
Functional Copy-Number Alterations in Cancer
Barry S. Taylor1,2*, Jordi Barretina3,4, Nicholas D. Socci1, Penelope DeCarolis5, Marc Ladanyi6, Matthew

Meyerson3,4, Samuel Singer5,7 , Chris Sander1

1 Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America, 2 Department of Physiology and Biophysics,

Weill Cornell Graduate School of Medical Sciences, New York, New York, United States of America, 3 Department of Medical Oncology, Dana-Farber Cancer Institute,

Boston, Massachusetts, United States of America, 4 Broad Institute of Harvard and Massachusetts Institute of Technology (M.I.T), Cambridge, Massachusetts, United States

of America, 5 Sarcoma Biology Laboratory, Sarcoma Disease Management Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of

America, 6 Department of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of

America, 7 Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America

Abstract

Understanding the molecular basis of cancer requires characterization of its genetic defects. DNA microarray technologies
can provide detailed raw data about chromosomal aberrations in tumor samples. Computational analysis is needed (1) to
deduce from raw array data actual amplification or deletion events for chromosomal fragments and (2) to distinguish causal
chromosomal alterations from functionally neutral ones. We present a comprehensive computational approach, RAE,
designed to robustly map chromosomal alterations in tumor samples and assess their functional importance in cancer. To
demonstrate the methodology, we experimentally profile copy number changes in a clinically aggressive subtype of soft-
tissue sarcoma, pleomorphic liposarcoma, and computationally derive a portrait of candidate oncogenic alterations and
their target genes. Many affected genes are known to be involved in sarcomagenesis; others are novel, including mediators
of adipocyte differentiation, and may include valuable therapeutic targets. Taken together, we present a statistically robust
methodology applicable to high-resolution genomic data to assess the extent and function of copy-number alterations in
cancer.
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Introduction

Human cancer is caused in part by irreversible structural

mutations. These can produce changes in DNA copy number at

distinct locations in the genome [1]. Aberrations of this type affect

the function of genes and thereby produce a transformed

phenotype. Comprehensive characterization of these aberrations

is a necessary step in understanding disease etiology and advancing

the development of targeted therapies [2,3,4,5,6,7]. Techniques

based on microarray technologies can simultaneously measure

thousands to millions of loci in the genome for DNA copy number

changes. They include array comparative genomic hybridization

(array CGH) and single-nucleotide polymorphism (SNP) arrays

(reviewed in [8]). These increasingly sensitive technologies have

been used to characterize not only aberrations in cancer, but also

to describe copy-number variation in the human population [9],

and the basis of genetic disorders (reviewed in [10]).

Given its capacity to identify novel oncogenes and tumor

suppressor genes in cancer, two strategies have been used to

analyze copy number array data from tumors. The traditional

approach segments noisy probe-level data in individual tumors

(dividing the genome into regions of equal copy number) [11,12],

detects aberrations with a global threshold, and heuristically

defines boundaries of regions of frequent change [13,14]. Newer

algorithmic strategies use statistical models for the analysis of

multiple samples [15,16,17]. More recently, Beroukhim et al.

proposed an interesting comprehensive framework for assessing

copy-number alteration in tumor cohorts [18]. In parallel to these

computational developments, efforts are underway to analyze

large tumor collections in a variety of cancer types, such as the

pilot phase of The Cancer Genome Atlas [19] [The Cancer

Genome Atlas (TCGA) Research Network 2008, submitted].

These will be collected using diverse sources and criteria that likely

result in intra-tumor heterogeneity and between-tumor variability.

Therefore, important unresolved issues remain. How should

alterations in individual tumors be detected and combined when

a collection of samples vary substantially in their noise character-

istics? How should the genome be divided and assessed to more

naturally reflect how alterations arise? What are the features of a

realistic background model that allow for the identification of

statistically significantly recurrent and therefore more likely

functional alterations?

In this article, we describe a computational framework that

addresses each facet of this problem. We (i) develop distinct scoring

models for different alteration types, with parameters adapted to

the characteristics of individual tumors, (ii) use segmentation

breakpoints to divide the genome for analysis that stresses the

physical nature of copy-number alteration, (iii) build a random

aberration model that approximates the biological process by

which alterations arise, and use it to (iv) assess the statistical

significance of observed alterations. This identifies genomic

regions of interest (ROI) altered more frequently than would be
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expected by chance, and therefore more likely to drive

tumorigenesis (Figure 1). We apply our method to a large

repository of solid tumors to test its performance. We also apply

RAE to a novel high-resolution copy number data set generated in

our laboratories for a set of pleomorphic liposarcoma samples to

illustrate its capacity to lead to novel discoveries.

Results

Extrinsic sources of variation
In the first phase of RAE, we address the issue of reliably

detecting copy-number alteration in individual tumors. Every

tumor, including those from patients with the same type of cancer,

varies in their noise characteristics. We focus here on experimental

noise and the problem of inhomogeneity of tumor DNA. An

additional source of biological noise is structural variation, which

we address later. Regarding the former, we found at least four

distinct causes that can obscure copy-number changes in a tumor

and this motivates our departure from global thresholds for

detecting alterations. They include (i) low-quality matched non-

tumor DNA samples, (ii) stromal admixture, (iii) tumor heteroge-

neity, and (iv) incoherent tumor profile, and we discuss each in

turn.

Variation in quality of matched normal samples. Many

groups, including our own, have observed significant non-diploid

copy number in some normal samples (Figure S1). Causes may

include the source tissue (in the case of normal tissue adjacent to

tumor), differing handling protocols between tumor and normal

samples, prior chemotherapy on DNA of normal blood cells,

circulating tumor cells, and other contamination of normal DNA.

In a paired analysis, this non-neutral signal will attenuate or

otherwise alter the tumor’s signal. To prevent this, we substitute a

reference normal dataset of known diploid phenotype and analyze

tumors in an unpaired format (Methods). This reference is

generated by randomly selecting a subset of unrelated

individuals of the HapMap collection, and produces a consistent

diploid signal for tumor quantification and normalization

(Methods S1, Table S1, and Figure S2). We further reduce noise

in this new intensity ratio by segmenting individual tumors

[11,12]. This process correlates neighboring markers of common

copy number, assigning the arithmetic mean of probe-level signal

across the markers in each segment (Methods). While we avoid the

use of matched normal DNA at this step, we do use a high-quality

subset for germline event filtering after statistical assessment

(Methods).

Stromal admixture. The second source of noise is tumor

impurity, a well-documented problem [20,21]. Individual tumors

have different levels of non-tumor cell contamination. This

reduces the ratio of signal-to-noise within and between tumors.

It also compromises accurate genotyping for concurrent loss-of-

heterozygosity (LOH) analyses. This jeopardizes the detection of

two important classes of alteration: copy-neutral and deletion-

associated LOH. Contamination of tumor DNA by non-neoplastic

cell DNA exerts its effect globally, equally suppressing signal at all

loci in a tumor. Our solution is two-fold. First, we take an

individual-tumor approach to setting thresholds in log2 signal to

detect aberrations, thereby extracting information from tumors

that otherwise provide insufficient signal to detect non-diploid

copy number changes in comparison to purer tumor samples.

Second, we standardize the magnitude of alteration in all tumors

to facilitate between tumor-comparability, an important feature

when comparing tumors of varying stromal admixture.

Tumor heterogeneity. The third source of noise is perhaps

the most confounding. We see evidence of an intermediate copy

number in multiple tumor types. For example, when the value of a

monosomy (or ChrX in a male patient) establishes with confidence

the continuous log2 value corresponding to discrete integer copy

loss, this signal is often an arm-length loss that falls halfway

between diploid and the log2 value of single-copy loss. This may be

allele-specific copy number exclusive to either the maternal or

paternal chromosome, or more likely indicates the possibility that

multiple distinct but related subclones exist within a single clonal

tumor. When single-copy loss of a chromosome exists in only one

of two distinct tumor cell populations, there is a convolving of

alteration, reducing the magnitude of the event when measured

from the mixed population (Figure S3). Therefore, multiple

putative tumor cell populations differentially affect signal in a

local manner, at distinct regions in the same tumor. Consequently,

we chose an individual-tumor alternative to a global threshold for

alteration, the former being more sensitive to the detection of this

sort of cryptic signal.

Incoherence of copy-number profile. Finally, inaccuracy

in copy-number segmentation is the last extrinsic source of

variation compromising event detection in individual tumors. A

large amount of information is encoded by original probe-level

data on dense arrays such as the Affymetrix 250 K SNP array.

Segmentation is designed to reduce that information content to a

minimal set of discrete gains, losses, and neutral copy number.

The greatest reduction in information is in samples producing few

segments, and least in samples of high segment count (Figure S4).

However, this does not have a coherent relationship to probe-level

noise (Eq. 1, Methods). Consequently, because the features of

probe-level noise are different from those of segmentation, we use

only the latter at all subsequent stages of analysis.

Multi-component scoring model for copy-number
alteration

To adapt to this diversity of variation among individual tumors,

we developed an adjustable multi-component model to detect

aberrations, the first core feature of RAE. We begin by separating

segmented copy-number into four components, each encoding the

status of an alteration type; single-copy gain (A0), amplification

(A1), hemizygous loss (D0), and homozygous deletion (D1). This

separates both the analysis of total gain from loss, but also specific

and intuitive classes of each. This is necessary because each

alteration presents different analytical challenges, not only in

dynamic range, but also in their noise characteristics, which is

often overlooked. Also, by dividing total signal into these four

distinct classes, it is possible the model can extract more

information and produce higher accuracy in individual event calls.

Gain. In the analysis of a set of tumors, there are two

attributes that describe copy-number gain, frequency and

amplitude. At the single-sample level, this equates to a

‘‘detector’’ and an ‘‘integrator’’, the former identifying the

existence of an event and the latter assigning it a magnitude

proportional to its original amplitude. We reasoned that encoding

the detection of an event separately from its amplitude would have

several benefits: (i) a detector operates at the margins of signal and

noise and must be robust to the introduction of wild-type signal, (ii)

because amplitude is unbounded and varies as a function of

stromal contamination, it should be standardized to facilitate

between-tumor comparability, and (iii) in our statistical model that

tests whether an alteration exceeds a random aberration rate,

which is based primarily on recurrence across samples, we want to

boost our power for detecting infrequent but very high-amplitude

events. So, these are separately encoded as single-copy gain (A0)

and amplification (A1).

Genomic Aberrations in Cancer
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Figure 1. Overview of the RAE workflow. Input is a set of patients; tumor DNA, (un) matched non-tumor DNA, and an unrelated reference
normal cohort. Tumor and non-tumor samples are quantified, normalized, and subject to quality control. In the assessment phase, individual samples
are segmented and a multi-component model is parameterized for each; this produces a detector for single-copy gain, amplification, hemizygous
loss, and homozygous deletion. Across all tumors, a unified breakpoint profile (UBP) is derived from the ensemble of segmentation breakpoints, and
each region is scored for gain and loss. A background model of random aberrations is constructed with supplemental cleavage and permutation of
genomic regions, and p-values are assigned and corrected for multiple hypothesis testing. In the output phase, RAE determines genomic boundaries
for regions of interest (ROI), controls for germline and population copy-number variation, and reports statistically significant alterations.
doi:10.1371/journal.pone.0003179.g001
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Loss. We approach the analysis of genomic loss slightly

differently, though with a similar conceptual framework. There are

several challenges unique to allelic loss that justifies a modified

approach, and each of these has an important biological corollary.

First, deletion is restricted in its range; only two copies of a locus

can be lost. This is different than amplification. Lacking real

magnitude, DNA is either ‘‘present’’ or ‘‘absent’’, and therefore an

identical scoring scheme would be inappropriate. This complete

absence of signal (or magnitude) corresponds to homozygous

deletion. The second analytical complication is negative skew in

the distribution of segmentation around the diploid peak (Figure

S5). Thus far, this is a feature unique to genomic loss and

complicates the detection of hemizygous loss when its transition

from wild-type signal appears featureless. Nevertheless, accurately

detecting single-copy loss is important. The biological parallel is a

classical tumor suppressor model, one in which somatic mutation

or methylation in one allele is coupled to loss of the other. These

losses are often broad, and may target multiple loci, reducing the

function of more than one gene. However, this falls at the margins

of detectability in such a noisy system. To overcome these

complexities, we also separate deletion into two components.

Unlike the model for gain, both components are ‘‘detectors’’, one

for hemizygous loss (D0), and the other for homozygous deletion

(D1) (parameterization discussed in Methods S1).

Soft discrimination. While there are many options for

detecting these alteration types, a key feature of our approach is

the use of soft discrimination. Providing a robust (and binary) value

for the existence of an event in a noisy system is difficult. This is

exacerbated for single-copy events at the margins of signal and

noise. Consequently, we found that even after segmentation, a

dataset-wide log2 threshold for detecting alteration underperforms

in such a noisy system (data not shown). Alternatively, there is

significant precedent for using soft discriminators in noisy systems,

and we adapt this principle to detect copy-number alteration. For

example, consider alteration of a locus in two tumors, both having

similar amplitudes. The former exceeds a hard threshold by a small

magnitude; the latter does not, but again by only a small

magnitude. It is unlikely that this nominally similar locus results in

altered biology in the former, but the latter is effectively penalized

(Figure 2A). So, to achieve soft discrimination of each alteration

type, we use a sigmoid function with parameters for location (E)

and slope (b) (Figure 2B, Methods). This function maps continuous

log2 ratios, theoretically spanning 6‘, to a constant value between

0 and 61 (depending on the sign of b). By varying the magnitude

of b, we can make the function behave more or less like a sharp

threshold. Additionally, because the parameters (E,b) are

determined from individual tumor data and adapted to each

alteration type, we can vary the function’s sensitivity,

accommodating the very different patterns of noise previously

discussed (Figure 2C, Methods S1). This adaptive

parameterization is also a mechanism by which we can extract

information from even the most challenging tumor profiles. This

flexibility partially eliminates the need for subjective quality

control in the elimination of fundamentally uninformative

samples. For individual tumors having a complex and/or

incoherent pattern of signal (Figure S5), parameterization

produces conservative values of E and b for each alteration type,

suppressing a large fraction of the total signal by design. This is

especially important for the analysis of uncommon tumor types

where source material is at a premium and the elimination of

samples a distinct drawback. Finally, when soft discriminators for

single-copy gain and for mono- and biallelic losses are combined

across all tumors, they are a proxy for the recurrence of each

alteration type. This aggregation across tumors is the subject of the

next section.

Aggregating alterations
A unified breakpoint profile (UBP). We were interested in

identifying the most realistic unit of the genome on which

alterations likely arise and for which our multi-component model

should be assessed statistically. As with benign variants, pathogenic

changes are segmental, altering ,kilobase to whole-chromosome-

Figure 2. Multi-component model of copy-number alteration. (a) In a noisy system, a soft discriminator (red) is juxtaposed to a hard
threshold (black); both of which assign points either continuous or binary values respectively (parentheses) for confidently copy-neutral or amplified
loci (black) and for challenging cases at the margin of signal (green). This indicates the benefit of soft discrimination. (b) The functional form of the
soft discriminator; a sigmoid function with parameters for location (E) and slope (b). (c) Individual-tumor approach to detecting gain and loss; the
multi-component model parameterized for two tumors (red and blue) indicating that tumor-specific features produce different discriminators for
single-copy gain and loss (solid), amplification (dot-dash), and homozygous deletion (dotted). Parameterization selects values for E and b such that
their magnitude (unsigned) moves in the direction indicated (legend).
doi:10.1371/journal.pone.0003179.g002
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sized stretches of DNA. Why analyze the data by evaluating a very

dense set of markers (.238,000) when perhaps only 50,20,000

are truly independent observations? Because lesions alter

fragments of DNA, we felt RAE should operate on these.

Therefore, we took advantage of the breakpoints produced by

individual-tumor segmentation. This explicitly correlates

neighboring probes on a segment with similar copy-number and

approximates structural changes in the genome. We unify the

unique breakpoint positions observed in all tumors and these

create a new division of the genome (Figure 3A, Methods). These

newly defined regions are cancer-type specific and the final unit of

analysis. This avoids both an artificial length scale and the

statistical compromises necessary when operating on individual

markers, such as the impact on multiple-hypothesis testing when

measurements are partially dependent (Methods S1).

Combining evidence of alteration from different

tumors. To report a summary of alterations in these regions

for a collection of tumors, we combined the detected alterations

across all patients. The way in which we do this allows us to assess

the significance of an event through comparison to a null

distribution of purely random aberrations. Each component is

first summarized as the average across samples in each region of

the UBP. We then calculate a summary score (Eq. 3) for both total

gain and loss (A9 and D9 respectively) that combines the evidence

of the individual alteration types (Methods). The principal benefit

of this approach is flexibility. A null model (the subject of the next

section) can be created to evaluate: any combination of the

original four components, summary scores for total gain and loss

(default), or by weighting one alteration type relative to another.

As a final aggregation step, we analytically derive uncertainty in

this summary score for each region of the UBP. This is an

important feature of our approach. By propagating the error of

segmentation from all tumors spanning a given locus, we produce

a representation of the uncertainty in our measurement of

alteration at each locus (Methods S1). This uncertainty is an

intrinsic feature of any scoring model, but is currently not used in

existing methodologies.

A background model. We develop a background model for

assessing the significance of tumor-specific alterations, the third

core feature of RAE. The characteristics of a realistic background

aberration model in human cancers are complex and an

unresolved area of research. In a first approximation, we assume

a tumor’s profile is the combination of both driver and passenger

alterations. Furthermore, regions selected by the tumor span genes

whose perturbed function alters the normal cellular phenotype.

We assume these are embedded amid non-specific aneuploidy,

perhaps the product of increasing genomic instability. This fixes

stochastically acquired changes during neoplastic progression, but

which are fundamentally neutral to tumor biology. This suggests a

process spanning the indiscriminate to the decidedly non-random,

Figure 3. Aggregation and permutation. (a) The density of human recombination hotspots (top; median distance between hotspots is ,55 kb)
spans segmentation (red) of probe-level data (dark blue) in a ,5 mb region of 13q14.13-3 in four pleomorphic liposarcomas. The unique tumor-
associated breakpoints (black arrows) define the UBP (regions r1–6; bottom), the smallest of which (r3) spans four genes including the tumor
suppressor RB1 (direction of transcription indicated). (b) On chromosome 1p, the density distribution of predicted recombination hotspots (red) at a
width equal to the median distance between all p-arm hotspots (56 kb), and the distribution of their randomization (blue). The sampling procedure
respects the shape of the original distribution and therefore the sequence features that underlie it. (c) Size distribution of regions derived from
segmentation and subsequently defined by the unified breakpoint profile (UBP; gray), and those hotspot-cleaved regions of the same permuted
during null model generation (as indicated, blue).
doi:10.1371/journal.pone.0003179.g003
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as well as a relationship between normal genetic turnover and the

acquisition of copy-number change. This implies tumor-associated

breakpoints identified by segmentation are only a small fraction of

total breakpoints in the genome. So, we hypothesized that a

background model should incorporate components of this benign

genetic background. In the context of copy-number aberrations,

we chose predicted human recombination hotspots.

Hotspots, a local increase in the rate of human recombination,

are a feature of allelic and non-allelic ((N)AHR) homologous

recombination. NAHR, in turn, is one mechanism by which de novo

structural variants are fixed in the genome. A subset of these

variants produces copy-number change, little of which is

pathogenic. In fact, previous studies associate high rates of NAHR

with segmental duplications. These sequences are therefore

susceptible to break and rearrangement (reviewed in [22,23,24]).

Moreover, copy-number variation is tightly coupled to segmental

duplications in the human genome [9,25]. Consequently, we use a

random process involving recombination hotspots as a proxy for

this mechanism. These hotspots are estimated from patterns of

linkage disequilibrium (LD) between extant individuals, reflecting

recombination occurring throughout their ancestral lineage [26].

We supplement tumor breakpoints in a manner consistent with

both this higher-order structure of the human genome and

patterns of genetic diversity.

We randomized the genomic positions of predicted recombi-

nation hotspots (n = 32,996, HapMap phase II [27]) with a

rejection-sampling procedure that simulates the preferential

features underlying the distribution of human recombination

(Figure 3B). These randomized positions are used as cleavage sites

for the largest tumor segments prior to permutation (Methods).

Supplemental partitioning of the genome in addition to that

provided by tumor segmentation prior to permutation also has an

operational benefit. It increases the permutation space in a tumor

when segmentation produces a low segment count of which a

fraction are copy-altered, and the balance are large in genomic

size but fundamentally diploid. Without additional division, the

altered segment can be permuted into a finite number of positions,

constraining the model. Fracturing the largest copy-neutral

segments, however, provides a far greater count of positions into

which the region of interest may be permuted.

Having investigated multiple permutation models, we chose a

null distribution derived from genome-wide permutation (Methods

S1). Briefly, (i) segments in each tumor are further subdivided

(cleaved) at the positions of randomized recombination hotspots,

after which (ii) the UBP is derived again on this modified ensemble

of breakpoints (Figure 3C), (iii) the values of the multi-component

model in each region of this UBP (A0, A1, D0, D1) are permuted

together to another position of the UBP in each sample and re-

combined across tumors (see Methods). This is typically repeated

10,000 times producing a null distribution of .108 scored regions.

Assessing significance and identifying regions of interest
To assign statistical significance, separately for gain and loss, we

use this null distribution of permuted data to calculate p-values

based on how often the randomly permuted score exceeds the

sample score (Eq. 3). We then correct for multiple hypothesis

testing with the Benjamini-Hochberg false discovery rate proce-

dure [28]. This correction is done over all tests, which correspond

to regions of the UBP. Depending on the segmentation profile of

samples in a disease type, this results in a reduction of between one

and three orders of magnitude in effective tests as compared to

individual markers. The resulting q-value defines the fraction of

tolerated false positives above a given score arising by random

chance in our background model. Regions are then filtered based

on the q-value with a typical cutoff of 0.01 (FDR#1%).

Regions of interest (ROI). We next explore the final core

feature of RAE, determining the boundaries for regions of

significant amplification and deletion. If an alteration contributes

to oncogenesis, then we assume that region of the genome is

selected for its effect on gene content. This event may alter a single

gene or multiple independent events may target a coordinated

program of genes. These lesions may also co-evolve with random

alterations that have little biological impact. Non-random

alterations are statistically significant relative to our null model

and therefore are candidate regions of interest. Nevertheless,

regions of interest are not rigorously defined, but are intuitive and

motivated primarily by two issues. First, the biological researcher is

interested chiefly in manageable and interpretable events, perhaps

involving a single gene. Second, we see visually in the data regions

of focality where peaks of alteration exist but are confounded by

noisy data, including adjacent or neighboring peaks. To capture

both of these, we implement a two-stage approach to determine

ROIs. The first stage identifies regions of significant alteration

(q#0.01). These will be (i) isolated regions of the UBP (singletons)

where focal alteration affects a single locus, or (ii) multiple

physically adjacent regions that are merged and assigned the

largest genomic boundaries of the event. The second stage is

designed to interrogate these broad gains and losses for peaks of

finer-scale and more significant alteration. These are more likely to

contain oncogenes and tumor suppressor genes, meet the first

intuitive criteria of ROIs, but are complicated most by the second.

Consequently, there are two types of imprecision that affect the

determination of regions of focal alteration. Spatial imprecision is

related to the experimental system, where the true position of

alteration is unmeasured due to marker selection, array

composition, and finite resolution. Measurement imprecision

refers to the error propagated from individual events in each

sample and reflects both noise inherent in the experiment and the

variability produced by sample size. The former is fixed and will

improve as array density increases. The latter is something we

incorporate explicitly into the second stage of our algorithm, but is

missing from prior approaches [13,14,18,29]. For a given broad

region that includes loci exceeding a sensitivity threshold, we

detect peaks in the summary score (L2, Eq. 3). If a peak is detected,

it is merged with adjacent loci in this wider region of significance if

their L2 falls within the peak’s interval of error (Figure 4, see

Methods). In this graphical representation from data, the RB1

tumor suppressor, discussed in greater detail below, is detected in a

peak of similarly merged regions that refines the boundaries of an

ROI from those spanning ,3 mb of sequence and 20 genes to

those ,237 kb spanning just two genes.

Using these intrinsic errors in the second-stage algorithm is

important for several reasons. First, selecting only the maximally

significant locus without consideration for adjacent significance in

either the 5 or 39 direction may produce artificially small peak

boundaries. These may subsequently miss a gene proximal to, but

not encompassed by the event (Figure 4). This potentially

erroneous ‘maximum-peak’ identification may be caused by

nothing more than artifact somewhere upstream in normalization,

segmentation, or scoring. Second, and again an issue important to

the analysis of uncommon tumor types, is the question of peak

detection and target identification from copy-number alteration

when the analysis is based on small sample sizes (,20–50). There

is a term in the measurement of error that scales as one over the

square root of the sample size (1=
ffiffiffi
n
p

). The difference in effect on

error is acute between samples sizes available for rare tumor types

versus those common epithelial tumor types.

Genomic Aberrations in Cancer
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Figure 4. Regions of interest (ROI). Deletion of RB1 at 13q14.2–q14.3 in pleomorphic liposarcoma demonstrates features of ROI detection in RAE.
(a) Heatmap of copy number in a small region of 13q in 24 pleomorphic liposarcomas (tumors are rows, markers are columns; color scale as
indicated), and (b) From segmentation, the extent of genomic deletion in a subset of tumors with either hemizygous loss (thin) or homozygous
deletion (thick) (c) Inset, the regions of the UBP at this locus (filled circles), and their summary score (D9, left axis). The combination of analytical error
(error bars) and two thresholds (FDR and peak detection, green) determine the sensitivity of ROI detection. The detected peak (identified by red plus)
is merged with physically adjacent regions that fall inside its error interval (red filled circles and error bars) and define the 5 and 39 boundaries of the
ROI (gray). Statistical significance (q-value) corresponding to summary scores such that permutation is unable to resolve a p-value smaller than 1/
(Np+1) (dotted line, right axis) indicates the necessity for resolving ROIs in the space of the summary score D9. Regional and peak boundaries define
the ROI (at bottom; mb) spanning 20 and two genes respectively, the latter including RB1 (direction of transcription indicated). Note, the region
detected as the peak is void of genic content, emphasizing the necessity for incorporating a measure of uncertainty on its score.
doi:10.1371/journal.pone.0003179.g004

Genomic Aberrations in Cancer

PLoS ONE | www.plosone.org 7 September 2008 | Volume 3 | Issue 9 | e3179



Control for normal polymorphism in the human

genome. The final phase of analysis is to control for observed

germline and population copy-number variation (CNV). This is a

common step in many studies. The assumption is that altered loci

spanning observed variations in the genome should be removed

given their ambiguity of origin, being either somatic possibly

oncogenic or germline polymorphic. Nevertheless, three concerns

arise. First, there has been little effort to interpret overlapping

events, the biological significance of which is unclear when a

variant’s frequency in the population is low or undetermined.

Second, existing CNVs are more accurately described as copy-

number-variable regions, the exact boundaries of which are mostly

unknown and perhaps over-estimated [30]. The third relates to

specificity issues during CNV detection given the coverage of the

sum of reported CNV. We implement a repository of

approximately 10,000 autosomal variants (Methods). These span

745 mb of sequence and therefore the likelihood of CNV

overlapping cancer-specific loci in a highly aberrant tumor type

are high.

Our approach is conservative and controls for false negatives.

Copy-number variants are analyzed for overlap with the focal

event boundaries produced by RAE. We use the latter because

aberrations tend to be larger in median genomic size than

polymorphic events (data not shown). The percent sequence

coverage is reported, and the event is classified as potentially

polymorphic, but is not excluded at any coverage threshold. These

simple criteria were designed to control for the removal of truly

somatic events, such that a de novo duplication observed in a prior

study would not invalidate a tumor-associated deletion at the same

locus. A similar approach is used to screen cohort-specific germline

variation (see Methods). However, because these appear in

patient-matched non-tumor DNA, and may be interpreted in

many ways, they are removed from primary results, but reported.

Comparison in a large solid-tumor compendium
To assess the performance of RAE, we compared its results with

those of a recently developed method on two large studies totaling

512 solid tumors (Methods S1). These included copy number array

data from 371 lung adenocarcinomas and 141 primary and

secondary gliomas [18,31]. We found RAE produced good

concordance with published focal events identified by the GISTIC

method. In particular, RAE identified 29 of the 31 (94%) reported

focal amplifications and deletions in lung adenocarcinomas, and

19 of 27 (70%) in glioma (Methods S1).

While we did not expect perfect agreement between the results of

the two methods given their dissimilar analytic approaches, we

investigated the differences in some detail. In the lung adenocar-

cinoma dataset, we quantified concordance in two different ways.

To each region of the UBP derived by RAE for the lung dataset, we

mapped published amplifications and deletions. We then compared

amplified, diploid, and deleted regions between the two methods

and found them to be highly concordant (x2 statistic .104, Methods

S1, Table S4). We then assessed the relationship between each

method’s score (L2 in RAE and G-score in GISTIC) for reach

region of the genome. In the regions of statistical significance from

either method (FDR#0.25 in both), we calculated the non-

parametric Kendall tau rank correlation coefficient between

summary scores of amplification and deletion. We found this

reaffirms the high concordance (t= 0.86 and 0.77 for amplification

and deletion respectively). We repeated the latter concordance

estimate on the glioma dataset and found very similar results

(t= 0.77 and 0.84 for amplification and deletion respectively; see

Methods S1 for details). Additionally, we manually reviewed each

locus reported by the original studies but not statistically significant

by RAE (Methods S1). Overall, many subtle differences impact

detection, and we describe two. First, the method for scaling tumor

segmentation to a common baseline value (usually log2 = 0) affects

the status of alterations in a small fraction of the most complex

tumors (Figure S9). This is because common summary statistics like

the median bears little relationship to the putative diploid peak in

tumors where the latter is ill defined. The second affect is of greater

impact. In the majority of tumors, the adaptive parameterization of

Ek from individual noise features is more stringent than are

published symmetric thresholds in log2 copy number (Table S5,

Figure S10). This suppresses possible signal that falls between the

value of a symmetric threshold and Ek in a given tumor. This

produces a global reduction in frequency and therefore affects

statistical assessment in kind. For events detected by another

method and not RAE, it remains to be determined if these are truly

real or the more stringent Ek correctly suppresses these as false signal

in the noisiest of tumors. In summary, we believe the regions of both

agreement and disagreement highlight the value of investigating

genomic data of this type with multiple approaches, leading to

improved analysis methods and an increasingly complete and

accurately derived profile of chromosomal aberrations [The Cancer

Genome Atlas (TCGA) Research Network 2008, submitted].

Application of RAE to Pleomorphic Liposarcoma
We applied RAE to a new dataset for an uncommon and

challenging subtype of adult soft-tissue sarcoma. Soft-tissue

sarcomas (STS) represent ,1% of adult malignancies, yet their

histological diversity, frequent presentation with advanced disease,

and lack of response to conventional post-surgical treatment drives a

total disease-specific mortality of 50% [32]. Of these, liposarcoma is

the most common, accounting for 20% of all adult sarcoma.

Liposarcomas are classified into three biological groups encom-

passing five subtypes, (1) well-differentiated/dedifferentiated, (2)

myxoid/round cell, and (3) pleomorphic, based on morphological

features and cytogenetic aberrations [33,34]. Dedifferentiated and

pleomorphic liposarcomas are characterized by complex karyotypes

and have gross chromosomal aberrations [35,36]. In contrast,

myxoid/round cell liposarcomas have simple karyotypes with

specific reciprocal translocations. We focus here on the most

biologically aggressive subtype, pleomorphic liposarcoma.

Pleomorphic liposarcoma (pLPS) accounts for ,8% of all

liposarcomas, and represents only 1.6% of all soft tissue sarcomas.

Nevertheless, they are highly undifferentiated tumors, are frequently

located in the extremities, and have a disease specific survival of

60% at 5 years for patients presenting with localized disease [37].

Based on morphology alone, dedifferentiated and pleomorphic

liposarcomas can sometimes be difficult to discriminate, even for the

experienced soft-tissue pathologist. This distinction is important

since patients with pleomorphic liposarcoma have a 3-fold greater

risk of distant metastasis compared to patients with dedifferentiated

liposarcoma. Previous work by our group identified a gene

expression classifier that discriminates dedifferentiated and pleo-

morphic subtypes, but whose genes mainly reflect a complex

amplification of 12q13-15 in the former [38].

A collection of tumor and non-tumor DNA specimens from 24

patients were selected and analyzed (Methods). A genome-wide

perspective reveals pleomorphic liposarcoma has multiple regions

of significant copy-number amplification and deletion (Figure 5).

Nevertheless, whole-chromosome arm events, a feature charac-

teristic of multiple epithelial tumor types, are only infrequently

seen. RAE identified broad and focal alterations on 18

chromosome arms (Table 1, Tables S2–S3). On a fine-scale,

several genomic deletions contain well-studied tumor suppressors,

confirming prior observations in multiple karyotypically complex
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sarcoma subtypes [39]. This includes the most common genomic

alteration, a deletion of 13q14.2–q14.3 including the RB1 tumor

suppressor (,60% of tumors). This alteration is a mixture of

hemizygous loss and less frequent homozygous deletion, the latter

in five samples. RB1 germline mutations in individuals with

hereditary or bilateral retinoblastoma are associated with an

increased risk of sarcoma development later in life [40]. Upon

review, however, none of our pleomorphic liposarcoma patients

had a history of retinoblastoma or prior radiation exposure.

After RB1 deletion, the next most common event was loss of

17p13.1 containing TP53. The pattern of p53 deletions includes

both broad and focal hemizygous loss, and less common

homozygous deletion. We also observe both deletion-associated

and copy-neutral LOH at the p53 locus, consistent with previous

reports (Figure S8). Given the potential therapeutic implications of

the presence and type of p53 pathway alterations [41], we

explored alternative lesions in the pathway in samples in which

TP53 is not deleted. MDM2 (12q15) is gained in four such samples.

Furthermore, upstream of MDM2, pLPS tumors seem to lack

frequent alteration of CDKN2A, only two samples having evidence

of deletion, only one of which is biallelic. However, neither RB1

nor TP53 are also deleted in these samples, confirming their

functional redundancy. There are multiple other alterations

targeting genes involved in these two well-studied pathways

mediated by RB1 and p53; G1/S phase transition during cell

cycle progression, affecting CCNE1, RB1, SKP2, and p53, and

DNA repair, including FANCA, RAD1, RAD52, XRCC6, and

MSH4. A thorough discussion of each is outside the scope of this

report.

In addition to these previously documented targets, RAE also

identified frequent deletion of 17q11.2 containing NF1 (neurofi-

bromin 1). A total of nine pleomorphic liposarcomas have genomic

loss at this locus, eight are hemizygous and one is homozygous.

Germline deletions of NF1 are frequently associated (,50%) with

another sarcoma, malignant peripheral nerve sheath tumors

(MPNST), through its association with neurofibromatosis-1 [42].

The COSMIC database also lists mutations in NF1 in multiple

MPNSTs, colorectal carcinoma, and of course in neurofibromas,

but none yet in liposarcoma [43].

RAE also identified a complex amplicon on 5p containing

CTNND2 (d-catenin). Given the propensity of pleomorphic

liposarcomas to metastasize, the amplification of d-catenin is

intriguing. d-catenin functions as an adhesive junction-associated

protein and its over-expression is associated with the down-

regulation of E-cadherin in prostatic neoplasms [44]. Interestingly,

E-cadherin (CDH1) is affected by frequent deletions of 16q22.1 (in

9 pLPS tumors; Table 1). E-cadherin is a metastasis suppressor

gene mediating cell-cell adhesion. Its down-regulation is associated

with an aggressive phenotype in multiple malignancies. Ostensibly,

the amplification of d-catenin may down-regulate E-cadherin in a

deletion-independent manner. However, these are not mutually

exclusive alterations, appearing together in multiple tumors.

Deletion of E-cadherin is monoallelic in pLPS, suggesting the

product of the remaining allele may be down-regulated by d-

Figure 5. Statistically significant genomic alteration in pleomorphic liposarcoma. The false discovery rate (q-value, left axis) and score (A9
and D9, right axis) for amplification and deletion (positive and negative respectively, labeled) on the 22 autosomes in genomic coordinates
(chromosomes indicated at bottom and in plot by alternating colors, centromere in red). The threshold for significance determines the alterations
subject to ROI detection (green). Maximum observed scores of A9 and D9 unattainable by permutation p-value (parentheses, right axis).
doi:10.1371/journal.pone.0003179.g005
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catenin. However, E-cadherin inactivation can also occur through

somatic mutation or promoter methylation [45]. Further work is

needed to functionally validate the role of these alterations in

pLPS.

A significant feature of liposarcomas is the deregulation of

adipogenesis. RAE identified multiple alterations involving genes

with known or putative roles in adipocyte differentiation. While

PPARc is the master transcriptional regulator of adipocyte differen-

tiation, we noted only sporadic and sub-significant gains of the gene in

pLPS. Nevertheless, there are multiple primary and secondary

adipogenesis-related alterations. These include amplification of 19q

spanning both C/EBPa and C/EBPc. This amplification would

contradict previously observed transcriptional down-regulation of C/

EBPa in similar liposarcomas relative to normal fat. Due to the

complexity and temporal features of adipocyte biology, it is either

unlikely that genomic gains in these genes produces a dosage change,

or they are partially regulated in an allele-dosage independent

manner, such as with JUN amplification-mediated repression of C/

EBPb [46]. So we sought alteration in secondary, regulatory genes in

adipogenesis. Indeed, there is an interesting deletion of 12p13.33

spanning several genes of interest. In all, 11 tumors had monoallelic

deletion of this locus. We focus here on WNT5B (wingless-type

MMTV integration site family, member 5B), which is implicated in

the promotion of adipocyte differentiation through its inhibition of

Wnt/b-catenin signaling [47]. In pre-adipocytes, the over-expression

of WNT5B promotes adipogenesis through the reversal of Wnt

signaling inhibition by Wnt3a-mediated nuclear translocation, and

activation of b-catenin, described as an anti-adipogenic signal.

Genomic deletion of WNT5B may imply tumor suppressor function,

its loss relieving Wnt signaling of the competing inhibition, and

allowing the pathway to exert its negative regulation of PPARc and C/

EBPa [48].

Table 1. Alterations in the pleomorphic liposarcoma genome.

Locus Region (Peak)* Q-value{
Number of
genes{ Genetic elements of interest

Spanning known structural variation
(CNV)1#

Gain Loss Unknown

Gain

1p31.2–p31.1 68313202–77461343 1.51E-05 27(1) TNNI3K,MSH4,hsa-mir-186 8.8 (8.7) 11.1 (6.1) 6.9

5p15.33–p15.32 165712–5444231 1.86E-04 28 TERT 53.1 (22.2) 18.9 (5.9) 27.3

5p15.2 10731281–11126282 4.69E-03 2 DAP - 38.1 (3.5) -

5p15.2–p15.1 11413893–15762298I 1.02E-03 7 CTNND2,FBXL7 3.7 (4.5) 7.7 (6.6) 14.1

5p13.3–p12 32750418–45758751 1.51E-04 64 AMACR,C1QTNF3,RAD1,SKP2,LIFR 8.5 (4.1) 4.1 (1.4) 2.3

7p21.3–p21.1 8732462–20510540 7.78E-04 26 ETV1,TWIST1,TWISTNB,ITGB8 21.1 (1.6) 29.5 (1.6) 14.5

7p15.3–p14.3 23715756–32063427 2.50E-05 51 HOXA9,HOXA11,HOXA13,JAZF1 8.8 (4.3) 6.7 (1.6) 5.5

19p12–q13.11^ 24161928–40254153 ,5.22E-06 43 CCNE1,LRP3,CEBPA 7.3 (1.7) 3.5 (3.2) 11

32690406–34776985 1.51E-05 1 UQCRFS1 4.7 (3) 16.2 (2.2) 27.9

38552698–38678914 ,5.22E-06 2 CEBPG 87.6 (2.5) - 100

19q13.12 40680588–41040430 5.49E-03 21 ETV2,MLL4,PSENEN - 3.7 (1.7) -

Loss

1q41–q42.12 216302655–221524000 4.51E-03 29 MARK1,DISP1,TP53BP2,MIA3 0.6 (1) 0.3 (1) 13.8

10q21.3–q22.1$ 68571354–70982955 2.65E-05 24 CXXC6,CCAR1 3.8 (5.5) 3.1 (1.6) 7.2

10q22.1–q22.2$ 72407412–76912067 2.65E-05 46 MYST4 14.8 (3) 1.4 (1) 4

10q24.32–q24.33 103687999–105303029 8.21E-06 33 SUFU,NFKB2 - 1.2 (1) -

10q26.11–q26.3 119097873–135323432 5.35E-05 98 CTBP2,FGFR2 17.8 (4.6) 10 (5.1) 13.9

12p13.33 456768–1673782 1.15E-05 9 RAD52,ERC1,WNT5B,ADIPOR2 39.3 (4) 0.7 (1) 33.2

13q14.2 47917390–48154504 ,5.74E-06 2 RB1 35.9 (1) 35.9 (1) -

16q22.1 67103973–69257715 3.69E-03 32 CTF8,CDH1,CDH3,FUK,NQO1 14.3 (5.2) 31.1 (2.8) 21.3

17p13.1 6791092–7741807 ,5.74E-06 57 TP53& - - -

17q11.2 24079567–27921023 1.18E-03 49 NF1,SUZ12 5.1 (1) 4.7 (2.3) 8.2

22q13.1–q13.31 39296203–46069760 2.02E-04 84 MKL1,ST13,EP300,XRCC6,PPARA 12.4 (3.4) 11.5 (3) 17

*Genomic boundaries detected as peaks within regions of contiguous alteration are indented.
{False discovery-corrected p-value.
{RefSeq (hg17); in parentheses, human microRNAs.
1Locus of alteration spanning known population CNV (see Methods), percent genomic coverage; in parentheses, mean sample count.
#Unknown: ambiguous direction of copy-number variant.
IBoundary spans multiple observed intragenic breakpoints.
&TP53 is focally deleted (peak, chr17:7501467–7574417), but high in analytical error on low-marker count segments.
$Marginal evidence of germline alteration in only two normal samples.
^Non-genic germline signal in six normal samples spanning only a fraction of the locus, terminating prior to genic content.
Broad and focal alterations stratified by event type. The genetic element of interest is selected from the total genic content of an alteration if it has previously observed
somatic mutations in cancer (COSMIC), known oncogenes or tumor suppressors (CGP), implication in pathways altered in liposarcoma, or novel genes of interest for
further study [43,62,63].
doi:10.1371/journal.pone.0003179.t001
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Another alteration potentially contributing to altered regulatory

control of adipocyte differentiation is the monoallelic deletion of

22q13.1–q13.2 including EP300 (EIA binding protein p300). This

well-studied transcriptional co-activator is a putative tumor

suppressor in multiple epithelial tumors and is part of a

t(8;22)(p11;q13) translocation in acute myeloid leukemias (AML)

[49]. EP300 is necessary for the induction of PPARc target genes,

and its decrease suppresses PPARc target gene expression [50].

This produces a concomitant down-regulation of preadipocyte

differentiation. This implies, similar to WNT5B, tumor suppressor

function in pleomorphic liposarcoma, though the status of the

remaining allele is unknown. Considered together, these results

indicate substantial alteration to pathways that exert either pro- or

anti-adipogenic regulation in pleomorphic liposarcoma.

Finally, we wanted to design an approach that was suitable for

exploring different classes of copy-number alteration. This

includes alterations in pleomorphic liposarcomas that were also

altered in a subset of high-quality matched normal DNA and

subsequently classified as germline CNV (Figure 1). These are

usually discarded a priori, as it remains unclear how best to resolve

these as either benign variation, or variants conferring disease

susceptibility. In pLPS, this included a focal amplification of

1p22.2 (from 91.33 to 91.46 mb, q-value = 0.021) spanning a

single gene, HFM1, a putative human DNA helicase. Nine tumors

were altered at the HFM1 locus, as were two of their non-tumor

DNA counterparts. Two additional matched normal samples were

altered at the locus, but their respective tumors were not. Also,

there is a dearth of population CNV at this locus. hHFM1 encodes

multiple conserved DNA/RNA helicase sequence motifs, is highly

conserved with the Saccharomyces cerevisiae gene Mer3, a known

helicase, and is preferentially expressed in germline tissues [51].

These results provide a hypothesis regarding a possible role of

HFM1 in susceptibility to soft-tissue sarcoma and extensive tumor

aneuploidy.

A systematic integration of copy number changes with transcript

array data and DNA sequence changes is currently underway in

this and a larger set of sarcomas, which will provide a broader

genetic landscape of adult soft-tissue sarcoma [Barretina J, Taylor

BS et al. 2008, in preparation].

Discussion

The present work details a novel method for mapping and

assessing the significance of chromosomal abnormalities in cancer

based on high-resolution array profiles of tens to many hundreds

of tumor samples. As recurrent changes in a collection of tumors

are more likely to represent candidate functional events than are

those appearing to be randomly acquired, quantitative measures

and statistical assessment are central to the method. For technical

validation, we compared the performance of RAE to the GISTIC

method in a large collection of solid tumors including lung

adenocarcinomas and primary and secondary gliomas. As a

discovery application, we used RAE to determine the spectrum of

copy-number alteration in pleomorphic liposarcoma patients.

Separately, we have used this method to identify significant

alterations in additional glioblastomas, thyroid carcinomas,

localized and metastatic prostate cancers, and additional subtypes

of soft-tissue sarcoma (unpublished work). In comparison with

other methods, the key advantages of our approach are that it: (i)

treats the analysis of genomic gain and loss differently,

distinguishing between four classes of alteration in a manner that

reflects their biological differences, (ii) each of these four scoring

models are sample-specific, adapted to individual tumors to

account for their differences, (iii) we use soft discrimination in lieu

of hard thresholds for improved signal extraction, and (iv) in a

collection of tumors, it generates a random aberration model using

a background of more realistic segmental DNA, rather than

unrealistically independent array markers. The RAE method is

flexible; it is suitable for analyzing data from any array platform or

cancer type varying from genetically simple to chaotic. This

includes the accommodation of new chip types or increased

resolution. Also, RAE is modular. For example, after the

generation of the UBP, alternative algorithms can be substituted

to achieve varying analytical goals. Or, while modifying the initial

phases of the framework, the later components are valid and

applicable for the analysis of copy number changes produced by

next-generation sequencing.

Of course, the distinction between driver events and biological

neutral passenger changes is difficult to achieve definitively. While a

clonal population of tumor cells selects for changes conferring a

growth advantage (driver), it also propagates non-functional

(neutral) alterations. Indeed, recent work in a related domain,

large-scale sequencing of solid tumors, demonstrates the statistical

challenges in attempting to make this distinction

[52,53,54,55,56,57]. For DNA copy number, these challenges

result from the complexity and tumor-to-tumor variability of the

data, even in clinically well-defined tumor types. For realistic

statistical assessment in a collection of tumors, we feel that an

individual-tumor noise model producing sample-specific effective

thresholds is more appropriate than a single global threshold and

that separate treatment of different types of copy number changes

is very useful in practice. We are also confident that random

perturbations using the unified breakpoint profile (UBP) provide a

much more realistic background (null) model than random

perturbations of a much larger number of (linked) individual

probe data points. However, the count of truly independent

regions of change is likely still lower than implied by the UBP

model. Therefore, as background models become more sophisti-

cated in their modeling of random aberrations, one should

explicitly include additional mechanisms potentially mediating

copy number change (prior to any selection). This includes

perhaps a proxy of non-homologous end joining (NHEJ), which is

a prominent feature of rearrangements in tumor cells, as well as

other mechanisms. Finally, no gold standard of experimentally

validated alterations in a large tumor collection exists, which is a

necessary step to elucidate the features of varying methods and the

positive and negative results they generate.

DNA copy number data has clear limitations. Alterations in

most cancers are large, spanning many tens if not hundreds of

genes, many of which are likely not involved in oncogenesis.

Identifying the small number of targets from these events even

across many tumors is difficult. Additionally, oncogenic activation

by mechanisms other than amplification or deletion, like mutation

or epigenetic silencing is also important. Therefore, major

advances in our understanding of cancer genetics will likely come

from integrating copy number data with additional genomic data

types and, of course, functional genetic experiments, both large-

scale and hypothesis driven.

Materials and Methods

Array pre-processing, segmentation, and quality control
Genomic DNA was extracted from tumor and either normal

adjacent fat, muscle, or blood and genotyped with Affymetrix

250 K oligonucleotide arrays (StyI) according to manufacturers’

specifications. Raw data from the 270 HapMap individuals

hybridized to the Affymetrix GeneChip Mapping 500 K array

set were downloaded from NCBI GEO (accession number
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GSE5173) [9]. From the 210 unrelated individuals of the latter, we

randomly chose a set of 140 individuals as the reference normal

dataset (CEU: 20 Utah residents with northern and western

European ancestry; CHB: 45 Han Chinese in Beijing; JPT: 45

Japanese in Tokyo; YRI: 30 Yoruba in Ibadan, Nigeria; Methods

S1, Table S1, Figure S2). This set was randomly partitioned into

two subsets (HapMap.A: n = 40; HapMap.B: n = 100). All

Affymetrix data was processed from original CEL files with the

Affymetrix Chromosomal Copy Number Analysis Tool (CNAT

4.0, 1.5.6_v3.1). Genotyping, probe-level signal intensity normal-

ization (quantile), and copy-number quantification of tumor,

matched normal, and HapMap.B samples were generated from

the unpaired sample workflow (CNAT) with HapMap.A samples

serving as the internal control, and with default parameters and a

Gaussian smoothing bandwidth of zero (Methods S1). Copy

number was converted to a tumor-to-normal log2 ratio by

subtracting from the tumor signal at each marker the median

signal intensity of HapMap.B samples. Samples were then

segmented with the Circular Binary Segmentation algorithm

(CBS; a= 0.01, permutations = 10,000, undo.splits = none) [58].

We normalized segmentation output in the following way. First,

we calculated a measure of sample-specific probe-level noise equal

to the difference in signal between adjacent markers (probes) on

the array: for each sample j, the derivative noise DNj parameter is

DNj~median riz1{rij jð Þj ð1Þ

where ri is the log2 ratio of signal for the ith marker. We used the

median because of its robustness to non-noise outliers that

correspond to valid segmentation breakpoints. The density

distribution of segmentation (segment means mapped to their

resident probes and therefore scaled by size) was calculated with a

width based on the value of DNj, and mode-centered per sample.

The technical failure criterion was a tumor genotype call rate

(when available, Affymetrix-only) of less than 85%.

The soft discriminator model
Let aij represent normalized log2 copy number at each marker i

in sample j; we derived four sigmoid detectors (S), one for each

alteration state (component) k where k = {A0, A1, D0, D1} and

correspond to single-copy gain, amplification, hemizygous loss,

and homozygous deletion respectively, such that:

Sk aijð Þ~
1

e{bk aij{Ekð Þz1
if k=A1, otherwise;

Sk aijð Þ~H aij{Ek
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| 2

1
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H xð Þ~
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(
ð2Þ

Similar to the logistic function, Sk(?) maps log2 ratios to values

bounded by 0 and 1 subject to parameters Ek and bk. We derived

four sets of these parameters, one for each alteration state k, which

were adaptively determined per sample (Methods S1). The

truncated sigmoid of A1 (Eq. 2) was designed to integrate aij,

assigning a value that was monotonic to the original magnitude of

the event.

To transition from scoring markers to scoring regions, and for

each region and in each sample, we calculated the weighted

arithmetic mean for each Sk across the m markers in that region.

We then calculated the mean Sk across all samples in each region

of the UBP. These individual Sk scores were also used to compute

summary scores of total gain and loss, for which we used the L2

norm:

A0~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

A0
zS2

A1

q
and D0~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

D0
zS2

D1

q
ð3Þ

This scoring approach is flexible. Any of the components (k) can

be statistically assessed independently, combined as above (used in

this paper), or weighted with coefficients (data not shown) such

that one Sk is perceived as substantively more important for the

desired event detection than another.

Unified Breakpoint Profile (UBP)
To generate a common division of the genome for between-

tumor analysis, we combined segmentation breakpoints from all

tumors. For segments of $3 markers, we extracted the unique set of

start positions. To each of these we assigned a terminus position that

is the marker directly 59 of the next adjacent start site. This simple

procedure covers all segments and samples, is a common division of

each chromosome derived directly from original segmentation

breakpoints, and is not subject to an artificial length scale. This latter

point avoids unnecessary and likely inaccurate assumptions about

array resolution or alteration size that are study/tumor-type-

specific. We note some variability exists in the position of similar

breakpoints between tumors. While repetitive breakpoints between

tumors were inherited as a single unique position, we frequently see

breakpoints with similar but not identical genomic positions. From

tumor to tumor, these vary by a single marker in either the 59 or 39

direction. This is likely caused by the finite resolution of the

experiment such that the true breakpoint is proximal to the markers

on the array. Operationally, this produces either (i) an isolated

single-marker event during between-tumor aggregation, or (ii) a

contiguous stretch of single-marker events. We therefore merged the

former to the physically adjacent 39 region, while the latter were

consolidated as an independent region.

Finally, problematic segmentation will result in a sub-standard

UBP. Two problematic sample types exist. Non-tumor cell

contamination tends to cause under-segmentation, producing

large segments of reduced mean amplitude and fewer disease-

associated breakpoints. Conversely, excessive array noise can

produce over- or hyper-segmentation (Methods S1, Figure S6). To

account for both, we derived the distribution of segment counts for

a cohort and outlier samples (with too few or too many segments)

were excluded from UBP generation. From our recent experience

with an internal repository of 1,426 tumors spanning 11 tumor

types of mixed karyotypic and genetic complexity, a median of

,4% of tumor samples in any individual study were excluded by

this step (unpublished work). Nevertheless, after UBP generation,

these samples were added back and assessed because even poorly

segmented samples may bear an underlying disease-specific profile

(Figure S7).

Null model generation
We used human recombination hotspots (n = 32,996) predicted

from phase II HapMap data (release 21) [27,59] to further divide

the genome prior to generating the null (background) model.

However, there exists systematic and fine-scale heritable variation

in hotspot use [60]. Therefore, to arrive at a generally valid

background model, we randomized the positions of these hotspots

in a manner sensitive to their physical distribution in the genome.

Let R(h) represent the distribution of hotspots on a non-acrocentric
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chromosome arm with a width equal to the median distance

between all hotspots on that arm (ranging from 38 to 63 kb across

the 39 arms), with R(h) normalized to range between 0 and 1. We

randomly selected a genomic position xp on the arm and a value of

up from the uniform distribution U[0,1]. If up,R(hp), then xp was

accepted, otherwise, it was rejected and the process was repeated.

This continued until the count of accepted positions, i.e., random

genomic positions according to R(h), equaled the real count of

hotspots on that chromosome arm. This process preserved, on

average, the spatially non-uniform structural features of the

original distribution (Figure 3B) [26,27].

To generate a usable background breakpoint pattern, these

randomized hotspots were mapped to the marker nearest each in

the genome, which was then used as the position of random

cleavage. To prevent excessive fracturing of the original tumor

segmentation profile, we added a breakpoint at the hotspot site

only for segments of size greater than the median size of all

segments by disease type. Furthermore, a breakpoint was added

only when the resulting segments were $2 markers in length and

had a size of no less than one half the original global median

segment size. Each split inherited the copy number assigned to its

parental segment, which maintains the correlation in copy

number. This procedure effectively maintained the mode of the

distribution of event sizes, allowing for a permutation of copy

number values and not positions, without decoupling a possible

relationship between amplitude and size (data not shown)

(Figure 3C). This is desirable as a measure of model simplicity,

as permuting variable-sized fragments of DNA between differently

sized chromosomes is complex. From this cleaved profile of tumor

segmentation, we generated a new unified breakpoint profile and

scored each new region as before. These steps were repeated for

every 1,000 permutations of the null model. Each of these

permutations was a genome-wide randomization in each tumor of

the regenerated UBP and the scores assigned to these regions by

each of the four components.

Regions of Interest (ROI)
As discussed in the text, the first stage of the ROI algorithm

identifies all contiguous regions of statistically significant alteration.

We describe the second stage of the algorithm here. First, in each

of these larger regions spanning more than one region of the UBP,

we detect peaks in only the subset of regions exceeding an order-

of-magnitude greater significance (q#0.001). This prevents over-

sensitivity of peak detection, i.e., regions of marginally higher

significance (0.001,q,0.01) were deemed neither likely to be

differentially selected for by oncogenesis nor to reflect a substantial

increase in either recurrence or magnitude. Second, for eligible

regions (q#0.001), we detected peaks in the summary score (Eq. 3)

and not in their p- or q-values. This is because the number of

random samples one can practically generate with available

computer resources limits the smallest p-value. This would restrict

our ability to identify tumor events with scores greater than the

maximum scoring random aberration of the background model

(assigning a p-value corresponding to 1/(Np+1) to the tumor event,

where Np is the count of random aberrations) (dashed curve in

Figure 4). Because this affects regions of greatest interest, we

determined peaks with a simple detector of local maxima in A9

and D9 as these are monotonic with the p-value and maximally

resolved for any region of the UBP. These peaks, especially in

analyses of uncommon tumor types, are sensitive to the level of

error in the system (see text). Therefore we analytically derive a

unique and symmetric value of error for each region of the UBP

and this determined the sensitivity of peak detection in two ways

(Methods S1). First, the detector identifies zero, one, or more

peaks (identified with red plus in Figure 4) based on a shoulder

sensitivity parameter that we set to two times the median analytical

error of all UBP regions in the larger event (all error bars above

the peak threshold in Figure 4). Second, we assumed that two or

more statistically significant and physically adjacent regions that

are assigned summary scores that lie within the error of the other

likely do not define unique and independent events. Therefore,

regions adjacent to a peak are merged with that locus if their

summary score fell within the error bar of the peak (regions with

red error bars in Figure 4).

Analytical error in the multi-component model
Error was calculated for each of the four components k and for

the final summary scores (A9, D9). It was computed from the

standard deviations of the original probe-level data in each

segment from each sample spanning a given region of the unified

breakpoint profile (UBP) (details in Methods S1).

Germline variation
Patient-matched normal samples were processed identically to

the tumors. We plotted the distribution of normalized segmenta-

tion and excluded normal samples from analysis if they had; (i)

gross asymmetry, as either negative or positive skew in the diploid

peak producing high proportions of non-neutral copy number, or

(ii) samples with incoherently multimodal distributions of segmen-

tation. We parameterized and calculated A0 and D0 for the

remaining normal samples. We then identified regions of apparent

CNV (polymorphisms in the human population) as loci with A0 or

D0 $0.50 in two or more samples. These were removed from

genome-wide significance plotting, and their genomic coverage

spanning statistically significant tumor regions was calculated and

reported (Tables S2–S3).

Human structural variation
Loci of structural and copy-number variation were obtained

from the Database of Genomic Variants (DGV) at The Center for

Applied Genomics (TCAG; http://projects.tcag.ca/variation)

[61]. Autosomal copy-number variants profiled in any of 35

studies of human genomic variation (version 3) were included in

the screen.

Genome Mapping
All genomic coordinates were standardized to NCBI build 35

(University of California, Santa Cruz (UCSC) May 2004 (hg17)

assembly) of the human genome.

Availability
To support the analysis of copy number data, RAE is freely

available to the research community, located at: http://cbio.

mskcc.org/downloads/rae

Supporting Information

Methods S1 Supplementary methods, results, notes, and

references

Found at: doi:10.1371/journal.pone.0003179.s001 (0.12 MB

DOC)

Table S1 Individuals of the HapMap collection included in the

reference normal

Found at: doi:10.1371/journal.pone.0003179.s002 (0.31 MB

DOC)

Table S2 Additional genomic gain/amplification in pleomor-

phic liposarcoma
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Found at: doi:10.1371/journal.pone.0003179.s003 (0.10 MB

DOC)

Table S3 Additional genomic loss/deletion in pleomorphic

liposarcoma

Found at: doi:10.1371/journal.pone.0003179.s004 (0.13 MB

DOC)

Table S4 Comparison of significant events in the lung and

glioma datasets.

Found at: doi:10.1371/journal.pone.0003179.s005 (0.05 MB

DOC)

Table S5 Values of Ek for lung and glioma datasets

Found at: doi:10.1371/journal.pone.0003179.s006 (0.04 MB

DOC)

Figure S1 Diploid copy number between patient-matched non-

tumor DNA and HapMap reference normal. The distribution of

segment means weighted by their size for a randomly chosen

HapMap individual from the copy-called partition (HapMap.B) of

the reference normal (blue) and three tumor-matched normal

samples (gray). The tight and symmetric diploid peak of the

HapMap individual is juxtaposed to poorly behaved distributions

of patient-matched normal DNA copy-number data.

Found at: doi:10.1371/journal.pone.0003179.s007 (0.33 MB TIF)

Figure S2 Confirming population genetic structure of HapMap

reference normal. Population clustering of n = 140, 40, and 100

HapMap individuals from the partitions of the reference normal,

assuming three ancestral populations (k = 3; triangle plots).

Clustering is based on the 67 non-redundant biallelic CNVs from

Redon et al. [ref. S3] and repeated on only those 31 genotypes

derived from the Affymetrix early access platform (as indicated).

Found at: doi:10.1371/journal.pone.0003179.s008 (0.85 MB TIF)

Figure S3 Detecting an intermediate phenotype in copy

number. In a single tumor, monosomic chromosome 15 is

adjacent to intermediate signal on chromosome 14 (probe-level

data in gray, segmentation in blue). At right is the density

distribution of autosomal segmentation weighted by event size

(same annotation as in Figure S5). The peak representing the

medial loss signal (green plus) may arise from either multiple

tumor-cell populations in the DNA isolate, or allele-specific copy

number (dark red sigmoid; D0 parameterized with indicated values

of E and b).

Found at: doi:10.1371/journal.pone.0003179.s009 (0.62 MB TIF)

Figure S4 Relationship between probe-level and segmentation

noise. The two very different types of noise associated with array-

based copy number data. We can view the segmentation algorithm

as a de-noising step that attempts to remove noise in probe-level

measurements to accurately estimate the local copy number. Here,

we measure the efficiency of this noise reduction by calculating the

change in entropy from probe-level data to the entropy for

segmentation values (means). To precisely define the entropy, we

first compute the probability density histograms of both the probe-

level and segmentation data using the R density function with a

fixed bandwidth, limits (from 21 to 1 in log2 ratio units), and a

fixed number of bins (2048). The entropy is then defined as

shannon entropy where pi is the probability for each of the 2048

bins. When segmentation works properly, we observe a large

change in entropy [where DS = S(r)2S(m)] from the probe-level

data (r) to the segmentation values (m). However, the phenomenon

of hyper-segmentation (which we have observed in many tumors;

Methods S1, Figure S6) occurs when the segmentation algorithm

generates a large number segments (far larger a number than are

likely to be in the real data). As one would expect there is a simple

relationship between this over-segmentation and the reduction in

the change in entropy. However, these poorly behaved tumors, as

measured by over-segmentation, seem to be uncorrelated with the

low-level noise in their probe-level data as measured by the

derivative noise (DN; see Methods). The derivative noise is

represented by the size of the circles, where the radius in

proportional to the DN. Notice that DN is roughly uniformly

scattered along the DS x-axis.

Found at: doi:10.1371/journal.pone.0003179.s010 (0.72 MB TIF)

Figure S5 Diversity and heterogeneity of tumor profile. At left is

probe-level (gray) and segmentation data (blue) for 11 chromo-

somes (indicated, centromere in red). At right is the density

distribution of segmentation means weighted by their size (22

autosomes). For each, the sigmoid detecting single-copy gain (A0)

and hemizygous loss (D0) are indicated (red and blue respectively,

parameters labeled). The diploid peak is identified at zero in log2

copy-number (gray line) and the half-maximum values of the

diploid peak are identified (dotted gray lines). (a) Tumor with a

symmetric and well-behaved diploid peak as well as smaller peaks

of detectable signal (at left, on chromosomes 8p, 9, 10, 11, and 15).

(b) A hyper-segmented tumor with asymmetry in the diploid peak

exclusively in deletion, challenging the choice of E for single-copy

loss (D0). Nested signal can be detected in the form of whole-

chromosome loss of chr15, an event detected in panel A as well. (c)

A tumor having a highly complex and reduced-quality segmen-

tation profile, gross asymmetry in both gain and loss, an ill-defined

diploid peak, and lacks discernible features for the selection of

parameters for its transformation in either gain or loss.

Found at: doi:10.1371/journal.pone.0003179.s011 (1.69 MB TIF)

Figure S6 Hyper-fragmentation of copy number segmentation.

(a) Normalized probe-level (gray) and segmentation (green) of

chromosome 1 in a single tumor displaying a hyper-fragmentation

pattern. (b) The same probe-level signal as in panel A,

superimposed with a spatially averaged (bandwidth of ,601 kb)

version. Convolved trace indicates a non-disease related period-

icity in signal likely the source of hyper-segmentation (Methods

S1).

Found at: doi:10.1371/journal.pone.0003179.s012 (0.94 MB TIF)

Figure S7 Varying segmentation quality between tumors does

not preclude detection. Here, three chromosomes (14, 15, and 16)

in two tumors, probe-level (orange and light blue) and segmen-

tation data (red and dark blue, respectively). A high-quality

segmentation result (dark blue) identifies monoallelic loss of the q-

arm of chromosome 15. The lower-quality hyper-segmentation

(red) also includes the 15q loss (highlighted). This motivates the

conditional inclusion of both samples during scoring and

assessment, but not the latter during UBP derivation.

Found at: doi:10.1371/journal.pone.0003179.s013 (0.93 MB TIF)

Figure S8 Genomic deletion and observed loss-of-heterozygosity

for the p53 locus. Independent hierarchical clustering of copy

number (segmentation, left) and LOH (paired, right) for 2.2 mb of

17p13.1 (columns are samples, rows are markers) indicates two

patterns of alteration in pleomorphic liposarcomas. Deletion-

associated LOH for p53 in three tumors with either broad or focal

deletion (lines connect corresponding samples; black), and copy-

neutral LOH (green).

Found at: doi:10.1371/journal.pone.0003179.s014 (2.93 MB TIF)

Figure S9 The affect of normalization on segmentation profiles.

Here, the median of original segmentation of each glioma tumor

(x-axis) and the distance (offset) of the mode of the diploid peak

from log2 = 0 are plotted. While the median is a reasonable

approximation for the diploid feature of most tumors, in a subset
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of tumors, the mode of the diploid peak and the median of un-

normalized segmentation are substantially different.

Found at: doi:10.1371/journal.pone.0003179.s015 (0.26 MB TIF)

Figure S10 Difference between symmetric global threshold and

Ek from the individual tumor noise model. Here, the Ek value for

A0 and D0 (single-copy gains and losses respectively) are shown for

all 141 tumors of the glioma dataset. This indicates that in the

majority of tumors, the detector for single-copy events in RAE is

more stringent than was the original log2 global threshold used by

the original study (red dotted lines). This is responsible for the

global reduction in alteration frequencies in the RAE analysis.

Found at: doi:10.1371/journal.pone.0003179.s016 (0.26 MB TIF)
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