
Admission Control in YARN Clusters Based on
Dynamic Resource Reservation

Yi Yao∗
yyao@ece.neu.edu

Jason Lin∗
jacks953107@ece.neu.edu

Jiayin Wang†
jane@cs.umb.edu

Ningfang Mi∗
ningfang@ece.neu.edu

Bo Sheng†
shengbo@cs.umb.edu

∗Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115
†Department of Computer Science, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125

Abstract—Hadoop YARN is an open project developed by the
Apache Software Foundation to provide a resource management
framework for large scale parallel data processing. However,
there exists a resource waiting deadlock under the Fair scheduler
when the resource requisition of applications is beyond the
amount that the cluster can provide. In such a case, the
YARN system will be halted if all resources are occupied by
ApplicationMasters, a special task of each job that negotiates
resources for processing tasks and coordinates job execution.
Therefore, we develop a new admission control mechanism which
dynamically reserves resources for processing tasks in order to
avoid resource waiting deadlocks and meanwhile obtain good
performance. We implement and evaluate our new mechanism
in Hadoop YARN v2.2.0. The experimental results show the
effectiveness of this mechanism under MapReduce benchmarks.

I. INTRODUCTION

Large scale data analysis is of great importance in a
variety of research and industrial areas during the age of
data explosion and cloud computing. MapReduce [1] becomes
one of the most popular programing paradigms in recent
years. Its open source implementation Hadoop [2] has been
widely adopted as the primary platform for parallel data
processing [3]. Recently, the Hadoop MapReduce ecosystem
is evolving into its next generation, called Hadoop YARN
(Yet Another Resource Negotiator) [4], which adopts fine-
grained resource management for job scheduling. A YARN
system often consists of one centralized manager node running
the ResourceManager (RM) daemon and multiple work nodes
running the NodeManager (NM) daemons. However, there are
two major differences between YARN and traditional Hadoop.
First, the RM in YARN no longer monitors and coordinates
job execution as the JobTracker of traditional Hadoop does.
Alternatively, an ApplicationMaster (AM) is generated for
each application in YARN to coordinate all processing tasks
(e.g., map/reduce tasks) from that application. Therefore,
the RM in YARN is more scalable than the JobTracker in
traditional Hadoop. Secondly, YARN abandons the previous
coarse-grained slot configuration used by TaskTrackers in
traditional Hadoop. Instead, NMs in YARN consider fine-
grained resource management for managing various resources.
e.g., CPU and memory, in the cluster.

This work was partially supported by the AFOSR grant FA9550-14-1-
0160, Northeastern University FY14 Tier-1 grant, and the AWS in Education
Research Grant.

On the other hand, YARN uses the classic scheduling
policies (such as FIFO, Fair and Capacity) as the default
schedulers. However, we found that a resource (or “container”)
starvation problem exists in the present YARN scheduling
under Fair and Capacity. For each application in YARN, an
ApplicationMaster is first generated to coordinate its pro-
cessing tasks. Such an ApplicationMaster is indeed a special
task in YARN, which has higher priority to get resources (or
containers) and stays alive without releasing resources till all
processing tasks of that application finish. Consequently, when
the amount of concurrently running jobs becomes too high, for
example, a burst of jobs arrived, it is highly likely that system
resources are fully occupied by ApplicationMasters of these
running jobs. A resource waiting deadlock thus happens such
that each ApplicationMaster is waiting for other Application-
Masters to release resources for running their processing tasks.

To solve this problem, one could kill/terminate running jobs
and their AMs to break the deadlock. An alternative solution
is to apply an admission control mechanism to control the
number of jobs concurrently running in the system. Admission
control in cloud computing has also been well studied in
different aspects. Wu et al. [5] proposed admission control
policies that aim to maximize the SaaS provider’s profits
based on users’ and IaaS providers’ SLAs (Service Level
Agreements). Machine learning based admission control for
MapReduce jobs was proposed in [6] to meet job deadlines. In
this work, we consider to control the number of concurrently
running jobs (or ApplicationMasters) by reserving resources
to run processing tasks. By this way, the deadlock of resource
waiting can be avoided. However, choosing a good admission
control mechanism (e.g., how many jobs admitted in the sys-
tem?) is difficult when system efficiency is also an important
consideration. If we reserve too many resources for running
processing tasks, then the concurrency of jobs will be sac-
rificed because the resources for starting ApplicationMasters
are limited. In contrast, running jobs might take a long time to
receive resources for running their processing tasks and thus
be delayed dramatically if we admit too many jobs in the
system. Furthermore, MapReduce applications in real systems
are often heterogeneous, with job sizes varying from a few
tasks to thousands of tasks and different submission rates [7].
A static and fixed admission control mechanism thus cannot
work well.

Therefore, the objective of this work is to design a new

978-3-901882-76-0 @2015 IFIP 838

admission control mechanism which can automatically and
dynamically decide the number of concurrently running jobs,
with the goal of avoiding the resource waiting deadlock and
meanwhile preserving good system performance. The main
performance metric we take into consideration is the makespan
(i.e., total completion length) of a given set of MapReduce
jobs. We implement and evaluate our new admission control
mechanism in a YARN platform (e.g., Hadoop YARN v2.2.0).
The experimental results demonstrate that our new mechanism
achieves the near optimal performance by leveraging the
collected information of workloads and resource usages to
decide the amount of resources that need to be reserved for
regular tasks.

The remainder of the paper is organized as follows. In
Section II, we present our new admission control mechanism.
Evaluation of this mechanism is presented in Section III. We
draw our conclusion in Section IV.

II. METHODOLOGY

The basic solution of preventing the deadlock situation is to
reserve resources for running processing tasks. However, the
amount of reserved resources has a great impact on system
efficiency. A bad choice might degrade the system perfor-
mance and the optimal amount often changes under different
workloads. Therefore, we design a new admission control
mechanism that can dynamically determine the optimal tuning
point (i.e., the amount of resources reserved for processing
tasks) and perform admission control on incoming YARN jobs.
There are three main components in our mechanism:

• RIC (Resource Information Collector): collect the re-
source and container’s information from each node
through heartbeat messages.

• RRP (Reserved Resource Predictor): decide how many
resources should be reserved based on the information
collected by RIC.

• ARC (Application Resource Controller): leverage the
predicted value of RRP to manipulate an application’s
running.

A. Resource Information Collector

The key function of this component is to record the number
of currently running ApplicationMasters and processing tasks
as well as the amount of resources that have been occupied
by these two kinds of containers on each worker node. A
map data structure is maintained to record the information
and will be updated through each heartbeat message between
NodeManagers and the ResourceManager.

B. Reserved Resource Predictor

The purpose of the RRP component is to find out the
amount of reserved resources that can not only preserve
high throughput of the system but also prevent the deadlock
problem. As the optimal value of reservation is varying under
different workloads, the RRP component should be frequently
triggered in order to adapt to dynamic workload changes. The
overhead of this component thus becomes a primary concern

when the workload changes too frequently. In this paper, we
propose a simple, heuristic approach to decide an appropriate
reservation level according to the information of workload
characteristics provided by the RIC component.

To better understand the relationship between the optimal
amount of reserved resources (RR) and the resource requisi-
tion of processing task’s (TCR) and AM’s (AMCR) contain-
ers, we conduct 16 sets of experiments, in each of which a
batch of jobs with the same resource requirements is launched
repeatedly under different static resource reservations. The
optimal amounts of reserved resources (which achieve the best
makespans) are shown in Figure 1 as a function of different
(TCR, AMCR) pairs. A linear relationship can be observed
between the optimal reservation (see z-axis) and the resource
requirements of AM (x-axis) and processing tasks (y-axis). We
thus derive the following function:

RR = CR · TCR

AMCR + TCR
, (1)

where CR gives the total resource capacity. The intuition
behind Eq.(1) is that we need to reserve enough resources for
each running application in order to run at least one processing
task to avoid severe resource contention.

T1	

T2	

T3	

T4	

24	

28	

32	

36	

40	

44	

48	

A1	

A2	

A3	

A4	

Vc
or
e

44-‐48	

40-‐44	

36-‐40	

32-‐36	

28-‐32	

24-‐28	

Fig. 1. The optimal amounts of reserved resources (i.e., number of vcores)
under 16 sets of experiments, as a function of resource requirements of an
AM task (from 1 vcore to 4 vcores, see x-axis) and a processing task (from 1
vcore to 4 vcores, see y-axis). Different colors in the surface further indicate
different ranges of makespans of the given set of jobs.

Furthermore, we find that such a linear relationship still
holds under the mixed workloads where jobs can have dif-
ferent resource requirements if we use the average resource
requirements of running AMs and processing tasks to calculate
the amount of reserved resources, i.e.,

RR = CR · AvgTCR

AvgAMCR +AvgTCR
, (2)

where AvgAMCR and AvgTCR indicate the average re-
source requirements of running AMs and processing tasks,
respectively. Under the mixed workloads, the prediction value
may change over time. For example, the reservation may
increase when a new job’s AM is submitted for running.
However, such an increasing of reservation usually cannot be
performed immediately since the resources that are already
occupied by AMs cannot be released quickly. For example,

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Short Paper 839

as shown in Figure 2, the desired resource reservation for
processing tasks is 30 vcores at time period 1. However,
the actual amount of remaining resources in the system, i.e.,
resources that are not occupied by AMs, is 10 vcores. The
predicted reservation cannot be achieved until time period 10.
To mitigate the impact of this situation, we further scale up
the amount of reserved resources to speed up the execution of
processing tasks in the next time period, i.e.,

RR = RR · RR + TotalAMCR

CR
, (3)

where TotalAMCR indicates the total amount of resources
occupied by AMs The scale-up is triggered when the sum-
mation of resources that are currently occupied by AMs and
are needed to be reserved for processing tasks exceeds the
resource capacity of the cluster.

0	
5	
10	
15	
20	
25	
30	
35	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Re
so
ur
ce
(v
co
re
)	

Time(s)

Busy	 Condi4on

Real	 Value	

Predict	 Value	

Fig. 2. Deficit between actual available and to-be-reserved resources.

C. Application Resource Controller (ARC)

The ARC component manages two job queues, i.e., running
queue and waiting queue. Each submitted job is inserted into
one of these two queues according to the reservation policy.
When a job is submitted to YARN, the ARC component
decides if this job can enter the running queue. If the amount
of resources for running processing tasks is more than the
desired reservation, then the submitted job enters the running
queue such that this job’s AM can be launched immediately.
Furthermore, once a work node sends a heartbeat message
to the ResourceManager, the ARC component re-calculates
the amount of available resources and re-submits jobs that are
currently waiting in the queue if available resources are enough
to run additional AMs. For example, as shown Figure 3, when
RRP decides to reserve 21 vcores for processing tasks, 6
remaining vcores can then be assigned to AM tasks. The AMs
of currently running jobs, i.e., job1 and job2, have already
occupied all 6 vcores. Therefore, job3 needs to be inserted
into the waiting queue and waits for available resources to
start its execution.

III. EVALUATION

A. Experiment Settings

We implement our new admission control mechanism in the
Fair scheduler of Hadoop YARN v2.2.0, and build the YARN
platform on a local cluster with one master node and 8 worker
nodes. Each worker node is configured with 8 vcores and
12GB memory, such that the YARN cluster has the resource
capacity of 64 vcores and 96GB memory.

Cluster Resources (Vcore)

AM

(2vcore)

Task

(2vcore)

Task

(2vcore)

Task

(2vcore)

AM

(4vcore)

Task

(3vcore)

Task

(3vcore)

Task

(3vcore)

Task

(3vcore)

Job1

Job2

AM

(1vcore)

Task

(2vcore)

Task

(2vcore)

Task

(2vcore)

Job3

Running Waiting

Fig. 3. Example of the ARC component.

For better understanding how well our new mechanism
works, we calculate the relative performance score as follows.

Perf. Score =

(
1− Makespan−Min Makespan

Min Makespan

)
×100%,

(4)
where Makespan is the measured makespan (i.e., total com-
pletion length) of a batch of MapReduce jobs under our
dynamic admission control mechanism, and Min Makespan
represents the makespan under the optimal static admission
control setting.

B. Results Analysis

In our experiments, we submit a batch of 72 terasort
jobs in each round. The terasort benchmark is a MapReduce
implementation of quick sort and its input files are generated
through the teragen program. All jobs in the same round
have the same resource requirements and each job processes
a 100MB randomly generated input file. We further change
the resource requirements for jobs in different rounds, i.e.,
from 1 vcore to 4 vcores for both ApplicationMasters and
processing tasks. Therefore, there are totally 16 rounds with
different resource requirement combinations.

Figure 4 depicts the makespans under our admission control
mechanism which dynamically sets the resource reservations
(see dashed lines) as well as different static reservation con-
figurations (see solid lines). The corresponding Perf. Scores of
our new mechanism are also shown in Table I.

TABLE I
Perf. Scores UNDER HOMOGENEOUS WORKLOADS.

AMC=1 AMC=2 AMC=3 AMC=4
TC=1 90.4% 99.6% 89.3% 91.4%
TC=2 99.3% 95.6% 99.4% 91.7%
TC=3 97.6% 99.2% 96.9% 97.4%
TC=4 88.5% 90.5% 99.7% 98.5%

We first observe that different resource requirements need
different amounts of reserved resources (e.g., numbers of

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Short Paper840

 0

 200

 400

 600

 800

 1000

 20 25 30 35 40 45 50 55

M
ak

es
p
an

(s
ec

)

Static reserved vcores

AM(1core)−Task(2cores)

 0

 200

 400

 600

 800

 1000

 20 25 30 35 40 45 50 55

M
ak

es
p
an

(s
ec

)

Static reserved vcores

AM(1core)−Task(3cores)

 0

 200

 400

 600

 800

 1000

 20 25 30 35 40 45 50 55

M
ak

es
p
an

(s
ec

)

Static reserved vcores

AM(1core)−Task(4cores)

 0

 200

 400

 600

 800

 1000

 1200

 20 25 30 35 40 45 50 55

M
ak

es
p

an
(s

ec
)

Static reserved vcores

AM(2cores)−Task(4cores)

 0

 200

 400

 600

 800

 1000

 1200

 20 25 30 35 40 45 50 55

M
ak

es
p

an
(s

ec
)

Static reserved vcores

AM(2cores)−Task(3cores)

 0

 200

 400

 600

 800

 1000

 1200

 20 25 30 35 40 45 50 55

M
ak

es
p

an
(s

ec
)

Static reserved vcores

AM(2cores)−Task(2cores)

 0

 200

 400

 600

 800

 1000

 1200

 20 25 30 35 40 45 50 55

M
ak

es
p

an
(s

ec
)

Static reserved vcores

AM(2cores)−Task(1core)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 20 25 30 35 40 45 50 55

M
ak

es
p

an
(s

ec
)

Static reserved vcores

AM(3cores)−Task(1core)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 20 25 30 35 40 45 50 55

M
ak

es
p

an
(s

ec
)

Static reserved vcores

AM(3cores)−Task(2cores)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 20 25 30 35 40 45 50 55

M
ak

es
p

an
(s

ec
)

Static reserved vcores

AM(3cores)−Task(3cores)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 20 25 30 35 40 45 50 55

M
ak

es
p

an
(s

ec
)

Static reserved vcores

AM(3cores)−Task(4cores)

 0

 500

 1000

 1500

 2000

 20 25 30 35 40 45 50 55

M
ak

es
p

an
(s

ec
)

Static reserved vcores

AM(4cores)−Task(4cores)

 0

 500

 1000

 1500

 2000

 20 25 30 35 40 45 50 55

M
ak

es
p

an
(s

ec
)

Static reserved vcores

AM(4cores)−Task(3cores)

 0

 500

 1000

 1500

 2000

 20 25 30 35 40 45 50 55

M
ak

es
p

an
(s

ec
)

Static reserved vcores

AM(4cores)−Task(2cores)

 0

 500

 1000

 1500

 2000

 20 25 30 35 40 45 50 55

M
ak

es
p

an
(s

ec
)

Static reserved vcores

AM(4cores)−Task(1core)

 0

 200

 400

 600

 800

 1000

 20 25 30 35 40 45 50 55

M
ak

es
p
an

(s
ec

)

Static reserved vcores

AM(1core)−Task(1core)

Fig. 4. Makespans of a batch of terasort jobs, where the solid lines show the results under different static reservation configurations and the dashed lines
present the results under our mechanism which dynamically sets the resource reservations.

vcores) for running tasks in order to achieve the best per-
formance, i.e., the minimum makespan, see solid lines in
Figure 4. However, it is inherently difficult to statically find
such an optimal reservation level, especially if resource re-
quirements are not fixed. While, by dynamically tuning the
resource reservation level, our admission control mechanism
always obtains the best performance compared to the results
under the static resource reservations (see dashed lines in
the figure) under most resource requirement configurations.
Table I further demonstrates that our new mechanism achieves
high Perf. Scores, e.g., under more than half of the cases,
Perf. Scores are greater than 95%.

IV. CONCLUSIONS

In this paper, we presented a novel admission control
mechanism that integrates with the existing Fair scheduler
of Hadoop YARN. The main objective of our work is to
automatically and dynamically reserve a specific amount of
resources for processing tasks in YARN such that the deadlock
problem caused by ApplicationMasters can be avoided. In
addition, we aim to achieve better performance by controlling
the concurrency level of jobs in the cluster. To meet this goal,
the mechanism collects the resource usage information from
each work node and leverages this information to predict the
optimal amount of reserved resources for processing tasks.
A waiting queue is further maintained to hold delayed jobs

that will be resubmitted when there are available resources.
We implemented and evaluated our proposed mechanism in
Hadoop YARN v2.2.0. The experimental results demonstrate
that our mechanism can achieve the near optimal performance.
In the future, we will investigate the relationship between job
concurrency and system throughput in a YARN cluster and
further extend our work to other cloud computing platforms.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[2] Apache, “Apache hadoop nextgen mapreduce (yarn).” [Online]. Avail-
able: http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/
YARN.html

[3] “Apache hadoop users.” [Online]. Available: https://wiki.apache.org/
hadoop/PoweredBy

[4] V. K. Vavilapalli, A. C. Murthy, C. Douglas et al., “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing. ACM, 2013.

[5] L. Wu, S. Kumar Garg, and R. Buyya, “Sla-based admission control for a
software-as-a-service provider in cloud computing environments,” Journal
of Computer and System Sciences, vol. 78, no. 5, pp. 1280–1299, 2012.

[6] J. Dhok, N. Maheshwari, and V. Varma, “Learning based opportunistic
admission control algorithm for mapreduce as a service,” in Proceedings
of the 3rd India software engineering conference. ACM, 2010, pp. 153–
160.

[7] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for evaluating
mapreduce performance using workload suites,” in Modeling, Analysis
& Simulation of Computer and Telecommunication Systems (MASCOTS),
2011 IEEE 19th International Symposium on. IEEE, 2011, pp. 390–399.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Short Paper 841

