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a b s t r a c t

Nowadays, Wireless LANs (WLANs) have been densely deployed to provide the last mile de-

livery of Internet access to mobile clients. As the population of WLAN clients who carry

WiFi-enabled devices keeps increasing, WLANs are often crowded and WLAN clients may

thus encounter serious performance degradation due to channel contention and interference.

Therefore, in this paper we present a new packet scheduling algorithm, named DAT, for access

points (APs) in a crowded 802.11 WLAN. Our goal is to improve the performance of efficiency

(measured by packet response time or throughput) and fairness which often conflict with each

other. To meet this goal, our solution is to aggregate and balance both performance metrics

by enabling an AP to automatically adjust time windows for serving each active WLAN client.

Specifically, our algorithm leverages the knowledge of the observed traffic to dynamically shift

the weight between efficiency and fairness and strikes to improve the preferred performance

metric without excessively degrading the other one. A valid queuing model is designed in

this work to evaluate the performance of our new scheduling algorithm. Trace-driven simu-

lations demonstrate that the proposed algorithm successfully balances the trade off between

efficiency and fairness in crowded WLANs.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the population of wireless LAN (WLAN)

clients who carry WiFi-enabled devices has increasedly ex-

ploded. To tackle such a population explosion, WLANs have

been densely deployed to provide the last mile delivery of

Internet access to mobile clients. For example, wigle.net has

reported more than 33 million observed WiFi networks. Sky-

Hook, a WiFi-based localization service, has claimed to have

“tens of millions” access points (APs) in its database. With

the dense deployment of WiFi infrastructure and the evo-

lution of 802.11 family, WLANs keep playing an extremely
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important role in serving mobile clients. When more and

more people carry WiFi-enabled devices, such as laptop,

smartphone, and iPad, WLANs are often crowded, especially

at particular locations with special events, e.g., a meeting

room for a large conference or a stadium hosting a sports

game. Under a heavy traffic load, WLAN clients may en-

counter serious performance degradation due to channel

contention and interference.

This paper focuses on developing a new scheduling al-

gorithm for APs to improve the performance of a crowded

WLAN. Specifically, we focus on the packet scheduling of the

downlink traffic, i.e., from AP to clients, as it carries the ma-

jority of data. Typically, an AP applies the First-In-First-Out

(FIFO) scheduling discipline, i.e., the first packet arriving from

Internet will be first sent via the wireless channel. FIFO strat-

egy works well under light traffic load, where each down-

link packet can be immediately sent to a client with little
ithm for access points in crowded WLANs, Ad Hoc Networks
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delay at the AP. However, when the traffic load becomes

heavy, downlink packets cannot be delivered right after ar-

rivals at APs. Instead, each AP maintains a queue to buffer

the incoming packets from the Internet. Every packet in the

queue has different attributes such as packet size and trans-

mitting rate (according to the destination client). The simple

FIFO policy, however, ignores all these characteristics and can

barely yield the optimal performance. For example, when the

AP delivers a packet with low transmitting rate, the response

times of all other packets waiting in the queue are increased

by the transmission time.

To address the above issue, we design a new AP schedul-

ing algorithm which selects the next to-be-delivered packet

under the consideration of two metrics, link efficiency mea-

sured by throughput and fairness among all the clients. When

an AP serves multiple clients, the wireless link qualities be-

tween each client and the AP are different. In order to im-

prove efficiency, the AP prefers to first send the packets

through fastest links. However, other clients with slow links

may suffer from starvation, which thus causes non-negligible

unfairness. Therefore, we propose a new scheduling scheme,

named DAT, that dynamically adjusts the time windows al-

located to each client with the goal of achieving the balance

between efficiency and fairness.

Our basic idea is to combine Round-Robin, which achieves

the best fairness, with an adaptive time window for service.

The AP rotates among all active clients and delivers the pack-

ets in the buffer for them one after another. Each client is

assigned a time window for serving its packets, i.e., during a

given time window, the AP continuously sends the packets to

a particular client. DAT scheme dynamically adjusts the time

window for each client according to the observed efficiency

and fairness values. Our goal is to aggregate these two met-

rics and balance the performance of them. We build a queu-

ing model that captures behaviors of WLAN clients and the

AP for performance evaluation. Comprehensive trace-driven

simulations are then conducted to evaluate the proposed

scheduling algorithm and compare to two classic policies.

The simulation results show that our algorithm is achieving

a well balance between efficiency and fairness.

The rest of this paper is organized as follows. Section 2

summarizes the prior work and Section 3 presents our new

scheduling algorithm. In Section 4, we introduce the queuing

model for evaluation. The simulation results are reported in

Section 5. Finally, we conclude in Section 6.

2. Related work

Throughput and fairness are traditional metrics for net-

work packet scheduling. They have also been well studied in

the WLANs’ literature. One direction particularly works on

the TCP flows [1–5]. The key problem is to handle head-of-

line blocking and the competition between TCP data packets

and TCP ACKs, especially when considering the channel er-

rors. While this paper focuses on the MAC layer scheduling,

the prior work on TCP flows can certainly be combined with

our solution to form a cross-layer scheduling scheme.

Another direction in the prior work is to improve through-

put and fairness by managing the whole WLAN such as

strategically associating clients with APs [6–11], assigning

channels to APs [12–14], or hybrid approaches [15]. The
Please cite this article as: Y. Yao et al., A new packet scheduling algor
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default association in practice is to let a client associate with

the closest AP (with the strongest signal strength). This sim-

ple policy is not optimal from the perspective of managing

a WiFi network consisting of multiple APs. Similarly, the de-

fault channel selection of each AP is arbitrary lacking consid-

eration of interference with nearby APs. Most of these prior

work requires a central control and coordination among APs.

They are also complementary to our work in this paper which

handles the packet level scheduling on a single AP. Addition-

ally, AP scheduling for saving power consumption has also

been well studied in the literature [16–20]. Their goal is to

tune AP scheduling such that clients associated with the AP

can stay in the power saving mode as long as possible. This

paper targets on the scheduling on a busy AP in a crowded

WiFi network, where the power saving mode is not enabled.

Furthermore, some previous work [21,22] proposed to

achieve time-based fairness in WLANs via rate adaptation

with modifications on 802.11 standards. Their solutions focus

on the rate adaptation algorithms and require modifications

on 802.11 standards. Our work targets on MAC layer schedul-

ing and we consider the fairness of throughput. Finally,

wireless packet scheduling is often studied to provide QoS

represented by the IEEE 802.11e standard [23]. In 802.11e,

high priority traffic is given shorter delay-related parameters

such as contention window (CW) and arbitration inter-frame

space (AIFS) so that it has better chance to be sent than low

priority traffic. Our scheduler proposed in this paper is also

complementary to QoS provision scheme. While 802.11e dis-

tinguishes traffics with different priorities, our scheme can

be used to schedule the traffics with the same priority.

3. New AP scheduling algorithm: DAT

In this section, we present our solution DAT, which dy-

namically adjusts the time window occupied by each client

to improve performance. We first introduce the system

model and problem formulation, and then we describe the

algorithm details.

3.1. System model and overview

We consider that an access point (AP) serves n clients,

{c1, c2, . . . , cn}, in a crowded wireless LAN. We assume that

clients are ordered based on their effective downlink rates,

considering the MAC layer transmitting rates, acknowledg-

ment, retransmission, and other per-packet overheads. It fol-

lows that client c1 has the slowest link to the AP and cn is

connected with the fastest link. When the AP is over-loaded,

the downlink packets may be buffered in a queue at the AP

before being sent out. Normally, the queue has a capacity

limit indicated by a maximum number of packets that can be

held in the buffer. Later in Section 5, we show the evaluation

under infinite queue capacity as well.

In this paper, we consider two metrics as the perfor-

mance objective of an AP scheduling algorithm: efficiency

and fairness. The first metric (i.e., efficiency) is measured by

the packet response time or alternatively by the throughput.

The second metric (i.e., fairness) is measured by Jain’s fair-

ness index [24]. Despite that both metrics are critical in the

scheduler evaluation, it is often difficult to improve them si-

multaneously under a particular AP scheduling policy. For
ithm for access points in crowded WLANs, Ad Hoc Networks
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example, one can use Round Robin (RR) to achieve the best

fairness. By rotating among all active clients, RR always de-

livers one packet for each client in a round. This policy can

certainly avoid starvation, but the efficiency under RR is

very poor. In contrast, the other extreme of scheduling (e.g.,

MaxTP) is to always give higher priority to fast links, i.e.,

keep sending the available packets to a client which has the

highest downlink rate. As a result, the optimal efficiency in

terms of packet throughput or packet transmit delay time is

achieved under MaxTP while poor fairness often becomes a

big problem under this policy because it unfairly treats the

clients with slow downlink rates.

How to balance the trade-off between efficiency and fair-

ness is imminently important and challenging in the AP

scheduler design. In this paper, we propose a new scheduling

algorithm, named DAT, which takes into account both perfor-

mance metrics (i.e., efficiency and fairness) in the scheduling

of downlink packets at the AP and strikes to obtain the fair-

ness and the efficiency close to the optimal results provided

by RR and MaxTP, respectively.

Although this paper targets on the scheduling algorithm

for a single AP, the solution is also applicable to the practical

environment with multiple APs. For the APs that are config-

ured with different wireless channels, their scheduling de-

cisions are individually made and the data communication

with their clients do not conflict with each other. For the

APs whose communication channels are the same or over-

lapped, their concurrent wireless signals will cause interfer-

ence if they are within each other’s communication range.

According to WiFI’s distributed coordination function, each

of the contenting APs has the equal opportunity to occupy

the channel. Thus, the solution in this paper can be applied

by each AP to manage the effective channel time obtained by

the AP. In fact, each client’s downlink traffic has the same

probability to be affected by the interference caused by other

nearby APs. Therefore, our solution can achieve the same ob-

jectives for efficiency and fairness when deployed on multi-

ple APs.

3.2. Algorithm description

Our new algorithm adopts the basic idea of Round Robin

by rotating clients to serve. However, we assign different ser-

vice times to each client. Specifically, the AP selects a client

c to serve and allocates a time window to delivery client c’s

packets. That is, the AP keeps sending the packets for client c

till the assigned time window is elapsed or there is no more

packets available for client c. Then, the AP selects another

client and starts delivering its packets. Different from the RR

scheme, the duration of the time window for each client is

dynamically adjusted across time by considering the trade-

off between efficiency and fairness.

Let w denote the minimum time slice (finest granular-

ity), e.g., w = 0.01 s. We then consider that the AP selects a

window size from a set of k discrete values {1w, 2w, 3w, ...,

kw} to deliver a client’s packets. In our DAT scheme, the AP

chooses the best window size for each client from these k

values based on the following two target functions.

• “Relative Efficiency” function: This function expresses the

relative efficiency gain for a particular choice of the win-
Please cite this article as: Y. Yao et al., A new packet scheduling algor

(2015), http://dx.doi.org/10.1016/j.adhoc.2015.06.001
dow size. Intuitively, if efficiency is the only concern, then

a good policy (e.g., MaxTP) should always consider large

windows for clients with fast link rates in order to empty

the AP’s buffer as soon as possible, resulting in short

packet response times, high system throughput and high

system availability. To characterize the effect of the win-

dow size i · w, we define the Relative Efficiency function as

follows:

αi = i · w · Ratec − Rate

PackSize
, ∀i ∈ [1, k], (1)

where Ratec represents the link rate of the selected client

c, Rate represents the average link rate of all the remain-

ing active clients that have packets in the AP buffer, and

PackSize is the mean size of the packets. A higher value

of αi indicates more packets expelled from the queue,

thus a better efficiency is achieved. Based on Eq. (1), if

Ratec > Rate, then the AP prefers to allocate a large win-

dow (or the largest window if αi is the only metric) to

client c . Otherwise, if αi becomes negative, the AP would

reduce the window size as much as possible. We remark

that αi provides a good indication of efficiency that the

policy can achieve when the AP assigns a particular time

window to a client.

• “Expected Fairness” function: Our second target function is

designed to quantify the fairness. As mentioned earlier,

we use Jain’s fairness index [24] as the metric to measure

the fairness of a given scheduling policy. Eq. (2) gives the

definition of Jain’s fairness index I:

I =
(∑n

j=1 TP j

)2

n · ∑n
j=1 TP j

2
, (2)

where n is the number of active clients and TP j represents

the throughput of client j in a predefined time period. The

range of I is between 0 and 1, and a higher value of I in-

dicates a better fairness. The main goal of our second tar-

get function, named Expected Fairness, is to estimate the

packet throughput among all active clients and thus ex-

press the performance of fairness. To accomplish it, DAT

on-line tracks each client’s throughput in the past moni-

toring window t and uses this information to decide the

duration of the time window for the current client. The

intuition is that if the client has already received a higher

throughput in the previous monitoring window, then a

smaller time window should be chosen for that particu-

lar client in the next round, and vice versa. Note that the

size of monitoring window t is a user-specific parameter

and we will describe its setting in Section 5.

Given a client c and a candidate time window i · w, we

have the following equations to calculate the expected

throughput for all n clients if DAT decides to send the

packets to client c during the i · w time period:

TP j =

⎧⎪⎨
⎪⎩

S j

t + i · w
, for j �= c,

Sc + s

t + i · w
, for j = c,

(3)

where Sj represents the total amount of data transmit-

ted to client j during the previous monitoring window t,

and s equals to the estimated amount of data that can be
ithm for access points in crowded WLANs, Ad Hoc Networks
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Algorithm 1 DAT scheduling algorithm.

1: while number of active clients n > 0 do

2: Choose an active client c based on round-robin rotation

and set current time as t0;

3: for i = 1 to k do

4: calculate αi using Eq. (1);

5: calculate βi using Eq. (4);

6: end for

7: P′ ← 0, i′ ← 0;

8: for i = 1 to k do

9: scale αi and βi to range [0,1] by 0–1 scaling method;

10: calculate Pi using Eq.˜(??);

11: if Pi > P′ then

12: P′ ← Pi and i′ ← i;

13: end if

14: end for

15: Assign window size i′ · w to client c;

16: while current time t < t0 + i′ · w and number of pack-

ets from client c > 0 do

17: send a packet to client c;

18: update history information Sc, ̂Sum, and ̂Sum2;

19: end while

20: end while
transmitted to client c within the i · w time window, i.e.,

s = Ratec · i · w. Let ̂Sum = ∑n
j=1 S j and ̂Sum2 = ∑n

j=1 S j
2.

We then express the Expected Fairness target function as

follows:

βi = (s + ̂Sum)2

n(̂Sum2 + 2 · s · Sc + s2)
. (4)

Given the above two target functions, DAT further uses

the 0-1 scaling technique to scale αi and β i for all k candidate

time windows (i.e., 1 ≤ i ≤ k) as follows.

α′
i = αi − αmin

αmax − αmin

. (5)

β ′
i = βi − βmin

βmax − βmin

. (6)

Then, DAT selects the best window size for the current client

based on the following equation:

Pi = w1 · α′
i + w2 · β ′

i , (7)

where w1 and w2 are the user-defined weights for αi and

β i, respectively. We expect that higher Pi will achieve bet-

ter efficiency/fairness balance. Therefore, the time window

which can get the highest value of Pi will then be assigned

to the current client. The major steps of DAT are presented in

Algorithm 1.

The mainframe of Algorithm 1 is a round-robin process,

where a client c is selected to be served by the AP. The first

loop (lines 3–6) enumerates all possible window size (i · w)

for c and calculates the corresponding values of relative ef-

ficiency and expected fairness, i.e., αi and β i. In the second

loop (lines 8–14), the algorithm normalizes αi and β i into

the range of [0,1], and then uses the aggregate utility func-

tion Eq. 7 to pick the optimal window size. Variables P′ and i′

record the current optimal value of the utility function and

the corresponding window size yielding it. As we periodi-

cally choose the optimal window size that maximizes utility

function based on current system information, DAT cannot

be guaranteed to be optimal for a long time without a prior

knowledge of future traffic. Moreover, DAT is not optimal for

both efficiency and fairness. Instead, our design strikes to

achieve a good balance between these two metrics as shown

in Eq. (7).
MAP1

MAPi

...
...

Q0

clients

Shared Channel

requestreply

request

request

reply to clients

reply
1−p

p

Re

MAPn

Q1 (FIFO)

Fig. 1. A queuing model of the sin
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4. Simulation model

In this section, we present a queuing model built for

scheduling evaluation. We consider the circumstance where

requests from multiple clients and the corresponding reply

packets from the AP are all sent through the same wireless

channel. Fig. 1 illustrates the model that captures the be-

havior observed in the single AP situation and evaluates the

performance of different scheduling algorithms under heavy

load conditions.

In this model, an infinite queue (Q0) with n servers is used

to emulate the activity of n clients in the system, where each

server represents a single client, independently sending re-

quests to the AP. We model the request inter-arrival times

as a Markovian arrival process (MAP) [25] for each server in

Q0 such that each client can have different arrival rates and

different arrival distributions. The specifications of each re-

quest include request arrival times, request sizes in bytes,
µ1

µ2

. .
 .

Q2

mote Servers

µ r

AP Buffer

Q3

reply reply

...
...

gle AP wireless network.

ithm for access points in crowded WLANs, Ad Hoc Networks
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client index, and effective uplink/downlink rates. All requests

generated by Q0 are then enqueued to the queue Q1, wait-

ing for the transmission in the shared wireless channel. That

is, Q1 is adopted to emulate all transmissions from/to the AP

through a shared wireless channel. We remark that in the real

wireless network, clients usually trigger a retry mechanism

if there are simultaneous contentions for the shared channel.

Since our focus is on AP’s scheduling for downlink packets,

we here simply ignore such a retry mechanism and instead

transmit these requests in the order of their arrival times us-

ing the FIFO discipline at channel queue Q1.

We further introduce a delay center Q2 to model the pro-

cessing times at remote servers, which process a received

client request with a fixed time 1/μi and then send the cor-

responding reply data back to the AP. As transmitted packets

usually have a limited size, e.g. 1.5 K bytes, if a reply data set

is larger than that particular limit, then the original one will

be partitioned into several packets and transmitted at the

packet level. It follows that instead of having one to one rela-

tionship between requests and reply packets, remote servers

in the delay center Q2 might generate m reply packets for

each arrived request, where m is determined by the original

reply data size and the size limit.

The reply packets received from the remote servers are

then queued in the corresponding client buffer in the AP,

shown as Q3 in Fig. 1, waiting for the service or transmission

at the shared channel Q1. When detecting no reply packet

waiting or serving at Q1, the AP chooses a reply packet from

the buffer and enqueues it to Q1 immediately. The selection

of the next reply packet to be transmitted is done accord-

ing to different scheduling disciplines. For example, if the

MaxTP policy is considered, then the AP buffer can be imple-

mented as a priority queue based on transmitting rates. Con-

sequently, the AP always selects a reply packet with fastest

downlink rates. In real wireless networks, the transmitted

reply packets might trigger one or several client requests af-

ter some delay time. We capture this behavior by adding a

branch probability for reply packets at Q1: with probability

p a completed packet at Q1 is simply forwarded to its asso-

ciated client and with probability 1 − p, a batch of client re-

quests (≥ 1) are sent back to the channel queue.

5. Performance evaluation

In this section, we conduct trace-driven simulations to il-

lustrate the effectiveness of our new scheduling algorithm.

We also compare the performance of DAT with respect to ef-

ficiency and fairness with the other two classic policies, RR

and MaxTP.

5.1. Evaluation settings

We conduct the simulations under the following three

scenarios.

• Base case: The requests from each client follow a random

arrival pattern with the same mean request arrival rate.

• Burst case: In this case, we choose the top two fastest

clients and introduce idle and bursty periods in their re-

quest arrivals. The requests from other clients are the

same as in the base case.
Please cite this article as: Y. Yao et al., A new packet scheduling algor
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• Uneven case: In this case, we set the request rates of the

top two fastest clients to be five times higher than those

of the remaining clients.

Therefore, request inter-arrival times for each client are

drawn from a Markovian arrival process (MAP), which has

the ability of providing mean and variability at different lev-

els as well as different bursiness profiles. We also use the

trace from SIGCOMM 2008 [26] for generating requests and

reply packets. In this trace, the mean size of requests is 322

bytes and the mean size of reply packets is 1004 bytes.

Default parameters: In our default setting, there are totally

n = 20 clients. Each client has the fixed uplink and down-

link rates throughout the whole simulation, and the link

rate ranges from 100 KB to 1 MB. Without loss of general-

ity, clients with larger index have faster link rates, such that

client 20 has the highest uplink and downlink rates among all

clients. By default, we set the minimum time slice w = 0.01 s,

the number of candidate window sizes k = 10 and the branch

probability p = 1. The user-specific parameters are set as fol-

lows: t = 0.5 s (size of the monitoring window), w1 = 1 and

w2 = 2 (weights in Eq. (7)). Sensitivity analysis with varying

parameters will be presented in Section 5.3.

For each trace set, we further consider both infinite buffer

size situation and finite buffer size situation when measur-

ing performance. With the setting of infinite buffer size, we

measure the average response time for efficiency and average

Jain’s index for fairness. When considering finite buffer size,

we additionally measure the number of dropped packets and

the corresponding drop ratios.

Fairness measurement: In our simulation, the fairness in-

dex is measured across time within a 0.25-s time window.

We also tried other time window lengths (e.g., 0.5 s, 1 s),

which generate qualitatively the similar results. In each time

window, we only consider the active clients for calculating

the fairness index. We define a client to be active in a certain

time window if it has sent requests during this time window

or if it has a pending request (sent in past time windows)

that has not been replied yet. In addition, we ignore the time

windows with no active clients or only one active client since

there is no fairness issue in such a situation.

Scale rate: The efficiency and fairness are two possibly

conflicting metrics defined in different domains. In this work,

we compare DAT to the optimal solution for each individual

metric and try to strike a good balance between the two met-

rics. To clearly illustrate how DAT algorithm achieves the bal-

ance between efficiency and fairness, we further present the

relative scale rate using the 0–1 scaling technique as follows:

among all the polices (e.g., RR, DAT and MaxTP), we scale the

best performance to 1 and the worst performance to 0 and

then normalize our DAT’s performance between 0 and 1, see

Eq. (8).

Scale rate = |DAT − Worst|
|Best − Worst| . (8)

Therefore, a larger-than-0.5 relative scale rate indicates that

DAT performs closely to the best policy, e.g., with shorter re-

sponse time or larger fairness index. If the relative scale rate

is smaller than 0.5, then it implies the opposite. If the val-

ues with respect to both response time and fairness index

are greater than 0.5, then we think that our DAT algorithm
ithm for access points in crowded WLANs, Ad Hoc Networks
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Table 1

Performance under base case, numbers in parentheses are scale rates.

Scenario Metrics Policies

RR DAT DAT DAT MaxTP

(w1=1, w2=2) (w1=1,w2=1) (w1=2,w2=1)

InfiniteBuffer RespTime(s) 2.301 1.135 (0.82) 1.041 (0.89) 0.984 (0.93) 0.885

FairIndex 0.766 0.626 (0.56) 0.604 (0.49) 0.586 (0.43) 0.450

FiniteBuffer RespTime(s) 0.866 0.714 (0.69) 0.691 (0.80) 0.678 (0.86) 0.647

FairIndex 0.758 0.641 (0.70) 0.587 (0.56) 0.556 (0.48) 0.369

DropRatio(%) 2.010 1.012 (0.81) 0.921 (0.88) 0.872 (0.92) 0.773
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Fig. 2. Average response times of each client for RR, MaxTP, and DAT with

k = 10 under the base case and infinite buffer size scenario.
obtains a well balance between the efficiency and the fair-

ness.

5.2. Performance improvement

5.2.1. Base case

In this case, each client’s request inter-arrival times

are generated independently through a 2-state Markovian-

Modulated Poisson Process (MMPP), which is a special case

of the Markovian Arrival Process (MAP) [25]. The details of

MMPP used in our simulations are presented in Appendix A.

We stress that distributions of modern network traffic, such

as packet and connection arrivals are no longer Poisson dis-

tributed [27]. Therefore, we introduce heavy-tailed WLAN

packet arrival processes in our base case where the mean

request arrival rate of each client ci is set to λi = 1.5 s−1 ,

and the squared coefficient of variation (SCV) of inter-arrival

times is equal to 5. We also investigate the impact of the

weight settings of w1 and w2 in Eq. (7).

The simulation results under different scheduling policies

are shown in Table 1 with infinite and finite buffer size (max-

imum 800 packets in the buffer), respectively. The numbers

in parentheses are the relative scale rates of DAT. For DAT,

the weights configuration can help adjust the trade-off be-

tween efficiency and fairness. Higher weight of Relative Ef-

ficiency function yields better response times, i.e., response

times close to MaxTP when configure w1 = 2 and w2 = 1.

While higher weight of Expected Fairness function gives bet-

ter fairness among clients. As we believe that a good trade-off

should bring both response time and fairness performance

close to the optimal value, best trade-off is achieved under

the configuration of w1 = 1 and w2 = 2 in this case. With

such setting, in both infinite buffer and finite buffer settings,

mean response times obtained by DAT algorithm are close to

MaxTP while mean fairness indexes are close to RR. For ex-

ample, compared to RR, when using infinite buffer, DAT im-

proves the efficiency (e.g., response time) by 50%yet only de-

grades the fairness by 18% . The corresponding scale rates in

terms of response time and fairness index are both more than

0.5. Especially, when we have a finite AP buffer, all perfor-

mance metrics (i.e., efficiency, fairness and drop ratio) under

DAT are close to the best ones, where drop ratio is defined

as the percentage of packets which are dropped (or rejected)

when the AP buffer is full. The optimal weight configurations

may change under different traces. We only show the results

under default weights configuration, i.e., w1 = 1, w2 = 2 in

the following experiments due to the lack of space. As shown

in the results, DAT can strike good balance between efficiency

and fairness for most of the cases under the default setting.
Please cite this article as: Y. Yao et al., A new packet scheduling algor
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Fig. 2 illustrates the average packet response time of each

client under different polices. It is clear that all clients have

similar performance despite of their link rates under RR pol-

icy. On the other hand, the MaxTP algorithm dramatically

sacrifices the performance of the client with the lowest link

rate, i.e., client 1. DAT balances the performance and fairness

between clients by rendering performances related to client

link rates.

To better understand how DAT dynamically adjusts the

window size for different clients, Fig. 3(a) presents the selec-

tion of clients as well as window sizes when we have infinite

buffer size and k = 10. The solid line represents the rotation

among active clients (i.e., from c1 to c20) and the dashed line

shows the time window size (i.e., i from 1 to 10) that DAT

chooses for the corresponding client. We observe that dur-

ing most time periods, DAT attempts to assign large window

sizes to fast clients (i.e., with large client index) for improv-

ing the efficiency. Yet, after going through several such time

periods, when DAT finds that the fairness is seriously de-

graded, it instead allocates short time windows to fast clients

to improve the fairness. Fig. 3(b) further illustrates the per-

formance comparison with respect to Jain’s fairness index

among the three scheduling policies. We observe that the RR

policy achieves the best fairness such that its fairness index

is always around 1.0. While, our DAT policy keeps the fairness

between RR and MaxTP in most of the time.

To further study the distributions of response times and

fairness indexes, we plot the cumulative distribution func-

tions (CDFs) of these two performance metrics in Fig. 4.
ithm for access points in crowded WLANs, Ad Hoc Networks
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Fig. 3. Illustrating (a) the chosen client index and the corresponding time window size across time, and (b) the fairness index across time for RR, MaxTP, and

DAT, where k = 10 and buffer size is infinite under base case.
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Fig. 5. Illustrating (a) the request arrival trace and (b) the autocorrelation of the trace of a bursty client.

Table 2

Performance under bursty case, numbers in parentheses are scale rates.

Scenario Metrics Policies

RR DAT MaxTP

InfiniteBuffer RespTime(s) 5.921 4.594 (0.27) 1.052

RespTime∗(s) 1.490 0.849 (1.00) 1.152

FairIndex 0.759 0.662 (0.72) 0.417

FiniteBuffer RespTime(s) 0.737 0.623 (0.95) 0.617

RespTime∗(s) 0.658 0.538 (1.00) 0.662

FairIndex 0.750 0.675 (0.69) 0.507

DropRatio(%) 3.329 2.866 (0.28) 1.682
According to the CDFs of fairness index and response time per

packet, it is apparent that the DAT policy achieves the fair-

ness close to RR and the efficiency close to MaxTP across all

packets. The minimum fairness index under DAT is about 0.3,

which is close to the minimum one under RR, while the min-

imum index in MaxTP is less than 0.1 indicating that most

clients are starved during that time period, see Fig. 4(a). More

importantly, about 70% of packets under DAT experience sim-

ilar response times as those under MaxTP, see Fig. 4(b).

5.2.2. Bursty case

In our burst case workload, the mean request arrival rate

of each client is the same as in the base case. Yet, a bursty

access pattern is introduced into the arrivals of two clients

with fastest link rates, i.e., client 19 and 20, such that the SCV

of their inter-arrival times is equal to 20 and the autocorre-

lation function (ACF) at lag 1 is equal to 0.47. Therefore, high

variability and strong burstiness are injected to the workload

of these two clients. Fig. 5 illustrates the arrival rates (i.e., the
Please cite this article as: Y. Yao et al., A new packet scheduling algor
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number of arrivals per second) and the ACF at different lags

of a bursty client.

As shown in Table 2, all three policies encounter signifi-

cant performance degradation in terms of response time and

drop ratio (when the AP buffer is finite). The efficiency of DAT

seems not as good as we observed in the base case. The rela-
ithm for access points in crowded WLANs, Ad Hoc Networks
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Fig. 6. Average response times of each client for RR, MaxTP, and DAT with

k = 10 under the bursty case and infinite buffer size scenario.

Table 3

Performance under uneven case, numbers in parentheses are scale rates.

Scenario Metrics Policies

RR DAT MaxTP

InfiniteBuffer RespTime(s) 1.118 0.500 (0.74) 0.287

FairIndex 0.729 0.625 (0.58) 0.480

FiniteBuffer RespTime(s) 0.476 0.360 (0.62) 0.289

FairIndex 0.725 0.650 (0.61) 0.535

DropRatio(%) 1.091 0.425 (0.68) 0.108
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Fig. 7. Average response times of each client for RR, MaxTP, and DAT with

k = 10 under the uneven case and infinite buffer size scenario.
tive improvement of average response time is only 22% com-

pared to RR. However, if we examine the average response

times of those clients without bursty patterns, i.e., client 1–

18, then the average response times of both RR and DAT de-

crease while the average response time of MaxTP on the con-

trary increases, see the numbers of Resp∗ in Table 2. Conse-

quently, DAT becomes the most efficient policy for those non-

bursty clients.

Since the bursty patterns are injected into the arrivals of

the top two fastest clients, MaxTP achieves good efficiency

by giving them high priority, but on the other hand, sacri-

fices the performance of other clients, resulting in extremely

serious unfairness. Fig. 6 further demonstrates such unfair-

ness under MaxTP where it always degrades the performance

of clients which have slow link rates. On the other hand, RR

and DAT punish only the clients that are responsible for the

network congestion, i.e., clients with bursty workloads, and

leave other clients unaffected.

Another interesting point in this case is that the mean

fairness index value of MaxTP is counter-intuitively better

than that in the base case, increasing from 0.369 to 0.507

when the AP buffer is finite, see Tables 1 and 2. In fact, this

is caused by the property of Jain’s fairness index, which is

sensitive to the number of active clients. For example, con-

sidering there are now only two active clients, even under

the extreme scenario where one client is starved during the

whole period, the index value will be equal to 0.5 which is

still relatively good. In the bursty case, the AP also experi-

ences more idle periods where the number of active clients

is small. In such an idle time period, the difference of fairness

index values among the three policies is thus reduced.

5.2.3. Uneven case

Now, we turn to investigate different request arrival rates.

In order to keep the overall request arrival rate similar as

the previous two cases, we scale the arrival rates of selected

clients (e.g., 19, 20) to 6 s−1 and decrease the rates of other

clients (e.g., 1–18) to 1.2 s−1. In addition, the SCV of all re-

quest arrival traces is equal to 5 and no clients have bursty

patterns in their arrival flows. The results shown in Table 3

validate that our DAT policy works well in this case, consis-
Please cite this article as: Y. Yao et al., A new packet scheduling algor
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tently achieving a good balance between efficiency and fair-

ness.

Fig. 7 further presents the average response time of each

client’s reply packets. Recall that in our evaluation setting,

the link rate linearly increases as the client index increases

and clients with larger index always have faster link rates.

Thus, we can clearly observe that MaxTP always degrades

the performance of one or two clients with slowest link rates.

While under RR, clients which are responsible for the buffer

congestion suffer significant performance degradation and

the other clients have almost the same response times de-

spite of their varying link rates. We also observe that our DAT

policy always punishes the clients that cause the buffer con-

gestion in order to improve the efficiency of other clients. On

the other hand, DAT strikes to give clients with faster link

rates better performance, which fortunately is not too ag-

gressive to degrade the fairness as MaxTP does.

5.3. Sensitivity analysis

Till now, only fixed configurations of the network, i.e.,

buffer size, population, and branch probability p were tested

in the experiments, see Section 5.2. To evaluate the robust-

ness of our algorithm, we investigate the robustness of DAT’s

performance to a variety of different experiment parameters.

5.3.1. Sensitivity to buffer size

We first focus on investigating the impact of different AP

buffer sizes on various AP scheduling algorithms. Recall that

both infinite and finite buffer size situations were considered

in the previous simulations. Yet, due to physical space limi-

tations in real WLANs, the AP always has a finite amount of
ithm for access points in crowded WLANs, Ad Hoc Networks
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Table 4

Sensitivity analysis to buffer size, client population and branch probability under the base case, where the numbers in parentheses

are the relative scale rates over RR and MaxTP.

Buffer size

200 400 800

RR DAT MaxTP RR DAT MaxTP RR DAT MaxTP

RespTime 0.303 0.277(0.62) 0.261 0.530 0.470(0.60) 0.430 0.866 0.714(0.69) 0.647

FairIndex 0.701 0.662(0.71) 0.540 0.723 0.665(0.74) 0.501 0.748 0.640(0.70) 0.369

DropRatio 7.351 5.312(0.98) 5.265 3.789 2.256(0.98) 2.222 2.010 1.012(0.81) 0.773

Number of clients

20 40 80

RR DAT MaxTP RR DAT MaxTP RR DAT MaxTP

RespTime 0.530 0.470(0.60) 0.430 0.587 0.534(0.54) 0.488 0.478 0.413(0.63) 0.375

FairIndex 0.723 0.665(0.74) 0.501 0.724 0.644(0.61) 0.520 0.710 0.623(0.68) 0.435

DropRatio 3.789 2.256(0.98) 2.222 1.664 1.258(0.91) 1.220 0.705 0.452(0.88) 0.418

Branch probability

1.0 0.8 0.6

RR DAT MaxTP RR DAT MaxTP RR DAT MaxTP

RespTime 0.530 0.470(0.60) 0.430 0.734 0.683(0.57) 0.645 0.938 0.905(0.83) 0.898

FairIndex 0.723 0.665(0.74) 0.501 0.747 0.684(0.80) 0.426 0.785 0.699(0.77) 0.406

DropRatio 3.789 2.256(0.98) 2.222 8.522 6.561(0.74) 5.874 15.70 14.16(0.59) 13.10
buffer. It is important to take into account finite buffer ca-

pacity as well as the resultant packet drop ratio in the sched-

uler performance evaluation. Thus, we conduct experiments

with various AP buffer sizes but keep the other experiment

parameters the same as in the base case. The performance

metrics considered here include the average response time,

the fairness index, and the packet drop ratio due to the AP

finite capacity under three AP scheduling algorithms.

Table 4 shows the simulation results when the AP’s max-

imum capacity is set as 200, 400, and 800, see the “Buffer

Size” part. The relative scale rates over RR and MaxTP are also

shown in the parentheses in the table. We first observe that

under all the three policies the performance in terms of re-

sponse time improves as the AP buffer size decreases. Yet,

such a performance improvement incurs at the cost of in-

creasing packet drop ratio at the AP buffer. Meanwhile, we

observe that the performance in terms of fairness index un-

der RR and DAT is quite insensitive to various AP buffer sizes

while the MaxTP policy experiences a significant degrada-

tion in fairness when the AP buffer size increases. We in-

tegrate that when the AP has a larger buffer, more packets

from different clients are waiting in the AP buffer. As MaxTP

always gives high priority to the faster clients, it becomes

highly likely that clients with lower link rates are starved and

the fairness consequently becomes worse under the MaxTP

policy. More importantly, these results further verify that

our DAT policy successfully achieves a good balance between

fairness and efficiency under different buffer size conditions

such that DAT’s performance is close to RR in terms of fair-

ness and to MaxTP with respect to response time and drop

ratio.

5.3.2. Sensitivity to client population

Now we investigate the sensitivity of DAT to an increased

number of clients in a crowded WLAN. This is extremely im-

portant to understand the performance benefit of the new

technique as the WLAN becomes crowded under a large

client population. So, we conduct experiments with three
Please cite this article as: Y. Yao et al., A new packet scheduling algor
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different network populations, i.e., n = 20, n = 40 and n =
80, while keeping fixed the other parameters as the exper-

iment in the base case. In particular, in order to fix the same

system load in all experiments, we scale each client’s request

arrival rate and set the link rates of all clients within the same

range. Therefore, the system utilization (i.e., the buffer busy

period over the whole time period) is kept around 75% un-

der different experiment configurations. In addition, the AP

buffer size is finite with the maximum capacity equal to 400.

The “Number of Clients” part in Table 4 shows the relative

scale rates of DAT compared to the RR and the MaxTP poli-

cies when we have different numbers of clients in the WLAN.

Obviously, the relative scale rates with related to all the three

performance metrics (e.g., response time, fairness index and

drop ratio) are consistently more than 0.5. These results indi-

cate that our DAT policy always performs closely to the best

one and thus well balances the trade-off between efficiency

and fairness under different population situations.

5.3.3. Sensitivity to branch probability

In real wireless networks, a transmitted reply packet

might trigger one or several client requests after a short think

time. We capture this behavior in our simulation model by a

branch probability p for reply packets at Q1, see Fig. 1. With

probability 1 − p, a batch of client requests (≥ 1) are sent

back to the channel queue. In all the previous experiments,

we set p = 1, i.e., no client requests are triggered upon a re-

ply packet transmission. We now evaluate a network with

various branch probabilities while keeping all the other ex-

periment parameters the same as the base case. In addition,

the AP buffer size is set to 400 and the client population is

n = 20.

Table 4 illustrates the simulation results under the three

scheduling policies when the branch probability is p = 1.0,

p = 0.8 and p = 0.6, see the “Branch Probability” part. As

p decreases, it becomes more likely for a transmitted re-

ply packet to trigger client requests and thus inject addi-

tional interactive traffic load into the network. As a result,
ithm for access points in crowded WLANs, Ad Hoc Networks
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Table 5

Computation cost of our DAT algorithm with varying n

(number of clients) and k (number of candidate win-

dow size).

k = 5 k = 10 k = 20

n = 5 1.438 ms 2.546 ms 4.804 ms

n = 10 1.646 ms 2.732 ms 5.014 ms

n = 20 2.070 ms 3.194 ms 5.470 ms
non-negligible performance degradations of response time

and drop ratio are observed under the three policies. While,

our DAT policy consistently achieves the performance closer

to the best one, i.e., the relative scale rate is greater than 0.5,

across different branch probabilities.

5.4. CPU computation

Finally, we evaluate the computation cost of our proposed

scheme. We implement the core algorithm of DAT in a popu-

lar commercial wireless router, Linksys WRT54GL. The router

is equipped with a 200 MHz CPU, 16 Mb RAM, and running

DD-WRT firmware [28]. Our codes are written in C language

and cross compiled by the DD-WRT toolchains for MIPS ar-

chitecture. The resulting binary code is 7.6K bytes. We exe-

cute the algorithm with a varying number of clients (n) and

candidate window sizes (k). The actual computational costs

(in ms) are shown in Table 5.

First, we observe that the computation cost is almost pro-

portional to both n and k. However, k appears to be a more

dominating factor because it determines the number of iter-

ations in the outer loop in our algorithm (see Algorithm 1).

Second, in all the tested cases, the computation cost of our

algorithm is a small overhead for the router compared to the

window size allocated to each client, e.g., with our default

setting of k = 10 and n = 20, the execution time is less than

3.2 ms. Therefore, our algorithm is certainly feasible for real

implementation and deployment.

6. Conclusion and future work

When WLANs become more and more popular, they are

often crowded and the clients experience significant perfor-

mance degradation. This paper attempts to solve the issue by

designing a new packet scheduling algorithm on the heavily-

loaded APs. Our goal is to improve the efficiency, i.e., reduce

the packet response time and increase the throughput, and

the fairness, i.e., avoid starvation especially for clients with

poor link quality. We proposed a new scheduling algorithm

DAT where the AP applies the basic Round-Robin scheme to

select a client for service, but each client is allocated a dif-

ferent time window. We show that by dynamically adjust-

ing the window size, DAT can achieve the balance between

the efficiency and the fairness. The extensive experimenta-

tion carried out in this paper has revealed that the proposed

algorithm significantly improves the performance in terms of

efficiency and fairness in a crowded WLAN. Sensitivity analy-

sis to AP buffer size, number of clients, branch probability for

triggering new requests further proved that the gains of DAT

are visible in a variety of different conditions.
Please cite this article as: Y. Yao et al., A new packet scheduling algor
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Our future work mainly includes two directions. First, we

would like to implement the scheduling algorithm on com-

mercial wireless routers and conduct experiments for evalu-

ation. Second, we plan to explore a new algorithm as well as

a new model in a setting of multiple APs with possible coor-

dination.

Appendix A

In this paper, we use Markovian Arrival Process (MAP) to

express the arrival process to an AP in WLAN. MAPs, intro-

duced by Netus [29], can easily model general distributions

and non-renewable features such as autocorrelation of the

stochastic process.

As a special case of MAP, a 2-state Markovian-Modulated

Poisson Process (MMPP) is formally described by two 2 × 2

matrices, i.e., D0 and D1. Matrix D1 captures all transitions

that are associated with real events in the MAP while matrix

D0 only captures the transitions between states without sig-

nifying any real events. All off-diagonal entries of D0 and all

entries of D1 are non-negative.

As an example, Eqs. (9) and (10) describe the request

arrival processes with mean rate of 1.5 s−1. In particular,

the MMPP(2) shown in Eq. (9) represents an autocorrelated

stochastic process used in the bursty case while the MMPP(2)

shown in Eq. (10) represents an independent stochastic pro-

cess used in the base case.

D(S)
0

=
[ −10.00744527 0.007445268262

0.001207011869 −0.1232041617

]
,

D(S)
1

=
[

10 0

0 0.1219971498

]
. (9)

D(S)
0

=
[−13.61250000 3.612500000

0.6375000000 −0.637500000

]
,

D(S)
1

=
[

10 0

0 0

]
. (10)
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