
Cluster Comput
DOI 10.1007/s10586-015-0461-9

SLA-aware data migration in a shared hybrid storage cluster

Jianzhe Tai1 · Bo Sheng2 · Yi Yao1 · Ningfang Mi1

Received: 19 May 2014 / Revised: 4 February 2015 / Accepted: 14 May 2015
© Springer Science+Business Media New York 2015

Abstract Data volume in today’s world has been tremen-
dously increased. Large-scaled and diverse data sets are
raising new big challenges of storage, process, and query.
Particularly, real-time data analysis becomes more and more
frequently. Multi-tiered, hybrid storage architectures, which
provide a solid way to combine solid-state drives with hard
disk drives (HDDs), therefore become attractive in enter-
prise data centers for achieving high performance and large
capacity simultaneously. However, from service provider’s
perspective, how to efficiently manage all the data hosted in
data center in order to provide high quality of service (QoS)
is still a core and difficult problem. The modern enterprise
data centers often provide the shared storage resources to a
large variety of applications which might demand for differ-
ent service level agreements (SLAs). Furthermore, any user
query from a data-intensive application could easily trigger
a scan of a gigantic data set and inject a burst of disk I/Os
to the back-end storage system, which will eventually cause
disastrous performance degradation. Therefore, in the paper,
we present a new approach for automated data movement in
multi-tiered, hybrid storage clusters, which lively migrates
the data among different storage media devices, aiming to
support multiple SLAs for applications with dynamic work-

B Ningfang Mi
ningfang@ece.neu.edu

Jianzhe Tai
jtai@ece.neu.edu

Bo Sheng
shengbo@cs.umb.edu

Yi Yao
yyao@ece.neu.edu

1 Northeastern University, Boston, MA, USA

2 University of Massachusetts Boston, Boston, MA, USA

loads at the minimal cost. Detailed trace-driven simulations
show that this new approach significantly improves the over-
all performance, providing higher QoS for applications and
reducing the occurrence of SLAviolations. Sensitivity analy-
sis under different system environments further validates the
effectiveness and robustness of the approach.

Keywords Data migration · Resource allocation ·
Service level agreement (SLA) · Bursty workloads ·
Hybrid storage clusters

1 Introduction

The volume of data in today’s world has been tremendously
increased. For example, Facebook revealed that its system
each day processes 2.5 billion pieces of content and more
than 500TB of data, including 83million pictures. Being one
of the largest databases in the world, Google processes more
than 25PB of data per day. As more and more people use
different types of devices such as smartphones and laptops,
data comes from everywhere, including body sensors for col-
lecting medical data and GPS devices used to gather traffic
information. Suchmassive and diverse data setswill then lead
to challenging issues for system designers to address. One of
themost important issues is where to store these gigantic data
sets and how to make them accessible.

In 1990s, flash-based solid-state drives (SSDs) were first
introduced to maintain the data in the memory chips. Nowa-
days, SSDs have gained prominence in enterprise arrays and
successfully been used as a replacement of HDDs because of
significant performance improvement (e.g., high IOPS and
low latency) and low energy consumption. Yet, given the fact
that SSDs are more expensive per gigabyte (GB) and have a
limited number ofwrites over the life time, amulti-tiered stor-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-015-0461-9&domain=pdf

Cluster Comput

age platform, which combines SSDs with traditional HDDs
(e.g., FC/SAS and/or SATA), has become an industrial stan-
dard building block in an enterprise data center. Nevertheless,
how to best use a cluster of hybrid storage devices formanag-
ing massive data and providing high quality of service (QoS)
is still a core and difficult problem due to the following two
issues.

First, modern enterprise data centers often provide shared
storage resources to a large variety of applications which
might demand for different performance goals such that dif-
ferent service level agreements (SLAs) have to bemet. SLA is
used to specify the quality of services that a service provider
can offer to a customer. Usually, SLAs are in measurable
terms, which can have a wide range of metrics such as
throughput, availability, response times, etc.. In this paper,
we focus on a response time criteria that must be met. These
data centers need to be SLA aware in the management of
shared storage resources in order to achieve different perfor-
mance goals for applications. Second, an effective resource
manager needs to dynamically adjust its policy according to
different application workloads. In practice, workloads may
change over time. Bursty workloads and traffic surges are
often found in enterprise data centers; for example, a user
query from a data-intensive application might easily trigger
a scan of a gigantic data set and then bring a burst of disk
I/Os into the system. Bursty workloads inevitably cause dis-
astrous SLA violations, performance degradation and even
service unavailability.

To address the above issues, we present a new approach,
named LMsT, for automated data movement in multi-tiered,
hybrid storage clusters. LMsT attempts to lively migrate
the data across different storage tiers, aiming to guaran-
tee SLA requirements on response times of IO requests
for applications under dynamic workloads. We show that
LMsT can efficiently utilize high-performance devices (e.g.,
SSDs) to improve performance for applications which are
experiencing bursty traffic and more importantly to provide
performance guarantees for latency-sensitive applications
with strict SLAs. In detail, there are two phases in our new
scheme: the selection phase chooses a set of potential migra-
tion candidates; and the validation phase examines each
migration candidate, quantifies the benefits, and estimates
the risk of SLA violations. Based on two sets of migration
constraints, related to SLA and performance, LMsT dynami-
cally determinewhich data blocks should be migrated,where
to migrate the selected data blocks, andwhen to start a migra-
tion process.

The evaluation of LMsT is done via detailed trace-
driven simulations. Experimental results show that by mov-
ing bursty workloads (i.e., hot data) to high-performance
tiers (e.g., SSDs), our LMsT algorithm achieves signifi-
cant performance improvement, providing higher QoS for
applications under bursty workloads and reducing the occur-

Fig. 1 The structure of a multi-tiered storage system

rence of SLA violations in the low performance HDD-tiers.
More importantly, under LMsT, neither additional migration
I/Os nor newly migrated bursty workloads cause any delays
to latency-sensitive applications that are already in SSD-
tiers. Sensitivity analysis with respect to storage capacities,
burstiness profiles, and parameter settings in two migration
constraints further validates the effectiveness and robustness
of LMsT.

This paper is organized as follows. Section 2 demonstrates
the architecture of a multi-tiered storage system. Section 3
presents the LMsT algorithm for automated data migration
in multi-tiered, hybrid storage systems. Section 4 evaluates
the effectiveness and robustness of LMsT using trace-driven
simulations. Section 5 gives an overviewof the relatedworks.
Finally, we draw conclusions in Sect. 6.

2 System architecture

We first present an overview of a multi-tiered storage system
which is considered in this paper. As shown in Fig. 1, the
systemconsists of fourmain components: application, server,
logical unit (LUN), and back-end storage pool.

Specifically, the application component in the top layer is
used to represent the applications who can access the shared
storage resources in data centers.We classify the applications
into several categories according to their SLA requirements.
Each application with its own I/O workload specifications is
assigned to a virtual machine (VM) which provides a virtual
disk to support the associated SLA requirement. The hyper-
visor, as a virtualmachinemonitor (VMM) in the server com-
ponent, supports multiple VMs to access the shared back-end
storage pool and allocates virtualized disk resources among
VMs to achieve their different performance goals.

123

Cluster Comput

The LUN component abstracts the fundamental storage
pool and supports the storage virtualization by building a
mapping table to connect the virtual disk resources with
the physical disk resources. Therefore, the LUN component
hides the information of the underlying hardware devices to
applications while enables multiple applications to share vir-
tualized storage resources without noticing the accesses and
the contentions from the others. The back-end storage pool
is modeled as a multi-tiered, hybrid paradigm, which con-
sists of different storage devices such as SSD, FC/SAS, and
SATA.

Through storage virtualization in the LUNcomponent, the
storage pool can provide the fundamental disk resources as
the module of allocation unit (ALUN) which is set to 1GB as
the minimal capacity/migration unit for thin-provisioning in
sub-LUN level. Via the mapping table, each virtual ALUN
in the hypervisor is then dedicated to a physical ALUN in
the storage pool. The virtual center (e.g., VMware vCenter
[17]) is responsible to analyze the resource usage in virtual-
ization layers and to deploy tools for resource management.
We remark that our new migration method can be imple-
mented as a new module in the virtual center, which is able
to use all these information to make the decisions for data
migration, and then send the decisions back to the virtual-
ized storage manager which will execute the corresponding
migration procedure.

3 Migration algorithm LMST

In this section, we present our new data migration algorithm
LMsT. Our objective is to improve the system performance
in terms of I/O response time while the application SLAs are
still satisfied after the migration processes. In the rest of this
section, we first present a formulation for data migration and
then show how LMsT addresses the formulated problem in
detail. Table 1 gives the notations that are used in this paper.

Table 1 Notations in this paper

Ai , i ∈ [1, n] n ALUNs

Dj , j ∈ [1,m] m disks

xi, j ∈ {0, 1} Indicator of association between Ai and Dj

λAi or λDj I/O arrival rates of Ai or Dj (KB/ms)

μDj Average service rate of disk Dj (KB/ms)

sD j Average I/O size on disk Dj (KB)

SL Ak The kth SLA requirement (ms)

Q j,k The kth logical buffer on disk Dj with SL Ak

yi,k ∈ {0, 1} Indicator of association between Ai and SL Ak

twin Duration of a time window (ms)

tmgt Time duration of the migration process (ms)

3.1 Overview and problem formulation

We use data temperature as an indicator to classify data into
two categories according to their access frequency: hot data
has a frequent access pattern and cold data is occasionally
queried. We also consider a multi-tier storage structure con-
sisting of two tiers, i.e., high performance tier equipped with
SSDs and low performance tier using FCs. Because of the
high hardware cost, high performance tier has amuch smaller
capacity than low performance tier. We note that our solu-
tion can be easily extended for data categories with more
temperature levels and for storage systems with more than
two tiers.

In practice, high performance tier is often reserved for
applications which have strictly high SLA requirements.
However, from the perspective of improving the overall sys-
tem performance, high performance tier is also expected to
host hot data regardless of the data owner’s SLA. To best
coordinate between the SLA-based and the performance-
based resource allocations, LMsT automatically reallocates
the data acrossmultiple tiers of drives based on data tempera-
ture and SLA requirements. In designing this new algorithm,
we define the following rules that allow LMsT to efficiently
utilize the high performance SSD-tier.

– R1: Latency-sensitive applications with strict SLAs
should always been served in SSD-tier while the appli-
cations with loose SLAs should be initially served in
HDD-tier.

– R2: Once an application with loose SLA suffers bursty
workloads, its hot ALUNs should be migrated to SSD-
tier in order tomitigate the burdens inHDD-tier and avoid
SLA violations.

– R3: Extra I/Os caused by the migration process should
not violate SLAs of any applications at both the source
and the destination devices.

– R4: The newly migrated hot data in SSD-tier should
not bring additional SLA violations to latency-sensitive
applications with strict SLAs.

In particular, assume there arenALUNs {A1, A2, . . . , An}
across m disks {D1, D2, . . . , Dm}. Let xi, j ∈ {0, 1} indicate
the association between Ai and Dj , i.e., xi, j = 1 if ALUN Ai

is hosted on disk Dj . Apparently, we have ∀i,∑ j xi, j = 1.
In our solution, an ALUN is the minimum storage unit to
be migrated. LMsT monitors the workload and the perfor-
mance for each ALUN and each disk in a predefined time
window twin (e.g., 20min in our experiments,1) to assist our
migration decision.

1 We remark that the setting of twin depends on how frequently the
workload changes. If the workload changes fast, then a small twin is
preferred, vice versa.

123

Cluster Comput

Fig. 2 The profile of logical buffers and disk array

Let λAi and λDj represent the arrival rates (KB/ms) of
ALUN Ai and disk Dj , respectively. Then, we have

λDj =
∑

i

xi, j · λAi , (1)

λAi = m(λAi) + α · Δ(λAi), (2)

where m(λAi) and Δ(λAi) represent the mean and the stan-
dard deviation of λAi , and α is a tuning parameter for
conservation. A large α will increase the estimation of arrival
rates (i.e., λAi and λDj) and thus reduce the number of
ALUNs that can be validated for migration by the SLA con-
straint. That is, LMsT becomes more conservatively migrate
ALUNs to SSDs, resulting lowermigration ratioswith a large
α value, as shown in Sect. 4.2. On the other hand, with a very
small value of α , LMsT will be too aggressive to move a
large number of ALUNs to SSDs, which thus dramatically
increases the load at SSDs and diminishes the benefits of
using SSDs. A moderate α value should be considered to
achieve the best performance improvement.

We further classify I/Os into four categories, i.e., sequen-
tial read (SR), random read (RR), sequential write (SW),
and random write (RW) and let μSR

D j
, μRR

Dj
, μSW

Dj
, and μRW

Dj
denote the corresponding average service rates for these pat-
terns, respectively. Then, the overall average service rate for
disk Dj can be estimated as,

μDj = PSR · μSR
D j

+ PRR · μRR
Dj

+ PSW · μSW
Dj

+ PRW · μRW
Dj

, (3)

where PSR , PRR , PSW , and PRW represent the fraction of
each category. We also let sD j denote the average I/O size
(KB) for each disk Dj .

In addition, assume each disk Dj has a single I/O queue
consisting of l consecutive “logical” buffers {Q j,1, Q j,2,

. . . , Q j,l} and each Q j,k serves I/Os with a different SLA
requirement, SL Ak (ms), see Fig. 2. Without loss of gener-
ality, we assume ∀i < k, SL Ai < SL Ak . Let yi,k ∈ {0, 1}
indicate if Ai is associated with SL Ak . Thus, Ai belongs to
the buffer Q j,k if xi, j · yi,k = 1. The high level idea of our
new migration algorithm is also shown in Fig. 3. Upon every

ALGORITHM: The high level description of LMsT
for each time window twin

a. Determine the migration candidates (i.e., ALUNs), see Sec. 3.2
I. Selection Phase: find the potential candidates (Ai,Dj)

for forward and backward migration;
II. Validation Phase: select a subset of potential candidates

using two sets of constraints, see Eq.s(8) and (16);
b. Determine the trigger time for a migration process, see Sec. 3.3

I. Estimate the migration duration tmgt for each migration
candidate using Eq.(17);

II. Schedule backward migrations;
III. Schedule forward migrations till the end of window or no

more migration candidates;
end

Fig. 3 The high level description of LMsT

twin time window, the migration algorithm LMsT bases on
the monitored information during that time window to deter-
mine the migration candidates as well as the trigger time
for a migration process. The duration of such a time win-
dow (i.e., twin) should be properly set according to workload
changes, i.e., how frequently the workloads shift from busy
(idle) periods to idle (busy) periods. If the workloads change
frequently, then a small time window is preferred in order to
quickly adapt the changes by migrating peak IOs to SSDs.
Vice versa.

3.2 Migration candidate selector

Now, we present how to select candidate ALUNs for migra-
tion. In overall, there are two phases in our scheme. The first
one is Selection Phase where we choose a set of potential
migration candidates based on the workloads of each ALUN
and the performance of each disk. Each potential candidate is
represented by a pair value (Ai , Dj) indicating amigration of
ALUN Ai to Dj (xi, j = 0). In the second phase of validation,
we carefully examine each migration candidate, quantify the
benefits, and estimate the risk of SLA violations. A subset of
feasible candidates will be selected for actual migration.

3.2.1 Selection phase

There are two types of effective migrations that the system
can benefit from. First, if an ALUN hosts hot data in low per-
formance tier, it should be migrated to high performance tier
for improving the performance.We call this migration as for-
ward migration. Second, if the workload of an ALUN from
loose-SLA application becomes cold in high performance
tier, we may migrate that ALUN back to low performance
tier in order to release the space in high performance tier.
Such a migration is then called backward migration.

We define two thresholds of I/O workloads τh and τl (τl <

τh) for selecting eligible ALUNs for migration as follows.
For an ALUN Ai , if its average workload λAi > τh , we
consider the data hosted on Ai is hot. If Ai resides in low
performance tier, it would be beneficial for the system to

123

Cluster Comput

migrate it to high performance tier. Similarly, if an ALUN’s
workload is less than the lower threshold, i.e., λAi < τl ,
the data stored on Ai is regarded as cold. We then move
that particular ALUN Ai to low performance tier to release
resources in high performance tier if Ai is now allocated
in high performance tier but belongs to an application with
loose SLA. By this way, we find a set of ALUNs that are
eligible for either forward or backward migrations.

Furthermore, destination disk Dj for each eligible ALUN
tomigrate to is found such that Dj has the lowest load among
those disks that can provide at least one available ALUN
space. Finally, the selection phase yields a set of migration
candidates (Ai , Dj) for the next validation phase.

3.2.2 Validation phase

In validation phase, we quantify each migration candidate
(Ai , Dj) through the following two conditions: (1.) SLAs
have to be met; (2.) average I/O response time is expected
to be decreased (for forward migration). A candidate is vali-
dated for migration only if both of these two conditions are
satisfied. In the next, we quantify and analyze these perfor-
mance metrics.

3.2.3 SLA constraint

Recall that in our model, each disk array keeps multiple logi-
cal buffers and each buffer servers I/Os with a different SLA
as shown in Fig. 2. Upon the arrival of an I/O request, the
I/O scheduler inserts it into a particular logical buffer which
contains the requests having the same SLA requirement
as the arriving one. While, within each buffer, all requests
are scheduled based on First-In-First-Out (FIFO) discipline.
Specifically, each buffer Q j,k can just hold a limited number
of I/O requests in order to avoid introducing heavy loads to
disk Dj and causing additional SLA violations.

Thus, for each logical buffer Q j,k , we define ML j,k as
the maximal queue length that the disk j can handle without
causing any SLA violations,

ML j,k = SL Ak · μDj . (4)

Additionally, we use QL j,k to denote the accumulated aver-
age queue length of logical buffers from Q j,1 to Q j,k . Let
λ j,k represent the overall arrival rates of the ALUNs whose
SLAs are equal to or smaller than SL Ak in disk j ,

λ j,k =
k∑

t=1

n∑

i=1

xi, j · yi,t · λAi . (5)

Thus, using Little’s Law [10], QL j,k can be expressed as

QL j,k = f (λ j,k) = λ j,k

μDj − λ j,k
· sD j . (6)

According to the definitions, QL j,k ≤ ML j,k .
With the above analysis, we check the following two rules

for each migration candidate (Ai , Dj),

λDj + λAi < μDj , (7)

ML j,k ≥ QL ′
j,k = f

(
λ j,k + λAi

)
, foryi,k = 1. (8)

The first rule requires the total arrival rate on the destination
disk Dj to be less than the processing rate μDj . Similarly, in
order to process migration, the arrival rate of the source disk
to which Ai belongs should also be less than its processing
rate. The second rule is for the particular logical buffer with
the corresponding SLA that Ai belongs to. After migration,
the new queue length of Q j,k should not exceed the maximal
limit ML j,k .

3.2.4 Response time constraint

Now, we turn to the performance constraint in terms of I/O
response time for validating migration candidates. Basically,
we estimate the I/O response time of both the source and the
destination disks under the policies with and without migra-
tion and then evaluate the benefit (or the penalty) of each
migration candidate.

For a migration candidate (Ai , Dj), assume Ai is cur-
rently hosted on disk Dk , i.e., xi,k = 1. Let λ′

Dk
, λ′

Dj
and

λ′
Ai

represent the workloads of Dk , Dj , and Ai in the next
time window, respectively. Additionally, let tmgt be the time
duration to process a live migration (tmgt < twin) and Δλ

be the extra transfer rate for serving migration I/Os during
the migration process. Assume if validated, the migration
(Ai , Dj) will be launched at the current window. With this
particular migration, for both the source disk Dk and the
destination disk Dj , the workloads during tmgt of the cur-
rent window become λDk +Δλ and λDj +Δλ, respectively.
Additionally, in the next time window, their new workloads
will be λ′

Dk
− λ′

Ai
and λ′

Dj
+ λ′

Ai
, respectively.

Based on the Little’s Law, we can calculate the average
response time RTj of disk Dj as follows,

RTj = g(j, λDj) = sD j

μDj − λDj

. (9)

With Eq. (9), we can evaluate the average I/O response time
of both the source and the destination disks in three peri-
ods, i.e., before, during and after the migration process. Let
RTk/j (Ai , Dj) and RT ′

k/j (Ai , Dj) be the average response

123

Cluster Comput

times of the source disk Dk (or the destination disk Dj) under
the policieswith andwithout a particularmigration (Ai , Dj),
respectively, and RT k/j (Ai , Dj) be the relative benefit (or
penalty) in terms of response time. We then have the follow-
ing equations:

RTk(Ai , Dj) =
(
g

(
k, λDk

) + g
(
k, λD′

k

))
· twin, (10)

RT ′
k(Ai , Dj) = g(k, λDk) · (twin − tmgt)

+ g(k, λDk + Δλ) · tmgt

+ g
(
k, λ′

Dk
− λ′

Ai

) · twin, (11)

RT k(Ai , Dj) = RT ′
k(Ai , Dj) − RTk(Ai , Dj)

RTk(Ai , Dj)
, (12)

RTj (Ai , Dj) =
(
g

(
j, λDj

) + g
(
j, λD′

j

))
· twin, (13)

RT ′
j (Ai , Dj) = g(j, λDj) · (twin − tmgt)

+ g(j, λDj + Δλ) · tmgt

+ g
(
j, λ′

Dj
+ λ′

Ai

)
· twin, (14)

RT j (Ai , Dj) = RT ′
j (Ai , Dj) − RTj (Ai , Dj)

RTj (Ai , Dj)
. (15)

The response time constraint is designed to compare the
overall improvement in average response time to a thresh-
old e%. The migration candidate (Ai , Dj) is validated only
if the following condition is satisfied. That is, the value of
e% indicates the expected overall improvement (compared
to NMsT) in terms of response times when an ALUN can be
validated for migration. A large value of e% will decrease
the number of ALUNs that can be validated for migration by
the response time constraint and thus generate a conservative
migration process with low migration ratios.

RT k(Ai , Dj) + RT j (Ai , Dj)

2
> e% (16)

In summary, we defined two sets of migration constraints,
related to SLA and performance in our migration policy,
LMsT, for evaluating each migration candidate. Once a can-
didate is validated, the corresponding forward or backward
migration process can be actually performed by LMsT.

3.3 Migration trigger time

Given validated migration candidates, we now turn to sched-
ule them for actual migration. To fulfill this schedule, the first
key issue is to find out when to trigger a migration process.
Thus, we first estimate the migration duration for each can-
didate, and then present a migration trigger policy for both
forward and backward migrations.

3.3.1 Estimation of migration duration

If a migration candidate (i.e., ALUN) meets the SLA con-
straint, then one can expect that both the source and the
destination disks have extra capabilities to process migration
I/Os which acquire additional transfer bandwidth.

Thus, we have the transfer rate ΔλDj = μDj − λDj for
serving migration I/Os at the destination disk Dj , whereμDj

and λDj are Dj ’s service rate and arrival rate, respectively.
Similarly, the transfer rateΔλDk for servingmigration I/Os at
the source disk Dk is equal toμDk −λDk , whereμDk and λDk

are the service and the arrival rates of Dk , respectively. Con-
servatively, we choose the minimum one of {ΔλDk ,ΔλDj },
as themutual transfer rate for servingmigration I/Os between
the source and the destination disks.

Furthermore, the actual migration capacity sometimes can
be larger than the size of an ALUN (i.e., 1GB) because
application write I/Os might arrive during migration process
which can incur new migration I/Os for modified data. We
thus adopt a tuning parameter β to assess the actual migra-
tion capacity and estimate the migration duration tmgt for
each candidate using the following equation:

tmgt = β × (Capacity of ALUN)

min{μDj − λDj , μDk − λDk }
, (17)

where μDj and λDj (resp. μDk and λDk) are the service and
the arrival rates of Dj (resp. Dk), respectively. The parameter
β can be tuned to adjust the total migration capacity for each
ALUN. Even though an ALUN has 1GB capacity, the real
migration capacity might be larger than this size as some
blocksmight be rewritten during themigration process. Thus,
the parameter β is proportional to the IO dirty ratio which
can be calculated by the average dirty ratio.

3.3.2 Migration trigger policy

As backward migrations are used to release the space in
high performance tiers, we need to execute all backward
migrations in the beginning of each time window. Once all
backward migrations are done, the policy starts to schedule
the remaining forward migrations. However, it is possible
that the entire migration process (i.e., backward plus forward
migrations) exceeds a timewindow such that somemigration
candidates cannot be successfully executed. Our policy thus
abandons all those migration candidates.

4 Performance evaluation of LMST

We use representative case studies to evaluate LMsT’s effec-
tiveness. A trace-driven simulation model has been built
to emulate a multi-tier storage system as shown in Fig. 1.

123

Cluster Comput

Table 2 Device parameters of two tiers

Disk
type

Disk
number

Total
capacity
(GB)

Service rate
(MB/s)

SSD 2 40 500

FC 5 100 160

Without loss of generality, we assume that in our model
the application components have two priority levels with
different SLA requirements such that the SLAs of high
and low priority applications are equal to SL AH = 1 and
SL AL = 20ms, respectively. We also assume two tiers of
disk drives in the storage pool, i.e., SSD and FC. We remark
that the number of disk drives in each tier is fixed in all the
experiments. The device parameters of these two tiers are
shown in Table 2. The service rates of these two types of
devices are roughly parameterized based on the specifica-
tions of actual devices. For example, Intel Solid-State Drive
530 Series with capacity 80G has sequential read/write of
540/480MB/s while Fujitsu Enterprise MAX3073FC with
capacity of 73.5GBhas external transfer rate up to 200MB/s.
In general, we want to show that given multiple storage
devices with different capacity and processing capability, our
algorithm can leverage such kinds of difference to best uti-
lize both of these devices through efficient data migration.
Initially, the virtual ALUNs of applications with strict SLAs
(i.e., SL AH) are all mapped to SSDs, whereas FCs are ini-
tially assigned to low priority applications with SL AL . The
e% parameter used as the threshold to determine the overall
improvement in average response times is set to 6–10%.

Consider 7 applications (2 with SL AH and 5 with SL AL)
to access a 70GB data set. In average, each application
requires 10 virtual ALUNs and the capacity of such a vir-
tual ALUN is 1GB. We then generate an I/O stream for each
virtual ALUN such that there are totally 30 time periods and
each lasts around 20min. The specifications of a request in
such an I/O stream include I/O arrival time, I/O address and
I/O size, where I/O address is uniformly distributed within
an ALUN while I/O size is drawn from an exponential dis-
tribution with mean of 100KB.

To evaluate our new migration algorithm, we generate a
set of synthetic I/O traces for each application, each of which
is used as an I/O stream for one of ten virtual ALUNs of
that application. These synthetic traces are parameterized
based on the MSR Cambridge block I/O traces [13]. Each
data entry of these traces describes an I/O request, includ-
ing timestamp, disk number, logical block number (LBN),
number of blocks and the type of I/O (i.e., read or write).
Therefore, the specifications of an I/O request in our syn-
thetic traces also include I/O arrival time (i.e., timestamp),
I/O address (i.e., disk number and logical block number),

(b)

(a)

(c)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 5000 10000 15000 20000 25000

C
D

F

Arrival Rate

−0.2
−0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 10 20 30 40 50

A
ut

oc
or

re
la

tio
n

Lags

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

A
rr

iv
al

 R
at

e
(I

O
/m

in
)

Time (minute)

I B I I B

Fig. 4 Illustrate a the arrival rate per minute, b the CDF of arrival rate,
and c the autocorrelation of arrival rate at different time lags of a high
priority application in one virtual ALUN

I/O size (i.e., number of blocks) and the type of I/O (i.e.,
read or write). We found that arrival flows in enterprise data
centers and storage systems often exhibit burstiness (tem-
poral dependence) [14,18]; for example, a user query from
a data-intensive application might easily trigger a scan of a
gigantic data set and then bring a burst of disk I/Os into the
system. Such burstiness profiles are also observed in arrival
rates (e.g., number of accessed bins per second) of some
MSR Cambridge traces, e.g., proj1 and web2. Therefore, we
consider to imitate burstiness in the arrivals of our synthetic
I/O traces by injecting bursty periods randomly into each
I/O stream such that a time period can be marked as either
“idle” or “bursty”, as shown in Fig. 4. I/O inter-arrival times
in an idle period are generated using an exponential distrib-
ution with mean rate of 10KB/ms (resp. 5KB/ms) for high
(resp. low) priority applications; while I/O arrival process of
a bursty period is drawn from a 2-state Markov-Modulated
Poisson Process (MMPP) with mean arrival rate equal to 20
KB/ms (resp. 10 KB/ms) for high (resp. low) priority appli-
cations. As shown in Fig. 4, while the arrival rates keep stable

123

Cluster Comput

 0

 20

 40

 60

 80

 100

 120

M_Resp V_Ratio V_Time

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (%
)

NMsT LMsT

Fig. 5 Performance results under NMsT and LMsT

(follow exponential distribution) in most of the time (70%
for this application), bursty periods introduce high autocor-
relation to the arrival rate and long tail to the arrival rate
distribution.

Figure 5 depicts the performance results under NMsT and
LMsT, where NMsT (i.e., no migration process, all ALUNs
from each application will stay in the disks where those
ALUNs are initially placed) is used as the base case to nor-
malize LMsT’s performance. Specifically, under the NMsT
approach, none of ALUNs will be migrated from one disk
to another, that is, all ALUNs from each application will
stay in the disks where those ALUNs are initially placed.
For the initial configuration of data placement, we map two
applications with high SLA priority (i.e., SL AH) to the high
performance tier (i.e., two SSDs) and the remaining five
applications which have low SLA riority (i.e., SL AL) to the
low performance tier (i.e., five FCs). In this set of results,
we measured the mean I/O response times2 (M_Resp), the
fraction of I/Os (V _Ratio) whose response times exceed the
predefined SLAs, and the mean violation times (V _T ime)
that are the difference between the actual I/O response times
and the predefined SLAs.

Given this initial data placement and nomigration process,
NMsT cannot best utilize the high performance tier (i.e.,
SSDs) such that the utilizations of two SSDs are about 20%
lower than those of FCs. Moreover, the SLA violation ratios
are quite high (around 40%) for low priority applications
under NMsT . While, LMsT significantly reduces the aver-
age I/O response time by 60%. This can be interpreted by the
fact that LMsT makes a better use of SSDs by migrating all
validated bursty I/O traffic from FCs to SSDs. Furthermore,
we observe that LMsT improves the SLA violation as well
by reducing I/O violation ratio (V _Ratio) and I/O violation
time (V _T ime) by 42 and 40%, respectively. We thus con-
clude that LMsT is able to significantly improve the overall

2 An I/O request response time is measured from the moment when an
I/O request is submitted to the moment when that I/O request finishes.

 0

 20

 40

 60

D1 D2 D3 D4 D5 D6 D7

U
til

iz
at

io
n

(%
)

Disk

NMsT LMsT

Fig. 6 Disk utilizations under NMsT and LMsT

performance in terms of I/O response time, I/O violation ratio
and I/O violation time.

To further investigate the usage of storage resources, we
depict the avarage utilizations of 7 storage devices, i.e., two
SSDs and five FCs under both NMsT and LMsT in Fig. 6.
Here, disk utilization is defined as the ratio of disk busy time
over the duration of the whole simulation. We first observe
that under NMsT , two high performance SSDs (i.e.,D1 and
D2) are not well utilized since their disk utilizations are only
about 30%; while the other devices (i.e., five FCs) at low
performance tier are busier (around 50%) to serve all I/O
requests from low priority applications. By migrating bursty
I/Os of low priority applications from FCs to SSDs, LMsT
improves the usage of high performance tier with SSD uti-
lizationsmore than 54%, and thus reduces the response times
for these migrated I/Os. On the other hand, the utilizations of
FCs are significantly reduced as the loads on these devices
now become less, which further improves the performance
(e.g., respose times) of the remaining I/Os of low priority
applications served on these devices.

To further investigate the performance impacts of migra-
tions on each application, we present their average I/O
response times and I/O violation ratios under both NMsT
and LMsT in Table 3. We observe that all low priority
applications (i.e., App3, . . . , App7) obtain tremendous per-
formance improvement, experiencing lower response times
and less violation ratios, and thereby receiving high QoS.
Moreover, the performance of high priority applications (i.e.,
App1 and App2) keeps almost the same despite a very slight
degradation due to the extra migrated I/Os.

4.1 Sensitivity analysis on system workloads

Now, we turn to analyze the effectiveness and robustness of
LMsT under various experimental conditions. In this sub-
section, we first focus on exploring the sensitivity of LMsT
to different system workloads. Later, we investigate the sen-
sitivity analysis of LMsT to our migration constraints.

123

Cluster Comput

Table 3 Each application’s
performance under NMsT and
LMsT

Capacity 70GB 50% Burst High priority Low priority

App1 App2 App3 App4 App5 App6 App7

NMsT M_Resp (ms) 1.30 1.27 382.29 366.60 368.52 350.12 380.55

V _Ratio (%) 7.06 6.90 41.75 40.37 41.65 40.28 40.59

LMsT M_Resp (ms) 1.34 1.32 131.01 137.75 139.53 125.49 124.53

V _Ratio (%) 7.73 7.53 21.55 22.36 22.28 19.94 19.34

Table 4 Configuration of applications and disks under different stor-
age active capacities, where Num_H (Num_L) is the number of high
(low) priority applications and C_SSD (C_FC) gives the initial active

capacity of SSD (FC), and N_T S is the total number of time slots at
the FC-tiers

Active capacity (GB) Num_H Num_L C_SSD (×2) (GB) C_FC (×5) (GB) N_T S

40 1 3 5 6 900

70 2 5 10 10 1500

100 3 7 15 14 2100

In Table 4, we list the configuration of applications and
storage devices which are considered in our sensitivity analy-
sis onvarious systemandworkloadparameters, such as active
storage capacities and burstiness profiles in arrival flows.
First, we vary burstiness profiles in arrival flows by cluster-
ing different amounts of I/O requests in bursty periods such
that the percentages of I/O requests that arrive during bursty
periods are euqal to 30, 50 and 70%. As the arrivals become
more bursty, performance degradation becomes more signif-
icant because not all of bursty I/Os at FCs can be migrated
to SSDs. Secondly, we vary total active storage capacities
by setting the amount of storage space that has been used
to store data for applications to 40, 70, and 100GB. Since
each application requires 10ALUNs and the capacity of each
ALUN is set as 10GB in our experiments, we get different
numbers of applications (i.e., 4, 7 and 10) under active stor-
age capacities of 40, 70, and 100GB, respectively, as well
as different numbers of high and low priority applications
(denoted as NumH and NumL in Table 4). For example,
under active capacity of 40GB, we have totally 4 appli-
cations such that 1 application has high priority and the
other 3 ones have low priority. Furthermore, in our exper-
iments, the numbers of storage devices are fixed as 2 SSDs
and 5 FCs and the data of all high and low priority appli-
cations are initially placed in SSDs and FCs, respectively.
Consequently, as shown in Table 4, active storage capaci-
ties (denoted as C_SSD and C_FC) that are initially placed
in SSDs and FCs are thus accordingly changed as the total
active capacity increases. Finally, we remark that the com-
bination of increasing active capacity and burst ratio further
exacerbates the bursty load to the system. For example, when
the active capacity increases to 100GB and the burst ratio is
70%, the total number of time slots (see N_T S in Table 4)

at FCs reaches to 2100, i.e., 70 ALUNs at FCs times 30
slots/ALUN.Consequently, the total number of bursty slots at
FCs then becomes larger then 1400, see the rowof Burst_T S
in Table 6.

The experimental results of LMsT under 9workload com-
binations are shown in Table 5. We also present the results
of NMsT as well as the relative improvement with respect
to NMsT in the table. First of all, we observe that under
all the 9 workloads LMsT achieves non-negligible perfor-
mance improvement in terms of the mean I/O response
time (M_Resp), the fraction of I/Os that are SLA violated
(V _Ratio), and the mean of SLA-violated times (V _T ime).
For example, under the case of 40GB and 30% burst,
LMsT dramatically accelerates the average I/O response
times by up to 83% relative improvement over NMsT and
decreases the number of SLA-violated I/Os with the rela-
tive improvement over NMsT up to 78%. This indicates
that LMsT provides the high QoS to low priority applica-
tions and meanwhile maintains the SLAs for high priority
ones.

Also, we find that the burstiness in arrival flows does dete-
riorate the overall system performance under both LMsT
andNMsT policies. Such performance degradation becomes
more significant when the arrivals become more bursty, i.e.,
the bursty ratio increases. Similarly, the increasing active
storage capacity degrades the system performance as well
because the overall disk loads are increased. This further
results in strict migration constraints, allowing fewer bursty
ALUNs to be migrated. In addition, the combination of large
active storage capacity and high bursty ratio makes the rel-
ative improvement over NMsT less visible, e.g., in the case
of 100GB and 70% burst, the relative improvements with
respect to all the three performance metrics diminish.

123

Cluster Comput

Table 5 Sensitive analysis of
system workloads with active
storage capacity of (a) 40GB,
(b) 70GB, and (c) 100GB. The
burst ratio is set to 30, 50 and
70%

30% Burst 50% Burst 70% Burst

(a) Capacity 40GB

NMsT

M_Resp (ms) 29.45 66.93 127.43

V _Ratio (%) 7.16 13.72 21.80

V _T ime (ms) 381.17 463.15 562.29

LMsT

M_Resp (ms) 5.04 (82.89%) 15.17 (77.33%) 35.71 (71.98%)

V _Ratio (%) 1.58 (77.94%) 4.67 (65.98%) 9.87 (54.70%)

V _T ime (ms) 271.16 (28.86%) 295.45 (36.21%) 337.15 (40.04%)

(b) Capacity 70GB

NMsT

M_Resp (ms) 67.11 205.20 433.90

V _Ratio (%) 12.00 25.78 39.68

V _T ime (ms) 533.41 775.47 1075.62

LMsT

M_Resp (ms) 24.65 (63.27%) 73.51 (64.18%) 140.44 (67.63%)

V _Ratio (%) 6.21 (48.23%) 15.09 (41.46%) 28.35 (37.96%)

V _T ime (ms) 370.86 (30.47%) 466.64 (39.82%) 553.46 (48.55%)

(c) Capacity 100GB

NMsT

M_Resp (ms) 195.02 716.30 1675.73

V _Ratio (%) 30.00 47.18 61.74

V _T ime (ms) 631.72 1502.26 2699.83

LMsT

M_Resp (ms) 72.59 (62.78%) 290.50 (59.44%) 1324.17 (20.98%)

V _Ratio (%) 18.85 (37.15%) 36.49 (22.66%) 56.67 (8.21%)

V _T ime (ms) 368.39 (41.68%) 781.28 (47.99%) 2322.53 (13.95%)

4.2 Sensitivity analysis on parameters in migration
constraints

Recall that the key idea of LMsT is to improve the QoS
for low priority applications via on-the-fly moving their hot
data toSSDs, andmeanwhilewithout causing additional SLA
violations to highpriority applications.Therefore, it is critical
to set the right parameters for the migration constraints in
order to achieve the best performance of LMsT. To address
this issue, we here conduct a set of experiments to investigate
the sensitivity of LMsT to the key parameters in two sets of
migration constraints, i.e., SLA constraint shown in Eq. (7)
and response time constraint shown in Eq. (16).

We show the performance results measured from the
experiments, where we vary the parameter α of SLA con-
straint in Fig. 7a and the parameter e%of response time con-
straint in Fig. 7b. All other parameters in these experiments
are kept the same.Additionally, the total active storage capac-
ity is set of 70GB and 50% of arrival flows to FCs are bursty.
Then, we have 2 applications with high priority and 5 appli-
cations with low priority, see Table 4. In these experiments,

we measure the migration ratio of bursty ALUNs in FC-tier
and the response time ratio between LMsT and NMsT.

We first tune the parameter α in Eq. (2) to control the
arrival rates to an ALUN and the associated disk. As the
value of α increases, LMsT then conservatively migrates the
ALUNs of low priority applications from FCs to SSDs due
to the current heavy load (i.e., larger arrival rate) at SSDs.
That is, the number of ALUNs which can be validated for
migration by the SLA constraint in Eq. (7) becomes less, so
that the migration ratio decreases, see Fig. 7a. However, the
trend of the response time is not straightforward. As we dis-
cussed,LMsTwith a largeα conservativelymigratesALUNs
and thus obtains less improvement in response times. On the
other hand, when α is set to a small value, a large number
of ALUNs may be aggressively moved to SSDs, which thus
dramatically increases the load at SSDs and degrades the per-
formance of the corresponding applications. We observe that
the most benefits of LMsT are actually achieved when α is
close to 0.3.

As shown inEq. (16), the parameter e%is used as a thresh-
old to determine the overall improvement in average response

123

Cluster Comput

Fig. 7 Ratios of system
performance between LMsT
and NMsT using different
parameters in a SLA constraint
and b response time constraint

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
R

at
io

 (%
)

Alpha

(a) SLA Constraint

 0

 20

 40

 60

 80

 100

−5 −4 −3 −2 −1 0 1 2 3 4 5

R
at

io
 (%

)

Penalty/Benefit of Response Time (e%)

(b) Response Time Constraint

migration ratio ratio of response time

time, where the negative or positive value of e% (e.g., −5%
or 5%) indicates the penalty or benefit in terms of response
time. That is, when the relative benefit or penalty over NMsT
is more or less than e%, an ALUN will then be validated for
migration. Consequently, a large value of e% indicates a
conservative migration process, so that the migration ratio
decreases and the ratio of response time between LMsT and
NMsT increases, see Fig. 7b.

4.3 Performance comparisons with SMST

In this section, we further validate the effectiveness of LMsT
by comparing its performance with a migration algorithm,
named SMsT, which adopts the existing approach (referred
to as stop and copy) formigrating data from the source device
to the destination one, which has been discussed and eval-
uated in [2]. The stop-and-copy technique for migrating is
to stop serving all I/Os to access to-be-migrated data at the
source, move data to the destination, and start serving those
suspended I/Os at the destination. This approach gives higher
priority to migration I/Os than I/Os requesting to access to-
be-migrated data, which is simple to achieve safe migration
yet results in considerably long down times for applica-
tions. Thus, we considered to use another set of performance
metrics (i.e., Mgr_Resp, Burst_T S and Mgr_Ratio) to
focus on evaluate the effectiveness of our LMsT algorithm
during migration periods. For example, Mgr_Resp repre-
sents the mean response time of I/Os which would access
to-be-migratedALUNsduringmigrationprocesses.This per-
formance metric is used to evaluate the impact of migrations
on regular application I/Os, i.e., howmigration processeswill
add extra delay times on those I/Os. We use Burst_T S and
Mgr_Ratio to further investigate the amount of migrated
ALUNs under different workloads (in terms of burstiness
profiles and active workload sizes).

Table 6 shows the resultant comparison between LMsT
and SMsT.We remark that under SMsT, all the other applica-
tion I/Oswhich do not access the to-be-migratedALUNs still
have higher priority than themigration I/Os during themigra-

tion process. In Table 6, the first important observation is that
our new migration policy achieves much better performance
(i.e., Mgr_Resp) under different workloads compared to
SMsT. We interpret that using the synchronization mech-
anism, LMsT can effectively eliminate the negative impacts
of migration on regular application I/Os, avoiding unneces-
sary delays to their execution.

Besides the results of mean response times, we also show
the total number of time slots (Burst_T S) that have bursty
arrivals in all the ALUNs of 5 FCs, as well as the fraction
of bursty time slots (Mgr_Ratio) which are validated to
be migrated, see Table 6. We observe that as active storage
capacity and bursty load increase, the total number of bursty
time slots increases, whereas the migration ratio decreases.
We interpret that as the heavy bursty loads reduce the capa-
bility of both SSDs and FCs to migrate data, few migration
candidates canbevalidatedbyourmigration constraints. This
further verifies the experimental results in Table 5. Both large
Burst_T S and low Mgr_Ratio incur non-negligible degra-
dation in the performance improvement. For example, in the
case of 100GB and 70% burst, LMsT achieves the smallest
relative improvements over NMsT, compared to all the other
cases.

As a final remark, it is interesting to observe that in the
case of 40GB active capacity, the migration ratios are similar
across different bursty loads (i.e., 30, 50 and 70%burst). This
is because that the overall system load is very low under this
case, therefore, most of the bursty ALUNs can be migrated
to SSDs no matter how heavy the bursty load is.

5 Related work

As enterprises consolidate a variety of applications that
require different service levels, it becomes an urgent demand
to build a multi-tiered storage platform for providing differ-
ent levels of service in the storage domain [9]. Storage tiering
techniques are introduced to dynamically deliver appro-
priate resources to the business, targeting at performance

123

Cluster Comput

Table 6 Sensitive analysis of
migration policies under system
workloads with active storage
capacity of (a) 40GB, (b)
70GB, and (c) 100GB

30% Burst 50% Burst 70% Burst

LMsT SMsT LMsT SMsT LMsT SMsT

(a) Capacity 40GB

Mgr_Resp (ms) 13.31 140.22 66.89 165.81 194.79 296.38

Burst_T S 267 428 591

Mgr_Ratio (%) 87.64 89.72 89.85

(b) Capacity 70GB

Mgr_Resp (ms) 73.39 162.22 235.75 329.73 336.99 495.15

Burst_T S 418 725 1038

Mgr_Ratio (%) 89.71 76.41 49.62

(c) Capacity 100GB

Mgr_Resp (ms) 79.60 188.55 266.88 371.58 323.67 418.77

Burst_T S 644 1073 1464

Mgr_Ratio (%) 53.73 25.82 12.98

The burst ratio is set to 30, 50 and 70%. Here, Mgr_Resp is the mean response time of the application I/Os
which access the to-be-migrated ALUNs and Burst_T S is the number of bursty time slots in all the ALUNs
of 5 FCs, and Mgr_Ratio is the migration ratio over Burst_T S

improvement, cost reduction and management simplifica-
tion. Because of its significant importance, the technology of
storage tiering has been recognized by ESG’s 2011 Spending
Intentions Survey [12], as one of the top 10 planned storage
investments in the next couple years. Many industrial com-
panies have already developed their own automatic tiering
technologies and released the relative products, such as IBM
Easy Tier for DS8000 [6], EMC Fully Automated Storage
Tiering (FAST) for Celerra [3], and HP Adaptive Optimiza-
tion for 3PAR [5].

A large literatures on storage management have been
developed for the years. Recently, [1,4,7,8,11,15,16,19]
proposed several new techniques (algorithmic or theoretical)
to explore the effective datamigration in storage systems. For
example, [1,8] investigated the idea of using edge-coloring
theory for data migration and achieved a near-optimal migra-
tion plan by using polynomial-time approximation algo-
rithms. Triage, an adaptive controller, has been proposed
in [7] to address the problem of performance isolation and
differentiation in a consolidated data center. By throttling
storage access requests, Triage ensures high system avail-
ability even under overload conditions. Later, [16] focused
on minimizing the overhead of data migration by automati-
cally detecting hotspots and reconfiguring the system based
on the bandwidth-to-space ratio. [4] proposed a dynamic
tier manager, named EDT-DTM, performing dynamic extent
placement. However, we argue that none of the existing stud-
ies take account of both the on-the-flymigration penalties and
the various application SLAs for data migration in multi-
tiered storage systems.

A cost model [15] has been developed to solve the prob-
lem of efficient disk replacement and data migration in a

polynomial time. [11] implements the QoS guarantee of
performance impact on foreground work by leveraging a
control-theoretical approach to dynamically adapt migration
speed. [19] proposed a lookahead data migration algorithm
for SSD-enabled multi-tiered storage systems, where the
optimal lookahead window size is determined to meet the
workload deadlines. However, the work [19] assumes that
the I/O profile exhibits a cyclic behavior and does not con-
sider different application SLAs in their algorithm.

6 Conclusion

In this paper, we proposed LMsT, a live data migration algo-
rithm for efficiently utilizing the shared storage resources and
meeting various application SLAs in a multi-tiered storage
system.We have shown that bursty workloads in storage sys-
tems can deteriorate system performance, causing high I/O
latency and large numbers of SLA violations in low perfor-
mance tiers. In order to mitigate such negative effects, hot
data that are associated with those bursty workloads should
be migrated to high performance tiers. However, extra I/Os
due to data migration as well as the newly migrated bursty
workloads can incur additional SLA violations to high pri-
ority applications in high performance tiers.

Therefore, we designed LMsT to counteract the impacts
of burstiness by efficiently utilizing the high-performance
devices, and to minimize the potential delays to latency-
sensitive applications. Trace-driven simulations have been
conducted to evaluate the performance of our newLMsT pol-
icy. Compared to the nomigration policy,LMsT significantly
improves average I/O response times, I/O violation ratios and

123

Cluster Comput

I/O violation times by migrating all validated bursty traffic
fromFCs to SSDs.More importantly, under LMsT, the extra-
migrated I/Os only cause a very slight degradation (e.g., up
to 6% increase in SLA violation ratio) on the performance
of high priority applications.

Acknowledgments This work was partially supported by NSF Grant
CNS-1251129 and IBM Faculty Award.

References

1. Anderson, E., Hall, J., Hartline, J., Hobbs, M., Karlin, A.R., Saia,
J., Swaminathan, R., Wilkes, J.: An experimental study of data
migration algorithms. In: Proceedings of the Workshop on Algo-
rithm Engineering, pp. 145–158. Springer, London (2001)

2. Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: live
migration in shared nothing databases for elastic cloud platforms.
In: Proceedings of the 2011 ACM SIGMOD International Con-
ference on Management of data, pp. 301–312. ACM, New York
(2011)

3. Emc, FAST. http://www.emc.com/products/launch/fast/
4. Guerra, J., Pucha, H., Glider, J., Belluomini, W., Rangaswami, R.:

Cost effective storage using extent based dynamic tiering. In: Pro-
ceedings of the 9st USENIX Conference on FAST’11, pp. 20–20.
ACM, San Jose, CA (2011)

5. HP 3PAR Adaptive Optimization Software. http://h18006.www1.
hp.com/storage/software/3par/aos/index.html

6. IBM DS8000. http://www-03.ibm.com/systems/storage/disk/
ds8000/

7. Karlsson, M., Karamanolis, C., Zhu, X.: Triage: performance iso-
lation and differentiation for storage systems. In: Proceedings of
the Twelfth IEEE International Workshop on Quality of Service,
Palo Alto, CA, pp. 67–74. IEEE (2004)

8. Khuller, S., Kim, Y., Wan, Y.: Algorithms for data migration with
cloning. In: Proceedings of the Twenty-Second ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems,
pp. 27–36. ACM, San Diego, CA (2003)

9. Laliberte, B.: Automate and Optimize a Tiered Storage
Environment-FAST! White Paper (2009). http://www.emc.com/
collateral/analyst-reports/esg-20091208-fast.pdf

10. Little, J.D.C.: A proof for the queuing formula: L = w. Oper. Res.
9(3), 383–387 (1961)

11. Lu, C., Alvarez, G.A., Wilkes, J.: Aqueduct: online data migration
with performance guarantees. In: Proceedings of the 1st USENIX
ConferenceonFAST’02, pp. 219–230.ACM,Monterey,CA(2002)

12. Lundell, B., Gahm, J., McKnight, J.: 2011 IT Spending Inten-
tions Survey. Research Report (2011). http://www.enterprisestr
ategygroup.com/2011/01/2011-it-spending-intentions-survey/

13. Narayanan, D., Donnelly, A., Rowstron, A.: Write off-loading:
practical power management for enterprise storage. ACM Trans.
Storage 4(3), 10:1–10:23 (2008)

14. Riska, A., Riedel, E.: Long-range dependence at the disk drive
level. In: Proceedings of theThird International Conference on
Quantitative Evaluation of Systems, QEST 2006, pp. 41–50. IEEE
(2006)

15. Seo, B., Zimmermann, R.: Efficient disk replacement and data
migration algorithms for large disk subsystems. ACM Trans. Stor-
age 1(3), 316–345 (2005)

16. Sundaram,V., Shenoy, P.: Efficient datamigration in self-managing
storage systems. In: Proceedings of the IEEE International Confer-
ence on Autonomic Computing, Dublin, pp. 297–300 (2006)

17. VMware vCenter Server. http://www.vmware.com/products/
vcenter-server/overview.html

18. Wang, K., Lin, M., Ciucu, F.: Characterizing the impact of the
workload on the value of dynamic resizing in data centers. Perform.
Eval. Rev. 40(1), 405–406 (2014)

19. Zhang,G., Chiu, L., Liu, L.:Adaptive datamigration inmulti-tiered
storage based cloud environment. In: Proceedings of the IEEE 3rd
International Conference on Cloud Computing, Miami, FL, pp.
148–155. IEEE (2010)

123

http://www.emc.com/products/launch/fast/
http://h18006.www1.hp.com/storage/software/3par/aos/index.html
http://h18006.www1.hp.com/storage/software/3par/aos/index.html
http://www-03.ibm.com/systems/storage/disk/ds8000/
http://www-03.ibm.com/systems/storage/disk/ds8000/
http://www.emc.com/collateral/analyst-reports/esg-20091208-fast.pdf
http://www.emc.com/collateral/analyst-reports/esg-20091208-fast.pdf
http://www.enterprisestrategygroup.com/2011/01/2011-it-spending-intentions-survey/
http://www.enterprisestrategygroup.com/2011/01/2011-it-spending-intentions-survey/
http://www.vmware.com/products/vcenter-server/overview.html
http://www.vmware.com/products/vcenter-server/overview.html

	SLA-aware data migration in a shared hybrid storage cluster
	Abstract
	1 Introduction
	2 System architecture
	3 Migration algorithm LMsT
	3.1 Overview and problem formulation
	3.2 Migration candidate selector
	3.2.1 Selection phase
	3.2.2 Validation phase
	3.2.3 SLA constraint
	3.2.4 Response time constraint

	3.3 Migration trigger time
	3.3.1 Estimation of migration duration
	3.3.2 Migration trigger policy

	4 Performance evaluation of LMsT
	4.1 Sensitivity analysis on system workloads
	4.2 Sensitivity analysis on parameters in migration constraints
	4.3 Performance comparisons with SMsT

	5 Related work
	6 Conclusion
	Acknowledgments
	References

