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Abstract—The MapReduce framework has become the de
facto scheme for scalable semi-structured and un-structured data
processing in recent years. The Hadoop ecosystem has evolved
into its second generation, Hadoop YARN, which adopts fine-
grained resource management schemes for job scheduling. One of
the primary performance concerns in YARN is how to minimize
the total completion length, i.e., makespan, of a set of MapReduce
jobs. However, the precedence constraint or fairness constraint in
current widely used scheduling policies in YARN, such as FIFO
and Fair, can both lead to inefficient resource allocation in the
Hadoop YARN cluster. They also omit the dependency between
tasks which is crucial for the efficiency of resource utilization. We
thus propose a new YARN scheduler, named HaSTE, which can
effectively reduce the makespan of MapReduce jobs in YARN
by leveraging the information of requested resources, resource
capacities, and dependency between tasks. We implemented
HaSTE as a pluggable scheduler in the most recent version
of Hadoop YARN, and evaluated it with classic MapReduce
benchmarks. The experimental results demonstrate that our
YARN scheduler effectively reduces the makespans and improves
resource utilization compare to the current scheduling policies.

I. INTRODUCTION

In the age of data explosion, an efficient parallel data
processing scheme is essential to deal with massive volumes of
data. MapReduce, proposed by Google [1], has soon emerged
as a leading paradigm for big data processing due to its
scalability and reliability. Its open source implementation,
Apache Hadoop [2], has also been widely adopted in both
academia and industry for big data processing and information
analysis. When MapReduce is getting popular, how to improve
its performance becomes critical especially when a MapRe-
duce cluster is serving a large number of jobs. Given limited
resources in the cluster, when a batch of MapReduce jobs
cannot all be executed, how to schedule their executions, i.e.,
allocate resources to jobs, becomes crucial to the performance.
Without an appropriate management, the available resources
may not be efficiently utilized leading to a prolonged finish
time of the jobs.

This paper aims to develop an efficient scheduling scheme
for YARN MapReduce to improve resource utilizations and
reduce the makespan of a given set of jobs. We focus on the
new generation of Hadoop system, YARN MapReduce [3].
Compared to the classic Hadoop MapReduce, YARN adopts
a completely different design for resource management. In
YARN, there is no “slot” which is the building block in the
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old versions, and the system no longer distinguishes map and
reduce tasks when allocating resources. Instead, each task
specifies a resource request in the form of <2G,1core> (i.e.,
requesting 2G memory and 1 cpu core), and it will be assigned
to a node with sufficient capacity.

The current widely adopted scheduling in YARN, such
as FIFO scheduler, however, does not consider the optimal
arrangement of cluster resources. For example, while it is
desired to run cpu intensive jobs and memory intensive
jobs simultaneously, the FIFO scheduler forces jobs to run
sequentially which leads to unnecessary resource idleness.
Moreover, the current resource sharing based schedulers, such
as Fair and Capacity scheduler, omit the dependency between
tasks. However, such dependency is crucial for the efficiency
of resource utilization when we have multiple jobs running
concurrently in cluster.

Therefore, in this work, we present a new Hadoop YARN
scheduling algorithm, named HaSTE, which aims at efficiently
utilizing the resources for scheduling map/reduce tasks in
Hadoop YARN and improving the makespan of MapReduce
jobs. HaSTE meets these goals by leveraging the requested
resources, resource capacities, and the dependency between
tasks. Specifically, our solution dynamically schedules tasks
for execution when resources become available based on each
task’s fitness and urgency. Fitness essentially refers to the
gap between the resource demand of tasks and the residual
resource capacity of nodes. This metric has been commonly
considered in other resource allocation problems in the liter-
atures. The second metric, urgency, is designed to quantify
the “importance” of a task in the entire process. It allows us
to prioritize all the tasks from different jobs and more impor-
tantly, catches the dependency between tasks. Furthermore, we
develop an aggregation function that combines the fitness and
urgency to compare all candidate tasks and select the best one
for execution.

The rest of this paper is organized as follows. In Section II,
we briefly introduce the background of the scheduling problem
and existing scheduling policies in YARN. In Section III,
we formulate the scheduling problem of YARN as resource
constrained scheduling, and propose our new scheduling pol-
icy HaSTE. Evaluation results of our proposed scheme are
presented in Section IV. We describe the related works in
Section V and conclude in Section VI.



II. HADOOP YARN SCHEDULER

In this section, we briefly introduce the scheduling process
in a Hadoop YARN system and the schedulers that are
currently used in YARN. A Hadoop YARN system consists
of multiple worker nodes and the resources are managed
by a centralized ResourceManager routine and multiple dis-
tributed NodeManager routines each running on a worker
node. Compared to a classic Hadoop system, YARN features
the following major differences in the design. First, unlike the
JobTracker in classic Hadoop, the ResourceManager no longer
monitors the running status of each job. Instead, it launches
an ApplicationMaster for each job on a worker node. Such an
ApplicationMaster then generates resource requests, negotiates
resources from the scheduler of ResourceManager and works
with the NodeManagers to execute and monitor the corre-
sponding job’s map and reduce tasks. Furthermore, Hadoop
YARN abandons the coarse-grained slot based resource man-
agement used in the old versions, but instead manages the
system resources in a fine-grained manner such that each
NodeManager needs to report the available memory and cpu
cores of its worker node and each ApplicationMaster needs
to specify the resource demands for its tasks. The scheduler
in Hadoop YARN will then allocate available resources to the
waiting tasks based on a particular scheduling policy.

Each task request is a tuple < p,~r,m, l, γ >, where p
represents the priority of a task, ~r gives the resource require-
ment vector of a task, m shows the total number of tasks
which have the same resource requirements ~r, l represents the
location of a task’s input data split, and γ is a boolean value to
indicate whether a task can be assigned to a NodeManager that
does not locally have its input data split. The scheduler also
receives heartbeat messages from all active NodeManagers
which report the current residual capacity R. If the current
residual capacity R of a node is sufficient to accommodate
at least one task and there are tasks waiting in the system,
then the scheduler allocates tasks to that node according to a
particular scheduling policy.

Unlike classic Hadoop, YARN systems no longer explicitly
distinguish map and reduce tasks such that other parallel
data processing applications can also be supported by YARN.
In this work, we mainly focus on MapReduce applications
running in YARN. The scheduling policies that are widely used
in a Hadoop YARN system include FIFO, Fair, and Capacity.

• The FIFO policy sorts all waiting jobs in a nondecreasing
order of their submission time. The first queuing task request
that fits into the residual capacity of the worker node will be
scheduled for service at each iteration.
• Two Fair scheduling policies have been implemented in
Hadoop YARN, i.e., Fair and Dominant Resource Fairness
(DRF) [4]. Fair policy only considers the memory usage of
each job and attempts to assign equal shares of memory,
while the DRF policy aims to ensure all jobs to get on average
an equal share on their dominant resource requirements.
• The Capacity policy works similar as the Fair policies.
The scheduler attempts to reserve a guaranteed capacity for

each job queue and orders jobs by their deficit between their
deserved capacity and the actual occupied capacity.

We argue that the above policies are not designed for opti-
mize resource utilization and completion time of MapReduce
jobs in YARN. Therefore, in this work, we strive to design
a new YARN scheduler which attempts to minimizing the
makespan of a batch of MapReduce jobs.

III. HASTE

A. Problem Formulation

We consider that a set of n jobs {J1, J2, . . . , Jn} are
submitted to a Hadoop YARN cluster consisting of m servers,
{S1, S2, . . . , Sm}. Each job consists of map tasks and reduce
tasks. We consider all the tasks in n jobs as a set T and
assign each task a unique index number, i.e., ti represents the
i-th task in the system. Each job Ji is then represented by a
set of tasks. We further define two subsets MT and RT to
represent all the map tasks and reduce tasks, respectively, i.e.,
T = MT ∪ RT . MT ∩ Ji (RT ∩ Ji) represents all the map
(reduce) tasks of job Ji. In addition, assume that k types of
computing resources are considered in the system, indicated
by r1, r2, . . . , rk. Note that in the current YARN system, only
two resources are included, memory and cpu. Here we use k
to define the problem with a general setting so that potential
extensions can involve other types of resources, e.g., network
bandwidth and disk I/O. In the rest of the paper, r1 and r2
represent memory and cpu resources, respectively. We use a
two-dimensional matrix C to represent the resource capacity
in the cluster. C[i, j] indicates the amount of available resource
rj at server Si, where i ∈ [1,m] and j ∈ [1, k]. This matrix C
is available to the scheduler after the cluster is launched and
the values in C are updated during the execution of jobs upon
each heartbeat message received from NodeManagers.

In YARN, each task can request for user-specified resources.
All map/reduce tasks in a job share the same resource require-
ment. For a task ti ∈ T , R[i, j] is defined to record the amount
of resource rj requested by ti, where R[p, j] = R[q, j] if tp
and tq are the same type of tasks (either both map tasks or
both reduce tasks) from the same job. The Hadoop scheduler
can assign a task ti to a work node Sj for execution as long
as ∀p ∈ [1, k],R[i, p] ≤ C[j, p]. In this paper, given C and
R, our goal is to design an efficient scheduler that can help
the cluster finish all the MapReduce jobs with the minimum
time (i.e., minimize the makespan). More specifically, let sti
be the starting time of task ti ∈ T , τi be the execution time
of ti, and xij indicate the association between ti and Sj , i.e.,
xij is 1 if task ti is assigned to worker node Sj . Then our
scheduling problem is to derive sti and xij in order to

minimize: max{sti + τi},∀i ∈ T

s.t.
∑

j∈[1,m]

xij = 1,∀ti ∈ T ; (1)

∑
ti∈A(θ)

xijR[i, p] ≤ C[j, p], j ∈ [1,m], p ∈ [1, k], θ > 0; (2)

xij ∈ {0, 1}, sti ≥ 0, ∀i, j.



Here time is measured as a discrete value which is multiple
of the time unit. θ represents a particular time point, and A(θ)
is defined as the set of active tasks at time θ, A(θ) = {ti ∈
T |sti ≤ θ ≤ sti + τi}. Therefore, constraint (1) specifies
that each task could be assigned to exactly one NodeManager,
and constraint (2) requires that the resources consumed by all
active tasks at a particular worker node Sj cannot exceed its
resource capacity.

Assume τi is available and each map/reduce task is indepen-
dent, our scheduling problem is equivalent to general resource
constrained scheduling problem which has been proved to
be NP-complete [5]. Many heuristics have been proposed for
solving the problem. Most of them, however, are not practical
to be directly implemented in the Hadoop YARN system.
The main issue is that the processing time τi of each task
ti is required to determine the schedule in the conventional
solutions. In practice, the value of τi cannot be known as a
prior before its execution in the system. Profiling or other
run time estimation techniques may be applied to roughly
estimate the execution time of map tasks [6], [7]. However, it
is extremely hard, if not impossible, to predict the execution
times of reduce tasks in a cluster where multiple jobs could
be running concurrently. In Hadoop YARN, the reduce tasks
of a MapReduce job consist of two main stages, shuffle and
reduce. In the shuffle stage, the output of each map task of
the job is transferred to the worker nodes which host the
reduce tasks, while computation in the reduce stage starts
when all the input data are ready. Therefore, the execution
time of a reduce task are dependent on several map-related
factors, such as the execution times of all map tasks and the
size of the intermediate output data. In this paper, we aim to
develop a more practical heuristic that does not require any
prior knowledge of task execution times.

B. Sketch of Our Solution HaSTE

We design a scheduler that consists of two components,
initial task assignment and real-time task assignment. First,
initial task assignment is executed when the cluster is just
started and all ApplicationMasters have submitted the resource
requests for their MapReduce tasks to the scheduler. The goal
of initial task assignment is to assign the first batch of tasks
for execution while the rest of tasks remain pending in the
system queue. Specifically, initial task assignment algorithm
needs to select a subset of pending tasks and select a hosting
work node for each of them for execution. On the other hand,
real-time task assignment is launched during the execution of
all the jobs when tasks are finished and the corresponding
resources are released. When new resources become available
at a worker node, the NodeManager will notify the scheduler
through heartbeat messages. Then the scheduler will execute
real-time task assignment to select one or more tasks from
the pending queue and assign them to the worker node with
new resources available. Compared to initial task assignment,
real-time task assignment is triggered by heartbeat messages
with resource capacity update and only dispatches tasks to the
hosting work node, i.e., the sender of the heartbeat message.

In our design, without prior knowledge of the execution
time, we exploit the greedy strategy to develop both initial task
assignment and real-time task assignment algorithms. Initial
task assignment is formulated as a variant of the knapsack
problem. We then use dynamic programming to derive the best
task assignment in the beginning. Real-time task assignment
is a more complex problem involving the progress of all
active tasks and the dependency between tasks. We develop
an algorithm that considers fitness and urgency of tasks for
determining the appropriate task to execute on-the-fly.

C. Initial Task Assignment

The objective of this component is to select a set of
tasks to start. Since the execution of each task is unknown,
it is impossible to yield the optimal solution at this point.
Therefore, we adopt the greedy strategy and simplify our
objective to be maximizing the resource utilization after initial
task assignment. If there is only one type of resource, then
this problem is equivalent to the typical knapsack problem.
Consider each worker node as a knapsack, the resource ca-
pacity refers to the knapsack capacity. Correspondingly, each
task can be considered as an item and the requested resource
amount is both the weight and the value of the item. The
optimal solution to the converted knapsack problem will yield
the maximized resource utilization in our problem setting.
However, the Hadoop YARN system defines two resources
(recall that we consider a general setting of k resources)
in which case our problem cannot directly reduce to the
knapsack problem. We thus need a quantitative means to
compare different types of resources, e.g., Is utilizing 100%
cpu and 90% memory better than utilizing 90% cpu and 100%
memory? We then assume that the cluster specifies a weight
wi for each resource ri. The initial task assignment problem
can be formulated as follows:

maximize:
∑
ti∈T

(
∑

j∈[1,m]

xij ·
∑

p∈[1,k]

wp · R[i, p])

s.t.
∑

j∈[1,m]

xij ≤ 1,∀ti ∈ T ;

∑
ti∈T

xij · R[i, p] ≤ C[j, p],∀j ∈ [1,m], p ∈ [1, k].

We design an algorithm using dynamic programming to
solve the problem. The details are illustrated in the following
Algorithm 1. The main algorithm is simply a loop that
assigns tasks to each of the m servers (lines 1–2). The core
algorithm is implemented in the procedure AssignTask(j, T ),
i.e., select tasks from T to assign to server Sj . We design
a dynamic programming algorithm with two 2-dimensional
matrices M and L, where M[a, b] is the maximum value of
our objective function with a capacity <a,b> and L records
the list of tasks that yield this optimal solution. The main loops
fill all the elements in M and L (lines 4–17). Eventually, the
algorithm finds the optimal solution (line 18) and assigns the
list of tasks to Sj (lines 19–23). When filling an element in the
matrices (lines 6–17), we enumerate all candidate tasks and



based on the previously filled elements, we check: (1) if the
resource capacity is sufficient to serve the task (lines 9-12);
and (2) if the resulting value of the objective function is better
than the current optimal value (lines 13-16). If both conditions
are satisfied, we update the matrices M and L (line 16-17).

Algorithm 1: Initial Task Assignment
Data: C, T,R
Result: x

1 for j = 1 to m do
2 AssignTask(j, T );
3 Procedure AssignTask(j, T)
4 for a = 1 to C[j, 1] do
5 for b = 1 to C[j, 2] do
6 for each ti ∈ T do
7 L = L[a−R[i, 1], b−R[i, 2]];
8 if ti ∈ L then Continue;
9 if

∑
tp∈LR[p, 1] +R[i, 1] > a then

10 Continue;
11 if

∑
tp∈LR[p, 2] +R[i, 2] > b then

12 Continue;
13 V = w1 · R[i, 1] + w2 · R[i, 2];
14 tmp =M[a−R[i, 1], b−R[i, 2]] + V ;
15 if M[a, b] < tmp then
16 M[a, b] = tmp; tmpL = L+ {ti};
17 L[a, b] = tmpL;
18 (x, y) = argmaxa,bM[a, b];
19 L = L[a, b];
20 T ← T − L;
21 for each ti ∈ L do
22 xij = 1;
23 return;

D. Real-time Task Assignment

Real-time task assignment is the core component in our
design of HaSTE as it is repeatedly conducted during the
execution of all the jobs. The main goal is to select a set
of tasks for being served on a worker node which has the
newly released resources. Given the “snapshot” information
only, it is difficult to make the best decision for the global
optimization, i.e., minimizing the makespan, especially con-
sidering the complexity of a MapReduce process. In this
paper, we develop a novel algorithm that considers two metrics
of each task, namely fitness and urgency. Our definition of
fitness represents the resource availability in the system and
resource demand from each task, while the urgency metric
characterizes the dependency between tasks and the impact of
each task’s progress. In the rest of this subsection, we first
describe the calculation of each metric and then present the
overall algorithm of real-time task assignment.

1) Fitness: Using fitness in our design is motivated by the
greedy solution to the classic bin packing problem. We first
note that some special cases of our problem are equivalent to
the classic bin packing problem. Assume that all submitted
jobs have only one type of tasks and all tasks are independent
to each other. Also, assume that the execution times of all
tasks are the same, say u time units. Our scheduling problem
thus becomes packing tasks into the system for each time unit.

The total resource capacity is considered as the bin size and
the makespan is actually the number of bins. Thus, finding
the optimal job scheduling in this setting is equivalent to min-
imizing the number of bins in the bin packing problem. The
classic bin packing considers only one type of resource and has
been proven to be NP-hard. A greedy heuristic, named First
Fit Decreasing (FFD), is widely adopted to solve the problem
because it is effective in practice and yields a 11

9 OPT + 1
worst case performance [8]. The main idea of FFD is to sort
tasks in a descending order of the resource requirements and
keep allocating the first fitted tasks in the sorted list to the bins.
Figure 1 illustrates how FFD can improve the makespan and
resource utilization when scheduling two jobs with different
memory requirements.

In fact, with two types of resources (memory and cpu) sup-
ported in Hadoop YARN, the simplified scheduling problem is
equivalent to the vector bin packing problem in the literature.
Different variants of FFD have been studied for solving the
vector bin packing problem [9]. The FFD-DotProduct (dubbed
as FFD-DP) method has been shown to be superior under
various evaluation sets. Therefore, we adopt the FFD-DP
method to schedule map and reduce tasks with two resource
requirements. Specifically, we define fitness as:

Fij =
∑

p∈[1,k]

R[i, p] · C[j, p] · wp. (3)

Real-time task assignment uses Eq.(3) to calculate a fitness
score for each pending task ti when selecting tasks to be
executed on the worker node Sj . Recall that for each resource
rp, R[i, p] is the requested amount from ti, C[j, p] is the
resource capacity at Sj , and wp is the weight of the resource.
Intuitively, we prefer to select the task with the highest fitness
score. Therefore, real-time task assignment can sort all the
pending tasks in the descending order of their fitness scores,
and then assign the first task to the worker node Sj . After
updating Sj’s resource capacity, real-time task assignment will
repeat this selection process to assign more tasks until there is
no sufficient resource on Sj to serve any pending tasks. The
FFD-DP algorithm works well with multiple resource types
since it is aware of the skewness of resource requirements. For
example, assume that there two types of tasks with different
resource requirements: one requests <1 GB, 3 cores> and the
other requests <3 GB, 1 core>; and real-time task assignment
tries to assign tasks to a worker node with residual capacity of
<10 GB, 6 cores>. The FFD-DP algorithm will choose 3 tasks
of type II and 1 task of type I, which results in 100% resource
utilization. The following table shows the fitness scores of
these two types of tasks at each iteration of the algorithm.

Capacity <10,6> <7,5> <4,4> <3,1>
Type I <1 GB, 3 cores> 28 22 16 6
Type II <3 GB, 1 core> 36 26 16 10

2) Urgency: Scheduling in Hadoop YARN is more complex
than the regular job scheduling problem due to the dependency
between map and reduce tasks. Considering fitness alone may
not always lead to good performance in practice. Although
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Fig. 1: Scheduling two jobs under (a) FIFO, (b) Fair and (c) FFD, where a worker node with 4G memory capacity is processing two jobs
each with 4 tasks. Job 1 arrives first and each of its task requests 1G memory (blue blocks), while each task of Job 2 requests 3G memory,
see yellow blocks. Assume that the execution time of each task is one time unit. Thus, the FFD scheduler uses 4 time units to finish both
jobs while FIFO and Fair need 5 time units.

there has been previous work [10]–[13] on job scheduling
under the dependency constraints, their solutions cannot be di-
rectly applied to our problem because the dependency between
map and reduce tasks is quite different from the dependency
defined in [10]–[13]. In traditional scheduling problems, a
task tj is said to be dependent on task ti, i.e., ti ≺ tj , if
tj cannot start before ti has been completed. However, in
the MapReduce framework, reduce tasks, although depend on
the outputs of all map tasks, can start before the completion
of all map tasks for retrieving the intermediate data from
the completed map tasks. This early start is configured by a
system parameter “slowstart” and renders a better performance
in practice.

Consequently, the execution of the reduce tasks are highly
dependent on the execution of map tasks,. Indeed, such de-
pendency relationship has been known by ApplicationMas-
ters when making reduce task requirements. A new metric,
named “Ideal Reduce Memory Limit”, is calculated as the
product of the progress of map tasks and the total “available”
memory for the corresponding job. The resource limit of
reduce tasks increases gradually with the progress of map
tasks. An ApplicationMaster sends new reduce task requests
to the ResourceManager only when the present resource limit
is enough for running more reduce tasks.

However, we observed that the current schedulers in Hadoop
YARN, which are designed for more general task scheduling,
fail to recognize the impact of dependency in MapReduce
jobs and may lead to ineffective resource assignments and
poor performance as well. For example, a job that has already
launched many reduce tasks may not be able to have all
its map tasks to be executed right away due to resource
contention among other jobs; the launched reduce tasks will
keep occupying the resources when waiting for the completion
of all maps tasks of the same job. This incurs low utilization
of resources that are allocated to those reduce tasks.

To address the above issue, HaSTE uses a new metric,
named “urgency”, to capture the performance impact caused
by the dependency between map and reduce tasks of MapRe-
duce jobs. Specifically, we have the following main scheduling
rules associated with the urgency.
R1. A job with more progress in its map phase, will be more
urgent to schedule its map tasks. This rule can boost the
completion of the entire map phase and further reduce the
execution time of the launched reduce tasks.

R2. A job with more resources allocated to its running reduce
tasks will be more urgent to schedule its map tasks in order
to avoid low resource utilization when its reduce tasks are
waiting for the completion of map tasks.
R3. Reduce tasks should be more urgent than map tasks of the
same job if the ratio between resources occupied by currently
running reduces and all currently running tasks is lower than
the progress of map phase, vice versa.

In summary, R1 and R2 are used to compare the urgency
between two different jobs while the urgency of map/reduce
tasks from the same job is compared by R3. We have the
following equations to calculate the urgency score Um

i (Ur
i )

for each map (reduce) task from job i:

Um
i =

Am
i

Tm
i

· (Ar
i ·Rr

i +Aam
i ·Ram

i ), (4)

Ur
i = Um

i · A
m
i

Tm
i

· O
m
i ·Rm

i +Or
i ·Rr

i

Or
i ·Rr

i

. (5)

Here Am
i /Ar

i /A
am
i represents the number of

map/reduce/ApplicationMaster tasks that have been assigned
for job i, and Rm

i /Rr
i /R

am
i represents the resource

requirement of a single map/reduce/ApplicationMaster
task, i.e., the weighted summation of memory and cpu
requirements. Tm

i represents the total number of map tasks of
job i. Om

i /Or
i represents the number of running map/reduce

tasks of job i that are currently occupying system resources.
All these metrics are accessible to the scheduler in the current
YARN system. Therefore, we implemented our new scheduler
as a pluggable component to YARN without any needs of
changing other components.

3) HaSTE Scheduler: Now, we turn to summarize the
design of HaSTE by integrating the two new metrics, i.e.,
fitness and urgency, into the scheduling decision.

Once a node update message is received from a NodeMan-
ager, the scheduler first creates a list of all resource requests
that can fit the remaining resource capacity of that node. Mean-
while, the scheduler calculates the fitness and urgency scores
of those chosen resource requests, and obtains the preference
score for each request by summating the normalized fitness
and urgency scores, see Eq.(6).

Pi =
Fi − Fmin

Fmax − Fmin
+

Ui − Umin

Umax − Umin
, (6)

where Fmax and Fmin (resp. Umax and Umin) record the



maximum and minimum fitness (resp. urgency) scores among
these requests.

Such preference scores are then used to sort all resource
requests in the list. The resource request with the highest
score will be chosen for being served. Note that each resource
request can actually represent a set of task requests since tasks
with the same type and from the same job usually have the
same resource requirements. The scheduler will then choose a
task that has the best locality (i.e., node local or rack local) and
assign that task to the NodeManager. One special type of task
request is the request for ApplicationMaster. Such requests
always have the highest preference score in HaSTE due to its
special functionality, i.e. submitting resource requirements and
coordinating the execution of a job’s tasks.

Finally, we remark that the complexity of our scheduling
algorithm is O(n log n) which is determined by the sorting
process. Here n is the number of running jobs rather than
the number of running tasks, since all tasks with the same
type and from the same job could be represented in a single
resource request and then have the same preference score.
Therefore, HaSTE is a light-weighted and practical scheduler
for the Hadoop YARN system.

IV. EVALUATION

In this section, we evaluate the performance of HaSTE
by conducing experiments in a Hadoop YARN cluster. We
implemented both HaSTE and FFD-DotProduct (abbrev. FFD-
DP) schedulers in Hadoop YARN version 2.2.0 and compared
HaSTE with three built-in schedulers (i.e., FIFO, Fair and
DRF) and FFD-DP. The performance metrics considered in
the evaluation include makespans of a batch of MapReduce
jobs and resource utilizations of the Hadoop YARN cluster.

A. Resource Requests of MapReduce Jobs

In our experiments, we consider different resource require-
ments such that a job can be either memory intensive or cpu
intensive. The resource requirements of map and reduce tasks
of a MapReduce job can be specified by the user when that job
is submitted. The user should set the resource requirements
equal to or slightly more than the actual resource demands.
Otherwise, a task will be killed if it needs more resources than
its required resource amount1. Such a mechanism adopted in
the YARN system can prevent malicious users from faking
the resource requirements and thus from thrashing the system.
On the other hand, it is not proper either to request much
more than the actual demands because the concurrency level
of MapReduce jobs and the actual resource utilizations will be
reduced and the performance will be degraded as well. We note
that how to set appropriate resource requirements for each job
is out of this paper’s scope. In our experiments, we vary the
resource requirements for different jobs in order to evaluate the

1We note that the virtual cpu cores are not physically isolated for each task
in the YARN system. While, the number of virtual cpu cores requested for
a task determines the priority of that task when competing for cpu times.
Therefore, an inappropriate low request of virtual cpu cores is also not
desired because it may lead to insufficient cpu times that a task can get and
dramatically delay the execution of that task.

schedulers under various resource requirements, but keep the
resource requirements configuration the same under different
scheduling algorithms.

B. Experiment Results

Here, we conduct two sets of experiments in a Hadoop
YARN cluster with 8 nodes, each of which is configured with
the capacity of 8GB memory and 8 virtual cpu cores, i.e.,
<8G, 8cores> .

1) Simple Workload: In the first set of experiments, we
consider a simple workload which consists of four Wordcount
jobs. Each job in this workload parses the same 3.5G wiki
category links input file. Therefore, all the four jobs have the
same number of map and reduce tasks. The map task number
is determined by the input file size and the HDFS block size
which is set to 64MB in this experiment. As described in
Section IV-A, for different jobs, we vary the resource require-
ments on a single type of resource for analyzing the impact
of resource requirements on the scheduling performance. The
configurations of each job and their resource requirements are
shown in Table I.

TABLE I: Simple Workload Configuration.

Job ID #Map #Reduce Rm Rr

1 52 5 <1G, 2cores> <1G, 2cores>
2 52 5 <1G, 3cores> <1G, 2cores>
3 52 5 <1G, 4cores> <1G, 3cores>
4 52 5 <1G, 5cores> <1G, 3cores>
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Fig. 2: Makespans and average resource utilizations under the
workload of 4 Wordcount jobs. The left y-axis shows the makespans
(sec.) while the right y-axis shows the cpu and memory resource
utilizations (%).

Figure 2 shows the makespans and the average resource
(mem and cpu) utilizations under different scheduling poli-
cies. We observe that all the conventional schedulers (i.e.,
FIFO, Fair, and DRF) cannot efficiently utilize the system
resources, e.g., under 60% cpu core utilization and under 30%
memory utilization. Although these conventional schedulers
obtain similar resource utilizations, FIFO outperforms Fair
by 23.8% and DRF by 29.3%. That is because under Fair
and DRF, when multiple jobs are running concurrently in the
cluster, their reduce tasks are launched and thus occupy most
of the resources, which may dramatically delay the execution
of map phases. Similarly, the makespan under the FFD-DP
scheduling policy is 10% larger than under FIFO, although
FFD-DP achieves the highest resource utilizations, e.g., 86.6%
cpu cores utilization in average. While, the new scheduler



HaSTE solves this problem by considering the impacts of both
resource requirements (i.e., fitness) and dependency between
tasks (i.e., urgency) and thus achieves the best makespan,
which is, for example, 27% and 44.6% shorter than FIFO and
Fair, respectively.

2) Mixed Workload: To further validate the effectiveness
of HaSTE, we conduct a more complex workload which is
mixed with both cpu and memory intensive MapReduce jobs.
Table II shows the detailed workload configuration, where
the input data for Terasort is generated through the Teragen
benchmark, and the input for Wordcount and Wordmean is the
wiki category links data. In this set of experiments, we set the
HDFS block size equal to 128MB.
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Fig. 3: Makespans and average resource utilizations under the mixed
workload of four benchmarks. The left y-axis shows the makespans
(sec.) while the right y-axis shows the cpu and memory resource
utilizations (%).

Figure 3 plots the makespans and the average resource
utilizations under this mixed workload. Consistently, the three
conventional scheduling policies have similar average resource
utilizations, e.g., around 50% for both cpu and memory. How-
ever, in this experiment, jobs experience similar makespans
under the Fair and DRF policies as well as under FIFO. We
interpret this by observing that the ApplicationMasters killed
the running reduce tasks to prevent the starvation of map
tasks when these reduce tasks occupy too many resources.
On the other hand, both FFD-DP and HaSTE increase the
average resource utilizations , e.g., to around 80%, through
the resource-aware task assignment. FFD-DP also improves
the makespan by 18.1% and 14.8% compared to FIFO and
Fair, respectively. HaSTE further improves the performance in
terms of makespan by 36.3% and 33.9% compared to FIFO
and Fair, respectively.

To better understand how these scheduling policies work,
we further plot the runtime memory allocations in Figure 4.
We observe that the precedence constraint of FIFO policy and
the fairness constraint of Fair and DRF policies can both lead
to inefficient resource allocation in the Hadoop YARN cluster.
For example, when cpu intensive jobs are running under the
FIFO policy, see job 3,4,6,7 in Figure 4(a), the scheduler
cannot co-schedule memory intensive jobs at the same time,
and a large amount of memory resources in the cluster are
idle for a long period. While, under the Fair and DRF
policies, although all jobs share the resources, the fairness
constraint, i.e., all jobs should get equal shares on average, in
fact hinders the efficient resource utilizations. For example,
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Fig. 4: Illustrating the memory resources that have been allocated
to each job cross time under different scheduling policies.

when a node has < 1GB, 4 cores > available resources
and two tasks t1 and t2 with R1 =< 1GB, 4 cores > and
R2 =< 1GB, 1 core > are waiting for service, Fair may
assign resources to t2 if this tasks now deserves more share
of resources, which will lead to a waste of 3 cpu cores on
the node. We also observe that by tuning the resource shares
among different jobs, the FFD-DP policy could achieve better
resource utilizations across time. More importantly, HaSTE
also achieves high or even slightly higher resource utiliza-
tions across time. This is because HaSTE allows jobs whose
resource requirements can better fit the available resource
capacities to have higher chance to get resources and thus
improves the resource utilizations.

In summary, HaSTE achieves non-negligible improvements
in terms of makespans and resource utilizations when the
MapReduce jobs have various resource requirements. By
leveraging the information of job resource requirements and
cluster resource capacities, HaSTE is able to efficiently sched-
ule map/reduce tasks and thus improve the system resource
utilization. In addition, the makespans of MapReduce jobs
are further improved by taking the dependency between map
and reduce tasks into consideration when multiple jobs are
competing for resources in the YARN cluster.

V. RELATED WORK

One important direction is the enhanced job scheduling.
Zaharia et al. [14] proposed a delay scheduling policy to



TABLE II: Mixed Workload Configuration.

Job Type Job ID Input Size #Map #Reduce Rm Rr

Terasort 1 5GB 38 6 < 3GB, 1 core > < 2GB, 1 core >
2 10GB 76 12 < 4GB, 1 core > < 2GB, 1 core >

WordCount 3 7GB 52 12 < 2GB, 3 cores > < 1GB, 2 cores >
4 3.5GB 26 6 < 2GB, 4 cores > < 1GB, 2 cores >

WordMean 5 7GB 52 8 < 2GB, 2 cores > < 1GB, 1 core >
6 3.5GB 26 4 < 2GB, 1 core > < 1GB, 1 core >

PiEstimate 7 - 50 1 < 1GB, 3 cores > < 1GB, 1 core >
8 - 100 1 < 1GB, 4 cores > < 1GB, 1 core >

improve the performance of Fair scheduler by increasing
the data locality of Hadoop. This work is compatible with
both Fair scheduler and our proposed scheduling policies.
Quincy [15] formulated the scheduling problem in Hadoop
as a minimum flow network problem, and decided the slots
assignment that obey the fairness and locality constraints by
solving the minimum flow network problem. However, the
complexity of this scheduler is high and it was designed for
slot based scheduling in the first generation Hadoop. Verma
et al. [16] introduced a heuristic to minimize the makespan
of a set of independent MapReduce jobs by applying the
classic Johnson’s algorithm. Our previous work [17] proposed
a new scheme that uses the slot assignment as a tunable
knob for reducing the makespan of MapReduce jobs in a
Hadoop system. These two works were both based on the first
generation Hadoop, which adopts the slot concept for resource
management.

Fine-grained resource management was also well studied
for Hadoop systems. ThroughputScheduler was proposed by
Gupta et al. [18] to improve the performance of heterogeneous
Hadoop clusters. An explore stage was proposed to learn the
resource requirement of tasks and the capabilities of nodes,
and the scheduler could then select the best node to assign
tasks. Polo et al. [19] leveraged job profiling information to
dynamically adjust the number of slots on each node, as well
as workload placement across nodes, to maximize the resource
utilization of the Hadoop cluster. Our scheduler, however, does
not require any learning phases or job profiles for scheduling.
Therefore, HaSTE is more lightweight and practical.

VI. CONCLUSION

In this paper, we presented a novel scheduling policy
(HaSTE) for Hadoop YARN systems. The primary goal of
HaSTE is to improve the resource utilization and reduce the
makespan of a given set of MapReduce jobs. Based on each
task’s fitness and urgency, HaSTE dynamically schedules tasks
for execution when resources become available. We imple-
mented HaSTE in Hadoop YARN v.2.2.0 and evaluated this
scheme by running representative MapReduce benchmarks.
The experimental results demonstrated that HaSTE improves
the performance in terms of both resource utilization and
makespan under different workloads. In the future, we plan
to extend our design of scheduling policies for other cloud
computing paradigms such as Storm and Spark.
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