 WSPC/185-JBCB 00107

520 S. Mukherjee & S. Mitra

listing of various types of softwares available for SCFG modelling is provided in
http://www.isp.pitt.edu/information/toolboxes.html.

RNA modelling, in comparison to that for HMM, is considerably underdevel-
oped. This is mostly because the algorithms are much more difficult and their
convergence properties are not good. It requires huge amount of computational
resources to calculate RNA folding, and is generally done using supercomputers.
RNA databases are also not that widely available or maintained like (say) the gene
or the protein databases, since wet lab work with RNA is comparatively a more
difficult subject. The best place to search for information about RNA databases and
software is RNA world at IMB, Jena (http://www.imb-jena.de/RNA.html). Some of
the RNA databases include RNase P sequence/structure database at University of
Indiana, Group I intron structures at University of Colorado, rRNA WWW server
at University of Antwerp, RDP, the Ribosomal Database Project at Michigan State
University, 16s RNA structures at University of Colorado, 23s RNA structures at
University of Colorado, RNA editing website at UCLA, Physarum mitochondrial
RNA editing at University of Texas at Dallas, and RNA Secondary Structures at
the Gutell Lab. at University of Texas, Austin.

A comprehensive package of softwares for modeling of RNA (http://www.
genetics.wustl.edu/eddy/software/) has been developed by Eddy et al. at Wash-
ington University. The packages available include ATV, RESEARCH, Infernal,
TRANASCAN-SE, QRNA, RNABOB, PKNOTS and NCRNASCAN. All these
softwares are available free of cost and are downloadable. The packages mostly
run on UNIX and Linux environments. They are mostly C library routines, which
can be used as plugins in structure manipulation and prediction algorithms. These
algorithms use SCFG and covariance model.

Another group of packages is based on maintaining an energy-based RNA folding
server (http://www.ibc.wustl.edu/∼zuker/rna/form1.cgi). Folding of RNA is done
using a related method that utilizes thermodynamic information, instead of base
identity statistics.

12. Conclusion

The aim of this tutorial has been to provide an insight into the use of HMM’s and
Grammars to biological problems, mostly for sequence analysis, pattern discovery
and structure modelling. We have tried to show how the grammar formalism is
a natural extension of the HMM, for cases where stochasticity is introduced in the
process. Biological problems have been shown to follow both the models, depending
on the variables in the problem. Algorithms for solving these have been discussed,
along with problems regarding exact solutions and their approximations.

There remain many open problems, like the incorporation of structural infor-
mation into HMM formalism and construction of complex models. The biological
problems, handled in the existing framework, are mostly simple in nature and a
more precise modelling can be done using extensions of HMM’s.

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 521

Grammars have been shown to be powerful generalizations of HMM’s and pro-
vided good results for RNA structures. However, pseudoknots and other such struc-
tures have no known explanation in this regular framework. Different extensions
proposed in literature generate approximate solutions to this problem. Higher order
mapping in the form of Graph grammars can also be a very important field of inves-
tigation. The graph grammar formalism may provide clues to problems in long
range correlation, as well as higher order structures in proteins and other biological
structures.

An extensive amount of research has been done in the field of computational
analysis and approximate solutions for algorithms, but much more work is still
needed before the huge biological data sets can be properly mapped. Biological data
analysis for pattern search will also benefit from discovery of long range correla-
tion mechanism, thereby throwing new light on unknown structures and behavioral
patterns.

We hope this tutorial will provide biologists a rigorous and complete introduc-
tion to HMM’s and Grammars, while giving a concise idea of applying machine
learning techniques to biological problems.

Acknowledgement

The authors gratefully acknowledge the anonymous referees, whose suggestions def-
initely helped improve the quality of this survey.

References

1. Asai K, Hayamizu S, Onizuka K, HMM with protein structure grammar, Proceed-
ings of the Hawaii International Conference on System Sciences, Los Alamitos, CA,
Vol. 84, pp. 783–791 IEEE, Computer Society Press, 1993.

2. Bailey T, Discovering Motifs in DNA and protein sequences: The Approximate Com-
mon Substring Problem, Ph.D. thesis, Department of Computer Science and Engi-
neering, University of California, San Diego, 1995.

3. Bailey TL, Elkan C, Fitting a mixture model by expectation maximization to dis-
cover motifs in biopolymers, Proceedings of the Second International Conference on
Intelligent Systems for Molecular Biology, Menlo Park, CA, pp. 28–36, AAAI Press,
1994.

4. ——, Unsupervised learning of multiple motifs in biopolymers using EM, Machine
Learning 21:51–80, 1995.

5. Bailey TL, Gribskov M, Combining evidence using p-values: Application to sequence
homology searches, Bioinformatics 14:48–54, 1998.

6. Baldi P, Brunak S, Bioinformatics the machine learning approach, 2nd ed., MIT Press,
Boston, 2001.

7. Baldi P, Chauvin Y, Hunkapillar T, McClure M, Hidden Markov models of biological
primary sequence information, Proceedings of the National Academy of Sciences, USA
91:1059–1063, 1994.

8. Baum LE, An inequality and associated maximization techniques in statistical esti-
mation for probabilistic functions of Markov processes, Inequalities 3:1–8, 1972.

April 6, 2005 8:23 WSPC/185-JBCB 00107

522 S. Mukherjee & S. Mitra

9. Baum LE, Petrie T, Statistical inference for probabilistic functions of finite state
Markov chains, Ann Math Stat 37:1554–1563, 1966.

10. Baum LE, Petrie T, Soules G, Weiss N, A maximization technique occuring in the sta-
tistical analysis of probabilistic functions of Markov Chains, Ann Math Stat 41:164–
171, 1970.

11. Bentley JL, Multidimensional binary search trees used for associative searching,
Comm Assoc Comput Machin 18:509–551, 1975.

12. Bilmes J, A Gentle tutorial on the EM Algorithm and its application to parameter
estimation for Gaussian Mixture and Hidden Markov Models, Tech. Report ICSI-TR-
97-021, University of Berkeley, 1997.

13. Birney E, Hidden Markov Models in biological sequence analysis, IBM J Res Dev
45:755–763, 2001.

14. Blekas K, Dimitrios IF, Likas A, Greedy mixture learning for multiple motif discovery
in biological sequences, Bioinformatics 19:607–617, 2003.

15. Boyles R, On the convergence of the EM algorithm, J Roy Stat Soc Ser B45: 47–50,
(1983).

16. Brazma A, Jonasses L, Eidhammer I, Gilbert D, Approaches to the automatic dis-
covery of patterns in biosequences, J Comput Biol 5:277–303, 1998.

17. Burge C, Karlin S, Prediction of complete gene structure in human genomic DNA,
J Mol Biol 268:78–94, 1997.

18. Cardon LR, Stormo GD, Expectation maximization algorithm for identifying pro-
tein binding sites with variable length from unaligned DNA fragments, J Mol Biol
223:159–170, 1992.

19. Chappelier JC, Rajman M, A generalized CYK algorithm for parsing stochastic CFG,
in Proceedings of 1st Workshop on Tabulation in Parsing and Deduction (TAPD98)
(Paris), 1998.

20. Chomsky N, Three models for the description of language, IRE T Inform Theor
2:113–124, 1956.

21. ——, On certain formal properties of grammars, Inform Cont 2:137–167, 1959.
22. Chow YS, Tiecher H, Probability Theory, Springer Verlag, Berlin, 1998.
23. Chung KL, Markov Chains with Stationary Transition Probabilities, Springer Verlag,

Berlin, 1967.
24. Churchill GA, Stochastic models for heterogeneous DNA sequences, Bulletin of Math-

ematical Biology 51:79–91, 1989.
25. Claus V, Ehrig H, Rozenberg G (eds.), Graph grammars and their application to

Computer Science and Biology, Lecture Notes in Computer Science, Vol. 73, Springer
Verlag, New York, 1979.

26. Dempster AP, Laird NM, Rubin DB, Maximum likelihood from incomplete data via
the EM algorithm, J Roy Stat Soc B39:1–38, 1977.

27. Dong S, Searls DB, Gene structure prediction by linguistic methods, Genomics
23:540–551, 1994.

28. Dubrin R, Eddy RS, Krogh A, Mitchison G, Biological Sequence Analysis, Cambridge
University Press, London, 1998.

29. Eddy SR, Hidden Markov Model and large scale genome analysis, Transaction of
American Crystallographic Association (1997).

30. ——, Profile Hidden Markov Models, Bioinformatics 14:755–763, 1998.
31. Eddy SR, Durbin R, RNA sequence analysis using covariance models, Nucleic Acids

Research 22:2079–2088, 1994.
32. Feller W, An introduction to probability theory and its applications, Vol. I,II, John

Wiley, New York, 1968,1971.

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 523

33. Flappan E, When Topology Meets Chemistry, Cambridge University Press, London,
2000.

34. Forney GD Jr., The Viterbi algorithm, Proceedings of IEEE 61:268–278, 1973.
35. Goldman N, Thorne JL, Jones DT, Using evolutionary trees in protein secondary

structure prediction and other comparative sequence analyses, J Mole Biol 263:
196–208, (1996).

36. Gollery M, Specialized Hidden Markov model databases for microbial genomics, Com-
parative and Functional Genomics 4:250–254, 2003.

37. Grate L, Hughey R, Karplus K, Sjolander K, Stochastic modeling techniques, under-
standing and using Hidden Markov Models, Proceedings of the Fourth International
Conference on Intelligent Systems for Molecular Biology (St. Louis), AAAI Press,
1996.

38. Gribskov M, McLachlan AD, Eisenberg D, Profile analysis and detection of distantly
related proteins, Proceedings of the National Academy of Sciences, USA 84:4355–4358,
1987.

39. Gusfield D, Algorithms on Strings,Trees and Sequences, Cambridge University Press,
London, 1999.

40. Harrison MA, Introduction to Formal Language Theory, Addison-Wesley, New York,
1978.

41. Hopcroft JE, Motwani R, Ullman JD, Introduction to Automata Theory, Languages
and Computation, Pearson Education, Singapore, 2001.

42. Jagota A, Lyngsø RB, Pedersen CNS, Comparing an HMM and SCFG, Proceedings
of the 1st Workshop on Algorithms in Bioinformatics, WABI 01 (Denmark), 2001,
pp. 69–84.

43. Kasami T, An Efficient Recognition and Syntax Algorithm for Context-Free Lan-
guages, Tech. report, Air Force Cambridge Research Lab, Cambridge, 1965.

44. Kenney JG, Snell JL, Finite Markov Chains, Academic Press, New York, 1966.
45. Knudsen B, Hein J, RNA secondary structure prediction using stochastic context free

grammars and evolutionary history, Bioinformatics 15:446–454, 1999.
46. ——, Pfold: RNA secondary structure prediction using stochastic context-free gram-

mar, Nucleic Acid Research 13:3423–3428, 2003.
47. Koski T, Hidden Markov Models for Bioinformatics, Kluwer, Netherlands, 2001.
48. Krogh A, Computational Methods in Molecular Biology, Ch. 4, pp. 45–63, Elsevier,

1999, pp. 45–63.
49. Krogh A, Brown M, Mian IS, Sjolander K, Haussler D, Hidden Markov Model in

computational biology: applications to protein modeling, J Mole Biol 235:1501–1531,
1994.

50. Krogh A, Mian IS, David H, A Hidden Markov Model that finds genes in E.coli DNA,
Nucleic Acids Research 22:4768–4778, 1994.

51. Kulp DC, Protein Coding Gene Structure Prediction using Generalized Hidden Markov
Model, Ph.D. thesis, Department of Computer Science and Engineering, University of
California, Santa Cruz, 2003.

52. Lander ES, Green P, Construction of multilocus genetic linkage maps in humans,
Proceedings of the National Academy of Sciences, USA 84:2363–2367, 1987.

53. Lange K, Mathematical and Statistical Methods for Genetic Analysis, Springer Verlag,
Berlin, 1997.

54. Lari K, Young SJ, The estimation of stochastic context free grammars using the
Inside-Outside algorithm, Computer Speech and Language 4:35–36, 1990.

55. Lawrence CE, Reilly AA, An Expectation Maximization algorithm for the identifica-
tion and characterization of common sites in unaligned biopolymer sequences, Protein
7:41–51, 1990.

April 6, 2005 8:23 WSPC/185-JBCB 00107

524 S. Mukherjee & S. Mitra

56. Lewin B, Genes VII, Oxford University Press, London, 2000.
57. Li JQ, Barron AR, Mixture density estimation, Advances in Neural Information Pro-

cessing Systems, Vol. 12, MIT Press, 2000, pp. 279–285.
58. Lukashin AV, Bodovsky M, Genmark.HMM: New solutions for gene finding, Nucleic

Acids Research 26:1107–1115, 1998.
59. Lyngsø RB, Pedersen CNS, Pseudoknots in RNA secondary structures, Proceedings

of the Fourth Annual International Conference on Computational Molecular Biology
(Tokyo, Japan), 2000, pp. 201–209.

60. Mamitsuka H, Abe N, Predicting location and structure of beta-sheet regions using
stochastic tree grammars, Proceedings of 2nd International Conference on Intelligent
Systems for Molecular Biology, Vol. 263, 1994, pp. 276–284.

61. McLachlan GJ, Krishnan T, The EM Algorithm and Extensions, John Wiley & Sons,
New York, 1997.

62. Norris JR, Markov Chains, Cambridge University Press, London, 1997.
63. Nussinov R, Pieczenik G, Griggs JR, Kleitman DJ, Algorithms for loop matchings,

SIAM Journal of Applied Mathematics 35:68–82, 1978.
64. Peshkin L, Gelfand MS, Segmentation of yeast DNA using Hidden Markov Model,

Bioinformatics 15:980–986, 1995.
65. Rabiner LR, A tutorial on Hidden Markov Models and selected applications in speech

recognition, Proceedings of the IEEE 77:257–286, 1989.
66. Rigoutsos L, Floratos A, Parida L, Gao Y, Platt D, The emergence of pattern discov-

ery techniques in computational biology, Metabolic Engineering 2:159–177, 2000.
67. Rivas E, Eddy SR, A dynamic programming algorithm for RNA structure prediction

including pseudoknots, J Mole Biol 285:2053–2068, 1999.
68. ——, The language of RNA: A formal grammar that includes pseudoknots, Compar-

ative and Functional Genomics 16:334–340, 2000.
69. Robert CB, Computational Linguistics, MIT Press, Boston, 1989.
70. Robin DD, Sean RE, Evaluation of several lightweight stochastic context-free gram-

mars for RNA secondary structure prediction, BMC Bioinformatics 5: 2004.
71. Sakakibara Y, Brown M, Hughey R, Mian SI, Sjlander K, Underwood RC,

Haussler D, Recent methods for RNA modeling using stochastic context-free gram-
mars, Proceedings of the Asilomar Conference on Combinatorial Pattern Matching
(NY), Springer-Verlag, 1994.

72. Sakakibara Y, Brown M, Underwood RC, Mian IS, Haussler D, Stochastic context
free grammar for tRNA modelling, Nucleic Acid Research 22:5112–5120, 1994.

73. Sanchez JA, Benedi JM, Casacuberta F, Advances in Structural and Syntactical Pat-
tern Recognition, pp. 50–59, Advances in Structural and Syntactial Pattern Recogni-
tion, Springer Verlag, Heidelberg, 1996, pp. 50–59.

74. Searls DB, The linguistics of DNA, American Scientist 80:579–591, 1992.
75. ——, String variable grammar: A logic grammar formalism for the biological language

of a DNA, Journal of Logic Programming 24:73–102, 1995.
76. Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R, Pfam: Multiple sequence

alignments and HMM-profiles of protein domains, Nucleic Acid Research 26:320–322,
1998.

77. Sonnhammer EL, Eddy SR, Durbin R, Pfam: A comprehensive database of protein
families based on seed alignments, Proteins 28:405–420, 1997.

78. Tabasaka JE, Cary RB, Gabow HN, Stormo GD, An RNA folding method capable of
identifying pseudoknots and base triples, Bioinformatics 8:691–699, 1998.

April 6, 2005 8:23 WSPC/185-JBCB 00107

Hidden Markov Models, Grammars, and Biology: A Tutorial 525

79. Tanaka H, Ishikawa M, Asai KA, Konagaya A, Hidden Markov Model and iterative
aligners, Proceedings of 1st International Conference on Intelligent Systems for Molec-
ular Biology (Menlo Park), AAAI Press, 1993, pp. 395–401.

80. Underwood RC, The application of stochastic context-free grammars to folding,
aligning and modeling homologous RNA sequences, Tech. report, UCSC-CRL-94-14,
University of California, Santa Cruz, 1993.

81. Verbeek JJ, Vlassis N, Krose B, Efficient greedy learning of Gaussian mixture,
(Amsterdam), In Proceedings of the 13th Belgium-Dutch Conference on Artificial
Intelligence BNAIC’01, Vol. 12, Amsterdam, 2001, pp. 251–258.

82. Vlassis N, Likas A, A greedy EM algorithm for Gaussian mixture learning, Neural
Processing Letter 15:77–87, 2002.

83. Wang TLJ, Shapiro AB, Shasha D (eds.), Pattern Discovery in Biomolecular Data,
Oxford University Press, London, 1999.

84. Waterman MS, Introduction to Computational Biology, Chapman & Hall, London,
1995.

85. Wetherell CS, Probabilistic languages a review and some open questions, Comp. Sur-
veys 12:361–379, 1980 .

86. Wu J, On the convergence properties of the EM algorithm, The Annals of Statistics,
pp. 95–103, 1983.

87. Zuker M, Computer prediction of RNA structure, Methods in Enzymology 180:262–
288, 1989.

Sushmita Mitra is a Professor at the Machine Intelligence
Unit, Indian Statistical Institute, Kolkata. From 1992 to 1994
she was in the RWTH, Aachen, Germany as a DAAD Fellow.
She was a Visiting Professor in the Computer Science Depart-
ments of the University of Alberta, Edmonton, Canada in 2004,
Meiji University, Japan in 1999 and 2004, and Aalborg Univer-
sity Esbjerg, Denmark in 2002 and 2003. Dr. Mitra received the
National Talent Search Scholarship (1978–1983) from NCERT,

India, the IEEE TNN Outstanding Paper Award in 1994 for her pioneering work in
neuro-fuzzy computing, and the CIMPA-INRIA-UNESCO Fellowship in 1996.

She is the author of two books published by John Wiley, guest edited two special
issues of journals, and has more than 70 research publications in referred interna-
tional journals. According to the Science Citation Index (SCI), two of her papers
have been ranked 3rd and 15th in the list of Top-cited papers in Engineering Science
from India during 1992–2001. Her current research interests include data mining,
pattern recognition, soft computing, image processing, and Bioinformatics.

April 6, 2005 8:23 WSPC/185-JBCB 00107

526 S. Mukherjee & S. Mitra

Shibaji Mukherjee received the B.Sc (Hons) and M.Sc degree
in Physics from University of Calcutta and M.S degree in Physics
from Northeastern University, Boston in 1989, 1993 and 1995.
He is an executive body member of Association for Studies in
Computational Biology (ASICB), Calcutta. He is responsible for
planning and coordinating programs in Computational Biology
at ASICB. He is presently working as a Technical Manager at
STC Systems, India. He heads the Composite Applications group

in STC. He is responsible for managing and coordinating integration solutions devel-
opment for protocols and frameworks. His areas of research interest include Machine
Learning, Computational Biology, Algorithms and Distributed Computing. He can
be reached at mshibaji@acm.org

