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ABSTRACT

PRECISELY SERIALIZABLE SNAPSHOT ISOLATION

December 2011

Stephen A. Revilak, B.M., Berklee College of Music
M.S., University of Massachusetts Boston
Ph.D., University of Massachusetts Boston

Directed by Professor Emeritus Patrick O’Neil

Snapshot Isolation (SI) is a method of database concurrency control that uses

timestamps and multiversioning, in preference to pessimistic locking. Since its

introduction in 1995, SI has become a popular isolation level, and has been implemented

in a variety of database systems: Oracle, Postgres, Microsoft SQL Server, and others.

Despite the benefits that SI offers, one of the things it cannot provide is serializability.

Past approaches for serializable SI have focused on avoiding dangerous structures (or

essential dangerous structures). Dangerous structures are patterns of transaction

dependencies that indicate the potential for a non-serializable execution; however, the

presence of dangerous structures does not guarantee that a non-serializable execution will

occur. Thus, avoiding dangerous structures is a conservative approach that may result in

unnecessary transaction aborts. This dissertation presents Precisely Serializable Snapshot

Isolation (PSSI), a set of serializability-providing enhancements to SI that utilize a more

precise criterion for performing aborts. PSSI ensures serializability by detecting
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dependency cycles among transactions, and aborting transactions to break such cycles. We

have implemented PSSI in the open source MySQL/InnoDB database system, and our

experimental tests demonstrate that PSSI’s performance approaches that of SI, while

minimizing the number of unnecessary transaction aborts.
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CHAPTER 1

INTRODUCTION

Snapshot isolation (SI) was presented as a new isolation level in [BBG95]. Rather than

locking, SI relies on multiversioning and has the attractive property that readers do not

block writers and writers do not block readers. The original definition of snapshot

isolation provides a strong set of consistency guarantees, but falls short of ensuring full

serializability. Several database systems offer snapshot isolation, including Oracle,

Postgres, Microsoft SQL Server, and Oracle BerkleyDB.

The authors of [FLO05] provide a set of theoretical tools for reasoning about the

correctness (i.e., serializability) of concurrent transactions running under SI. These tools

model interactions between SI transactions as typed, ordered conflicts called

dependencies. [FLO05] makes three more fundamental contributions: (a) it describes a

characteristic structure that all non-serializable SI histories exhibit (called a dangerous

structure), (b) it provides a static analysis technique that allows a DBA to determine

whether a set of transactional programs can exhibit non-serializable behavior under SI,

and (c) it provides methods to correct all programs where non-serializable behavior could

occur.

The next significant advances came in [CRF08] and [CRF09]. These authors modified

two open source database engines to detect dangerous structures [CRF08] and essential
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dangerous structures [CRF09], and to abort transactions that caused them. Their

contributions allow a DBMS using snapshot isolation to enforce serializability at runtime.

However, the authors note that their approach can exhibit a significant number of false

positives – transactions that will be aborted, even when no non-serializable behavior

occurs. These false positives are the result of using dangerous structure testing as a

criterion for correctness: all non-serializable SI histories contain at least one dangerous

structure, but the presence of a dangerous structure does not necessarily mean that an SI

history is non-serializable.

The work in this this dissertation is also rooted in [FLO05], but takes a different

approach than [CRF08, CRF09]. Rather than relying on dangerous structures, we have

focused on performing cycle tests over dependency graphs, and we have implemented this

approach in the open-source MySQL/InnoDB database engine. Our implementation

maintains a dependency graph over a suffix of an executing SI history, and aborts

transactions when circular dependencies are found. Hence, our research provides a

mechanism whereby a DBMS running snapshot isolation can guarantee serializability at

runtime, with significantly fewer false positives than the approaches described in

[CRF08, CRF09]. Experimental data in Chapter 5 shows that PSSI results in up to 50%

fewer aborts than the strategy described in [CRF09] (see Figure 19, page 114), and PSSI’s

lower abort rate can translate into a 7–19% improvement in overall system throughput

(see Figure 16, page 108).
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1.1 Snapshot Isolation

In this section, we define snapshot isolation (SI) and give examples of common SI

anomalies.

1.1.1 A Definition of Snapshot Isolation

Definition 1.1 (Snapshot Isolation): Snapshot Isolation associates two timestamps with

each transaction Ti: start(Ti) and commit(Ti). These timestamps define Ti’s lifetime,

which can be represented by the interval [start(Ti),commit(Ti)]. Ti reads data from the

committed state of the database as of start(Ti) (the snapshot), later adjusted to take Ti’s

own writes into account. Ti is allowed to commit if there is no committed transaction T j

such that (a) T j was concurrent with Ti (i.e., their lifetimes overlap), and (b) T j wrote data

that Ti wishes to write. This feature is called the first committer wins (FCW) rule.

Database systems such as Oracle [Jac95] replace first committer wins with a validation

test that occurs at the time of update, rather than at the time of commit. This strategy is

called first updater wins (FUW), and explained in Definition 1.2.

Definition 1.2 (First Updater Wins (FUW)): Let Ti and T j be two concurrent

transactions, and let Ti update x. Ti’s update takes a type of write lock on x, which is held

for as long as Ti is active. Ti’s write lock will not prevent concurrent transactions from

reading x; it will only block concurrent writers. If T j tries to update x while Ti is active,

then T j will be blocked until Ti commits or aborts. If Ti commits, then T j will abort; if Ti

aborts, then T j can acquire its write lock on x and continue.
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On the other hand, suppose Ti and T j are concurrent, Ti updates x and commits, and

T j attempts to update x after commit(Ti). In this case, T j will abort immediately, without

entering lock wait.

Although the mechanics of FCW and FUW are different, both strategies serve the

same purpose: they avoid lost updates by preventing concurrent transactions from writing

the same data. Consider the classic lost update anomaly: r1(x), r2(x), w1(x), c1, w2(x), c2.

FCW and FUW prevent this anomaly by aborting T2, as T2 wrote x, and x was written by

a concurrent (and committed) transaction T1. Note that this sequence of operations will

produce deadlock under S2PL, causing one of the two transactions to abort. FCW and

FUW also ensure that SI writes occur in a well-defined order.

Snapshot isolation has several attractive properties: readers and writers do not block

each other (the only lock waits are those due to first updater wins). Additionally, snapshot

isolation reads are “repeatable” in the sense that Ti’s snapshot is defined by start(Ti), and

this snapshot does not change during the course of Ti’s lifetime (except, of course, to

reflect Ti’s own writes). Example 1.3 provides a simple illustration of these properties.

Example 1.3 (A Simple SI History): Consider history H1.1:

H1.1 : r1(x0,10), w2(x2,20), r1(x0,10), c1, c2, r3(x2,20), c3.

In H1.1, the notation r1(x0,10) means that Ti reads version x0 and sees a value of 10; the

notation w2(x2,20) means that T2 writes version x2, assigning a value of 20. When

discussing multiversion histories, we use subscripts to denote different versions of a single

data item, thus, x2 refers to a version of x that was written by transaction T2—the

subscript indicates which transaction wrote that particular version of x. By convention, T0

is a progenitor transaction which writes the initial values of all data items in the database.
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In H1.1, notice that T1 read x and T2 wrote x, but T1 did not block T2 and T2 did not

block T1. Also note that while T1 read x twice, it saw the same version (and the same

value) each time: this behavior comes directly from the fact that T1 sees a committed

snapshot of the database as of start(T1). Finally, note that T3, which started after

commit(T2), read x2, the version of x that T2 wrote.

We should emphasize that snapshots are not created by copying data when a

transaction Ti starts. Rather, the DBMS attaches timestamps to all data written, and uses

those timestamps to compute snapshots. For example, if Ti writes xi, then x’s tuple header

would typically contain the transaction number i. Later, if T j tries to read xi, then T j can

determine whether or not xi is visible by comparing i to the list of transactions ids that

were active when T j started. This list of transaction ids is sometimes called an invisibility

list, since Ti’s modifications are invisible to T j if i appears in T j’s invisibility list. When

Ti commits, then i will not appear in invisibility lists for new transactions, and those new

transactions will be able to read data that Ti wrote. Section 3.1 will discuss this process in

detail.

1.1.2 Snapshot Isolation Anomalies

Snapshot isolation provides a strong set of consistency guarantees, and there are

applications that do not exhibit anomalies when run under SI. For example, [FLO05]

showed that the popular TPC-C benchmark [TPC10] will execute without anomaly when

SI is chosen as the isolation level. Nonetheless, SI falls short of ensuring serializability as

defined in [BHG87]. [JFR07] describes SI anomalies that were found in real-world

applications running at IIT Bombay, which shows that SI’s lack of serializability presents
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more than just a theoretical problem. This section presents several common anomalies

that can occur in SI. Perhaps the most common anomaly is write skew, which Example 1.4

illustrates.

Example 1.4 (Write Skew): Consider history H1.2:

H1.2 : r1(x0,100), r1(y0,100), r2(x0,100), r2(y0,100), w1(x1,−50),

w2(y2,−50), c1, c2

We can interpret H1.2 as follows: x and y represent two joint bank accounts, each with an

initial balance of $100; T1 is withdrawing $150 from account x while T2 is withdrawing

$150 from account y. The bank provides overdraft protection, so a single account balance

can become negative, as long as the sum of joint account balances does not fall below

zero. T1 and T2 begin by computing the total balance of accounts x and y and find that

balance to be $200. $200 > $150, so each transaction believes that a $150 withdrawal is

permissible, but the end result is a negative total balance of −$100.

Note that each transaction updates a different account balance, so the first committer

(updater) wins rule does not apply here. Also note that if T1, T2 were executed serially (in

any order), then the second transaction would detect the overdraft and no anomaly (i.e.,

non-serializable behavior) would occur.

A similar type of anomaly can occur with sets of records, where the sets are defined by

where clause predicates. The set-based anomaly is referred to as predicate write skew, and

illustrated in Example 1.5. (Example 1.5 is based on an example in [FLO05].)

Example 1.5 (Predicate Write Skew): Suppose we have an assignments table (date,

employeeID, projectID, hours) which records assignments of employees to projects. In

addition, we have a business rule stating that employees cannot be assigned more than
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eight hours of projects during a single day. Snapshot isolation allows the following

sequence to occur:

T1: select sum(hours) from assignments where employeeID = ’e111’ and

date = ’2010-09-01’; /* T1 sees zero hours */

T2: select sum(hours) from assignments where employeeID = ’e111’ and

date = ’2010-09-01’; /* T2 also sees zero hours */

T1: insert into assignments values (’2010-09-01’, ’e111’, ’proj123’, 5);

T2: insert into assignments values (’2010-09-01’, ’e111’, ’proj456’, 5);

T1: commit;

T2: commit;

In this example, each transaction issues a select statement (which involves a predicate

read) to determine the number of hours assigned to employee e111 on 2010-09-01; each

transaction sees no hours assigned, and assumes that it is okay to add a five-hour

assignment. Both transactions succeed, giving employee e111 10 hours of assignments on

2010-09-01, violating the eight-hour limit. First committer (updater) wins offers no

protection here, since the two inserts do not conflict on writes.

Write skew anomalies like the ones in Examples 1.4 and 1.5 can usually be avoided

with constraint materialization and select for update [ACF08]. Constraint materialization

involves using a single row to represent an aggregate constraint on a set of rows. For

Example 1.5, we might create the table emp_hours (date, employeeID, hours), where each

row represents the total number of hours assigned to a specific employee on a specific day.

Any transaction that added an assignment would also have to update the corresponding
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row in the emp_hours table, and first committer wins would prevent two concurrent

transactions from changing the assignments for a particular employee on a particular day.

Select for update (called promotion in [ACF08]) treats reads as writes for the purpose

of concurrency control. In Example 1.4, select for update would cause r1(x), r1(y) to take

write locks on x and y. Depending on the DBMS and the ordering of conflicts, these write

locks could either (a) cause a first updater wins error for a conflicting transaction, or (b)

force a serial execution of the conflicting transactions.

Constraint materialization and select for update are effective in many situations.

However, both techniques require changes to application code and/or the database

schema, and such changes may be difficult to deploy in a running production system.

Therefore, it would be preferable if a DBMS running at snapshot isolation could enforce

serializability “out of the box”, without having to rely on programmer workarounds. We

believe that there is practical value in techniques that provide native support for

serializable SI, thereby removing the burden from application developers.

1.2 Precisely Serializable Snapshot Isolation

This dissertation presents Precisely Serializable Snapshot Isolation (PSSI), an extension

to snapshot isolation that performs cycle testing over dependency graphs. PSSI has the

following characteristics:

• PSSI ensures that every execution of a set of valid transactional programs is

serializable.
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• PSSI is precise in the sense that it ensures serializability, while minimizing the

number of unnecessary aborts. PSSI’s precision is limited only the DBMS’s ability

to distinguish range intervals. (This limitation is discussed in Chapter 4.)

• PSSI only delays transactions in order to resolve first updater wins conflicts. If the

DBMS implements first committer wins as the method for resolving concurrent

write-write conflicts, then PSSI need not delay transactions at all.

• The throughput of PSSI, measured in committed transactions per second, generally

exceeds the throughput of more conservative approaches. In some workloads,

PSSI’s throughput approaches that of ordinary snapshot isolation.

The remainder of this dissertation is organized as follows: Chapter 2 presents an

in-depth look at the dependency theory introduced in [FLO05] and [Ady99]. In the

process of doing so, we also explore the similarities and differences between dependency

theory and the more traditional concepts of conflict serializability (e.g., as presented in

[BHG87]). Chapter 2 presents a justification for using cycle testing as a criterion for

correctness, and compares PSSI’s cycle testing with two related approaches: dangerous

structure testing [CRF09, CRF09] and optimistic concurrency control [KR81].

Chapter 3 presents a conceptual system design for PSSI; this chapter contains the

fundamental data structures and algorithms upon which PSSI is built. Chapter 4 is a

detailed case study in PSSI implementation; this chapter describes how we’ve taken (and

in some cases, adapted) the algorithms from Chapter 3 to implement a PSSI prototype,

using the InnoDB storage engine of MySQL 5.1.31 [ORA09].

Chapter 5 presents an experimental evaluation that compares the performance of four

isolation levels: S2PL (strict two-phased locking), SI (snapshot isolation), ESSI (essential

9



dangerous structure testing, based our our implementation of [CRF09]), and PSSI.

Chapter 6 describes areas for future work, and Chapter 7 concludes this dissertation.
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CHAPTER 2

SNAPSHOT ISOLATION AND DEPENDENCY THEORY

Chapter 1 defined Snapshot Isolation and briefly discussed dependencies. Chapter 2

explores these topics in depth, and provides a justification for why dependency cycle

testing is a valid basis for judging the serializability of SI histories.

An SI transaction Ti is defined by a lifetime [start(Ti),commit(Ti)] where start(Ti)

represents Ti’s start timestamp and commit(Ti) represents Ti’s commit timestamp. The

simplest form of timestamp is a counter that increments each time a new start(Ti) or

commit(Ti) is needed, so that timestamps form a strictly increasing sequence. Each SI

transaction reads from a committed state of the database as of start(Ti) (the snapshot,

adjusted as necessary to take Ti’s own writes into account) and Ti’s writes becomes visible

to new transactions that begin after commit(Ti). This provides a particularly attractive

model for reasoning about SI histories: we can treat all reads as occurring at start(Ti) and

all writes as occurring at commit(Ti), regardless of the actual ordering of Ti’s operations.

For example, if T1 performs the operations r1(x), w1(x), r1(y), w1(y), c1, then we can treat

T1 as shown in Figure 1.

Figure 1 shows T1 as two points on a timeline. r1(x), r1(y) appear on the left at

start(T1), which effectively specifies that snapshot from which x and y are read. w1(x) and

w1(y) appear on the right at commit(T1), which effectively specifies the point at which x1

11



r1(x), r1(y)

Time

T1

w1(x), w1(y)

Figure 1: Reads and writes, relative to start(T1) and commit(T1)

and y1 become visible to later transactions. Ti is permitted to read back its own writes,

wi(xi) followed by ri(xi) for example, but in such cases, we assume that Ti simply

remembers the value it wrote earlier.

Of course, transactions can interact with (and interfere with) one another. The next

section will formalize dependencies [FLO05, Ady99]: the typed, ordered conflicts that

model interactions among transactions in an SI history H.

2.1 Dependency Theory

This section presents a set of theoretical tools for reasoning about the correctness (i.e.,

serializability) of SI histories. It will be helpful to begin with a few definitions.

Definition 2.1 (Concurrent Transactions): Two SI transactions are concurrent if their

lifetimes overlap, i.e., if

[start(Ti),commit(Ti)]∩ [start(T j),commit(T j)] 6= /0

Definition 2.2 (Ti installs xi): We say that Ti installs xi if Ti writes x and commits. Once

xi is installed, xi may be read by a transaction T j where commit(Ti)< start(T j).
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Definition 2.3 (Immediate Successor): We say that x j is the immediate successor of xi (or

x j = succ(xi)), if Ti installs xi, T j installs x j, commit(Ti)< commit(T j) and there is no

transaction Tk such that Tk installs xk and commit(Ti)< commit(Tk)< commit(T j).

Definition 2.4 (Immediate Predecessor): The definition of immediate predecessor is

analogous to the definition of immediate successor. xi is the immediate predecessor of x j

(or xi = pred(x j)), if and only if x j is the immediate successor of xi.

Definition 2.5 (Dead Version): If Ti deletes xi and commits, then we say that xi is a dead

version of x. Dead versions are also referred to as tombstones.

Dependencies allow us to model the inter-transactional flow of data in an SI history H.

There are five types of dependencies, which are listed in Definition 2.6.

Definition 2.6 (Dependencies):

1. We say that there is an item write-read dependency Ti-i-wr→T j if Ti installs xi and

T j later reads xi.

2. We say that there is a item write-write dependency Ti-i-ww→T j if Ti installs xi and

T j installs xi’s immediate successor, x j.

3. We say that there is an item read-write dependency, or anti-dependency,

Ti-i-rw→T j if Ti reads xk and T j installs xk’s immediate successor, x j.

4. We say that there is a predicate write-read dependency Ti-p-wr→T j if Ti installs xi,

and xi changes the set of items retrieved by T j’s predicate. Here,

commit(Ti)< start(T j) and T j’s predicate read takes into account xi, or a later

version of x.
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5. We say that there is a predicate read-write dependency, or predicate

anti-dependency Ti-p-rw→T j if T j installs T j and T j would change the set of rows

retrieved by Ti. Here, start(Ti)< commit(T j) and Ti’s predicate read takes into

account some predecessor of x j.

When it is clear from the context, or immaterial, we will omit the item (“i”) or predicate

(“p”) designation and simply say Ti--rw→T j, Ti--wr→T j, or Ti--ww→T j.

Given the material in Definition 2.6 and the definition of snapshot isolation (Definition

1.1), we can make a number of immediate observations; these observations are given

below as remarks.

Remark 2.7: Given Ti--wr→T j, T j starts after Ti commits. Recall that T j reads data

from the committed state of the database as of start(T j). Therefore, if T j executes the

operation r j(xi), then we must have commit(Ti)< start(T j).

Remark 2.8: Given Ti--ww→T j, T j starts after Ti commits. The first committer

(updater) wins rule states that if two or more concurrent transactions write the same data,

then only one of them may commit. Therefore, we must have commit(Ti)< start(T j); Ti

and T j cannot be concurrent. Note that this property creates a well-defined ordering of SI

writes, and a well-defined ordering of data item versions.

Remark 2.9: Given Ti--rw→T j, Ti and T j may, or may not be concurrent. If Ti reads xk

and T j writes the immediate successor to xk, then we can only conclude that

start(Ti)< commit(T j). Ti--rw→T j does not specify a relative ordering between

commit(Ti) and start(T j).

Remarks 2.7–2.9 show that dependencies are inherently tied to a temporal ordering of

operations, where the arrow points from earlier to later in time. Thus, given Ti--rw→T j,
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there is a read by Ti (which occurs at start(Ti)), a write of the same data item by T j (which

occurs at commit(T j)), where the read precedes the write in serialization order. Similar

statements can be made for write-read and write-write dependencies. This temporal

ordering holds even if Ti and T j are concurrent, as they might be with read-write

dependencies. Dependencies lend themselves to two natural representations: directed

graphs called dependency serialization graphs, and time-oriented graphs called SI-RW

diagrams. Definitions 2.10 and 2.11 describe these representations.

Definition 2.10 (Dependency Serialization Graph): The Dependency Serialization Graph

for a history H, or DSG(H), is a directed graph where each vertex is a committed

transaction in H and there is a labeled edge from Ti to T j iff there is a Ti--ww→T j,

Ti--wr→T j, or Ti--rw→T j dependency in H.

Definition 2.11 (SI-RW Diagram): SI-RW diagrams were introduced in [FLO05]. These

diagrams present a time-oriented view of an SI history H, where each transaction Ti is

represented by two vertices that are joined by a horizontal line, much like the timeline

illustration shown in Figure 1. The left vertex shows start(Ti) (where all reads occur), and

the right vertex shows commit(Ti) (where all writes occur). SI-RW diagrams depict

Ti--ww→T j and Ti--wr→T j dependencies as solid diagonal arrows that run from

commit(Ti) to commit(T j) (ww dependencies), or from commit(Ti) to start(T j) (wr

dependencies). SI-RW diagrams depict Ti--rw→T j dependencies as dashed arrows that

run from start(Ti) to commit(T j).

At this point, it would be useful to look at examples of dependency serialization

graphs and SI-RW diagrams. For clarity, we will usually annotate edge labels with the
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data item that caused the given dependency. For example, the edge label “ww (y)” means

“a write-write dependency caused by a write of y followed by another write of y”.

Example 2.12: Consider history H2.1, which contains one instance of each dependency

type. The dependency serialization graph for history H2.1 is shown in Figure 2 and

corresponding SI-RW diagram is shown in Figure 3.

H2.1 : w1(x1), w1(y1), c1, r3(x1), w3(z3), r2(z0), w3(y3), w2(v2), c2, c3

T1

T2

T3

rw (z)

wr (x)

ww (y)

Figure 2: DSG for history H2.1

T1

T3

T2

wr (x)

rw (z)

ww (y)

Figure 3: SI-RW diagram for history H2.1

The DSG in Figure 2 shows the three transactions of history H2.1, along with three labeled

dependency edges: T1--ww→T3, T1--wr→T3, and T2--rw→T3. We adopt [FLO05]’s

convention of using separate edges when multiple dependencies occur between a pair of
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transactions. An alternate convention is to use a single edge with multiple labels, for

example, Figure 3.4 of [Ady99].

The T1--wr→T3 dependency in Figure 2 comes from the operations w1(x1) and r3(x1)

while T1--ww→T3 comes from the operations w1(y1) and w3(y3). These dependencies

tell us that T3 must follow T1 in any equivalent serial history. Similarly, the T2--rw→T3

anti-dependency comes from the operations r2(z0) and w3(z3). (Recall from Example 1.3

that there is an assumed progenitor transaction T0 which writes initial values for all data

items in the database. r2(z0) means that T2 read the initial version of z.) Because T2 read

the immediate predecessor of z3, we know that T2 must come before T3 in any equivalent

serial history.

Dependency edges point from earlier to later in time, so DSG(H2.1) conveys a partial

ordering where T1 comes before T3 and T2 comes before T3. H2.1 is equivalent to two

serial histories: T1 < T2 < T3 and T2 < T1 < T3.

The SI-RW diagram in Figure 3 shows the same transactions and dependencies as

Figure 2, but Figure 3 conveys more temporal information. Like Figure 1, each transaction

appears as two points on a timeline. Notice that the termination point for each dependency

edge is consistent with the dependency type. For example, T2--rw→T3 goes from

start(T2) to commit(T3) and T1--wr→T2 goes from commit(T1) to start(T2). This reflects

the fact that reads happen at start(Ti) and writes happen at commit(Ti). Figure 3 also

makes it easy to see that T1 committed before T2 started, and that T2 and T3 executed

concurrently.

Example 2.13 (SI-RW Diagram For Write Skew): Chapter 1 contained an example of

write skew (Example 1.4). For convenience, we reproduce the write skew history below as

H2.2, and Figure 4 shows the SI-RW diagram.
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T1

T2

rw (y) rw (x)

Figure 4: SI-RW diagram for history H2.2, a write-skew anomaly

H2.2 : r1(x0,100), r1(y0,100), r2(x0,100), r2(y0,100), w1(x1,−50),

w2(y2,−50), c1, c2

Figure 4 illustrates a circular flow of data called a dependency cycle. Data flows

forward in time along T1--rw→T2, then backward in time along the duration of T2, then

forward in time along T2--rw→T1. Intuitively, this tells us that H2.2 is non-serializable

because T1 < T2 < T1: T1 cannot follow itself in any serial history. The delay between

start and commit allows the cycle to form, despite the fact that dependencies point from

earlier to later in time.

Example 2.14 (SI-RW Diagram for a Read-Only Anomaly): This example comes from

[FOO04], and demonstrates that a dependency cycle may contain read-only transactions.

History H2.3 represents a set of transactions on two bank accounts, x and y. Both accounts

have an initial balance of zero when T1 deposits $20.00 into account y. T2 withdraws

$10.00 from account x; from T2’s perspective, this withdrawal causes the total balance

(x+ y) to fall below zero and T2 imposes a one-dollar overdraft fee, giving account x a

balance of $-11. Finally, T3 checks the total balance (x+ y), and finds that balance to be

$20.
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T1

T2

T3

rw (y)

rw (x)

wr (y)

Figure 5: SI-RW diagram for history H2.3, a read-only anomaly

H2.3 : r2(x0,0), r2(y0,0), r1(y0,0), w1(y1,20), c1, r3(x0,0), r3(y1,20), c3,

w2(x2,−11), c2

Why is H2.3 not serializable? T3 sees the effect of the twenty-dollar deposit, leading

the account holder to believe that a subsequent ten-dollar withdrawal would bring the final

balance to ten dollars, without incurring an overdraft fee. However, there was an overdraft

fee and the final balance is nine dollars, not ten. Figure 5 shows the SI-RW diagram for

history H2.3.

T3, the read-only transaction, appears as a “dot” in Figure 5, to emphasize the fact that

commit(T3) is contemporaneous with start(T3), as far as the theoretical interpretation is

concerned. T3 sees the effects of T1, but some of the data that T3 reads is subsequently

changed by T2, and T2 cannot observe the effects of T1. Like our earlier write skew

example, Figure 5 depicts a dependency cycle. This cycle runs from T1 to T3, then from

T3 to T2, then backwards in time along the duration of T2, and finally from T2 to T1. Note

that if there would be no dependency cycle if T3, the read-only transaction, were removed

from H2.3. Without T3, H2.3 would be a serializable history where T2 < T1.
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Dependency cycles are a fundamental concept in the design of precisely serializable

snapshot isolation. In the next section, we will compare dependencies and dependency

serialization graphs to the more classic concepts of conflicts and conflict serialization

graphs. We will also show that an SI history H is serializable if and only if its dependency

serialization graph DSG(H) is acyclic.

2.2 Dependency Cycles and Serializability

Dependency theory has a great deal in common with classic serializability theory, but

there are subtle differences between the two. The goal of this section is to explore these

similarities and differences, and to justify the use of cycle testing as a method for

determining whether an SI history H is serializable.

Conflict serializability states that two operations conflict if they operate on common

data, and at least one of the two operations is a write. Two transactions Ti, T j (i 6= j)

conflict of there is an operation oi ∈ Ti and an operation o j ∈ T j such that oi and o j

conflict. A history H can be represented by a conflict serialization graph SG(H), which is

a directed graph where (1) Ti is a node in SG(H) iff Ti has committed in H and (2) there is

an edge from Ti→ T j if one of Ti’s operations oi conflicts with one of T j’s operations o j

and oi precedes o j in the history H. The serializability theorem states that a history H is

serializable iff its serialization graph SG(H) is acyclic. This material, along with proofs of

the serializability theorem can be found in many database texts, such as [BHG87] and

[OO01]. ([OO01] calls the structure a precedence graph, and denotes it as PG(H).)

Edge labels are the most obvious difference between DSG(H) and SG(H): DSG(H)

edges are labeled with dependency types, while SG(H) edges are unlabeled. However, it
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is not uncommon for DSG(H) and SG(H) to contain different sets of edges, depending on

the specific operations involved. Example 2.15 illustrates this point.

Example 2.15 (Comparison of DSG(H) and SG(H)): Consider histories H2.4 and H2.5.

H2.4 : w1(x1), c1, w2(x2), c2, w3(x3), c3

H2.5 : w1(v1), w1(x1), c1, w2(x2), w2(y2), c2, w3(y3), w3(z3), c3

Histories H2.4 and H2.5 consist entirely of writes; therefore, all conflict serialization graph

edges will come from write-write conflicts and all dependency serialization graph edges

will come from write-write dependencies. SG(H2.4) contains three edges: T1→ T2,

T2→ T3 and T1→ T3. By contrast, DSG(H2.4) contains only two edges: T1--ww→T2

and T2--ww→T3. There is no T1--ww→T3 edge in DSG(H2.4) because x3 is not the

immediate successor of x1. Graphs SG(H2.4) and DSG(H2.4) have the same sets of nodes,

but they are not isomorphic.

Now, let us consider H2.5. In this case, SG(H2.5) and DSG(H2.5) are isomorphic.

SG(H2.5) has edges T1→ T2 and T2→ T3, while DSG(H2.5) has edges T1--ww→T2 and

T2--ww→T3. Neither graph has an edge from T1 to T3, because T1 and T3 have disjoint

write sets, and therefore do not conflict.

Although SG(H) and DSG(H) may not be isomorphic, we can show that the two

graphs represent exactly the same set of paths.

Theorem 2.16: Ti is a node in SG(H) iff Ti is a node in DSG(H).

Proof: Theorem 2.16 follows from the definitions of conflict serialization graph and

dependency serialization graph. Ti is a node in SG(H) iff Ti is committed in H, and Ti is a
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node in DSG(H) iff Ti is committed in H. Therefore Ti is a node in SG(H) iff Ti is a node

in DSG(H). �

Theorem 2.17: If there is a path from Ti to T j in DSG(H), then there is a path from Ti to

T j in SG(H).

Proof: Much of Theorem 2.17 follows from Definition 2.6. There are three types of

conflicts that can occur in H: read-write, write-read, and write-write. There are also three

types of dependencies: Ti--rw→T j is a read-write conflict where Ti’s read precedes T j’s

write in history H; Ti--wr→T j is a write-read conflict where Ti’s write precedes T j’s read

in history H; and Ti--ww→T j is a write-write conflict where Ti’s write precedes T j’s

write in H. Thus, each dependency represents a conflict between two transactions, Ti and

T j, where Ti’s operation precedes T j’s operation in the history H. Therefore, each

dependency edge from Ti to T j in DSG(H) has a counterpart edge in SG(H). If every

edge in DSG(H) has a counterpart edge in SG(H), then every path in DSG(H) has a

counterpart path in SG(H). �

Theorem 2.18: If there is a path from Ti to T j in SG(H), then there is a path from Ti to

T j in DSG(H).

Proof: Let Ti→ T j be an edge in SG(H). By definition, there is an operation oi ∈ Ti and

an operation o j ∈ T j such that oi and o j conflict and oi precedes o j in the history H. Since

oi and o j conflict, we know that both operations affected a common data item x. There are

two cases two consider: Ti→ T j is an edge in DSG(H) or Ti→ T j is not an edge in

DSG(H).
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Case 1. If Ti→ T j is an edge in DSG(H), then Ti--rw→T j, Ti--wr→T j, or Ti--ww→T j.

Regardless, there is a path of length one between Ti and T j in SG(H) and a path of length

one between Ti and T j in DSG(H).

Case 2. If Ti→ T j is not an edge in DSG(H), then one of the following three cases must

hold:

1. Ti wrote xi, T j wrote x j and x j is not the immediate successor of xi. This is a

write-write conflict, but not a Ti--ww→T j dependency.

2. Ti wrote xi, T j read xk, and xk 6= xi. This is a write-read conflict, but not a

Ti--wr→T j dependency.

3. Ti read xk, T j wrote x j and x j is not the immediate successor of xk. This is a

read-write conflict, but not a Ti--rw→T j anti-dependency.

All three cases imply the existence of one or more versions of x that were installed after

oi(x) and before o j(x). The existence of these versions tells us that there is a sequence of

transactions Tk1 . . .Tkn where Tk1 = Ti, Tkn = T j, and there is a read-write, write-read, or

write-write dependency between Tkp → Tkp+1 for 1≤ p≤ (n−1). In the terminology of

[Ady99, Section 3.1.4] the edges in DSG(H) represent direct conflicts whereas the edges

in SG(H) may represent transitive conflicts. Nonetheless, for every edge in SG(H), there

is a path (of equal or greater length) in DSG(H). Therefore, if there is a path from Ti to T j

in SG(H), then there is also a path from Ti to T j in DSG(H). �

Theorem 2.19: DSG(H) is acyclic iff SG(H) is acyclic.

Proof: The proof follows from Theorems 2.17 and 2.18. Theorem 2.17 tells us that any

path in DSG(H) is also a path in SG(H), while Theorem 2.18 tells us that any path in
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SG(H) is also a path in DSG(H). Therefore, if SG(H) contains a cycle then DSG(H)

must also contain a cycle; if SG(H) does not contain a cycle, then DSG(H) cannot contain

a cycle. �

Theorem 2.19 leads immediately to the desired conclusion, that H is serializable iff

DSG(H) is acyclic.

Theorem 2.20 (Serializability Theorem for Dependency Serialization Graphs): An SI

history H is serializable iff DSG(H) is acyclic.

Proof: The serialization theorem states that a history H is serializable iff SG(H) is

acyclic. Theorem 2.19 states that SG(H) is acyclic iff DSG(H) is acyclic. Therefore, H is

serializable iff DSG(H) is acyclic. �

Theorem 2.20 shows that, from the point of view of ensuring serializability, there is no

difference between performing cycle tests over conflict serialization graphs and

performing cycle tests over dependency serialization graphs. This justifies the use of cycle

testing over dependency serialization graphs as a mechanism for detecting

non-serializable SI histories.

2.3 Dangerous Structures

Section 2.2 showed that a snapshot isolation history H is serializable if and only if its

dependency serialization graph DSG(H) is acyclic. However, one can make other

characterizations about non-serializable SI histories. One particularly noteworthy

characterization was proven in [FLO05]; we summarize their findings in Definition 2.21

and Theorem 2.22.
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T1

T2

T3

rw

rw

Figure 6: SI-RW diagram for a dangerous structure

Definition 2.21 (Dangerous Structure): A dangerous structure in a dependency

serialization graph is a sequence of three transactions T1, T2, T3 (perhaps with T1 = T3)

such that T1 and T2 are concurrent, T2 and T3 are concurrent, and there are

anti-dependency edges T2--rw→T1 and T3--rw→T2.

Theorem 2.22 (Dangerous Structure Theorem): Every non-serializable SI history H

contains a dangerous structure.

In the case where T1 = T3, the dangerous structure will be cycle of length two. For

example, Figure 4’s write skew anomaly is a cycle of length two, and this cycle also

happens to be a dangerous structure. In the more general case, T1, T2, and T3 are three

distinct transactions, and a dangerous structure represents a situation that could develop

into a complete cycle. Let us examine Figure 6, which illustrates a dangerous structure

with three distinct transactions.

The history represented by Figure 6 is serializable, and equivalent to the serial history

T3, T2, T1. Nonetheless, it is easy to see how this history could develop into a complete
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cycle. For the sake of discussion, suppose that T3 were still active, and that T1, T2 had

committed. T3 could cause a cycle of length three in any one of the following ways:

1. T3 could write data that T1 wrote, causing T1--ww→T3. Note that T1 and T3 are not

concurrent, so first committer wins offers no protection here.

2. T3 could read data that T1 wrote, causing T1--wr→T3.

3. T3 could write data that T1 read, causing T1--rw→T3.

Theorem 2.22’s main contribution comes from showing us how cycles form – it is

necessary to have two consecutive anti-dependencies between pairwise concurrent

transactions. Theorem 2.22 also provides the basis another mechanism of ensuring

serializability in SI: dangerous structure testing. Instead of disallowing dependency

cycles, one could elect to disallow dangerous structures; this was the approach was taken

by [CRF08, CRF09]. Ultimately, dangerous structure testing is more conservative than

cycle testing, since dangerous structure testing can abort transactions which create the

potential for a cycle, before the cycle has fully formed.

In the context of a DBMS implementation, [CRF09] makes a useful refinement to

Theorem 2.22, by observing that it is only necessary to prevent dangerous structures

where T1 commits first. We call this an essential dangerous structure, as defined in

Definition 2.23. (We also note that the term essential dangerous structure was introduced

in [ROO11]; it was not used by the authors of [CRF09].)

Definition 2.23 (Essential Dangerous Structure): An essential dangerous structure is a

dangerous structure (Definition 2.21) where T1 commits first.

26



T1

T2

T3

rw

rw

Figure 7: SI-RW diagram for a non-essential dangerous structure

The dangerous structure in Figure 6 is also an essential dangerous structure. By contract,

Figure 7 shows a non-essential dangerous structure (where T1 does not commit first).

Dangerous structure testing and essential dangerous structure testing can be used as the

basis for two named isolation levels: SSI and ESSI, which are defined in Definition 2.24

Definition 2.24 (SSI, ESSI): SSI is an isolation level which aborts any transaction Ti that

causes a dangerous structure to form. ESSI is an isolation level which aborts any

transaction Ti that causes an essential dangerous structure to form.

[CRF09] reports that essential dangerous structure testing (ESSI) leads to fewer aborts

than dangerous structure testing (SSI), which means that ESSI is a less conservative

approach. However, ESSI is still more conservative than PSSI’s cycle testing, and in fact,

there is a strict progression from SSI to ESSI to PSSI: SSI is the most conservative and

least precise, while PSSI is the least conservative and most precise.

We will return to essential dangerous structure testing in Chapter 5, which contains the

results of our performance study.

27



2.4 Optimistic Concurrency Control

Optimistic Concurrency Control (OCC) was first defined in [KR81]. OCC assumes that

conflicts are rare, and seeks to improve concurrency by eliminating the use of locks. OCC

and snapshot isolation share some common features, so it is worth discussing the

similarities and differences of the two approaches.

Optimistic concurrency control treats transactions as having three phases: a read

phase, a validation phase, and a write phase. The read phase corresponds to the user

portion of a transaction (which may include modifications to local, per-transaction copies

of data), while the validation phase is used to determine whether a given transaction is

allowed to commit. Transactions use the write phase to copy their local modifications into

the global database area, making those writes visible to other transactions. This

three-phase approach implies a form of copy-on-write: if Ti wishes to write x, then Ti will

make a local copy of x and modify the local copy; the local copy becomes globally visible

after Ti’s write phase, in which Ti’s local modifications are copied back into the global

database area. Of course, this also means that Ti’s reads have to examine local

modifications before considering data in the global database area (i.e., Ti must be able to

observe the effects of its own writes).

Like OCC, PSSI can be viewed as dividing transactions into three phases. PSSI’s read

phase consists of the user portion of the transaction – everything between the begin and

commit statements – while PSSI’s validation phase is built around a cycle test. PSSI’s

write phase consists of removing the committing transaction from the transaction

manager’s active transaction list, as described at the end of Section 1.1.1.
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The most significant differences between OCC and PSSI lie in the validation phase.

PSSI’s validation phase focuses on determining whether commit(Ti) would cause a

dependency cycle, while OCC takes a more conservative approach, which is outlined

below. Let readset(Ti) denote Ti’s read set, let writeset(Ti) denote Ti’s write set, and let

T j denote any transaction (concurrent or not) that committed prior to Ti’s validation

phase. According to [KR81], a committing Ti must satisfy one of the following three

conditions in order to pass validation:

1. T j finishes its write phase before Ti starts its read phase.

2. T j completes its write phase before Ti starts its write phase, and

writeset(T j)∩ readset(Ti) = /0.

3. T j completes its read phase before Ti completes its read phase and

writeset(T j)∩ (readset(Ti)∪writeset(Ti)) = /0.

From a database users’ standpoint, the validation and write phases happen during

commit; [KR81] treat them separately in order to explore mechanisms for allowing

concurrent commits ([KR81] assumes that the write phase may take some time, and the

authors wanted to avoid serializing commits around the write phase). For PSSI, we can

think of the validation phase as starting when the database user issues a commit statement,

and we can think of the write phase as completing when the database acknowledges the

commit.

Condition 1 allows any serial execution of transactions. More specifically, condition 1

states that T j’s actions cannot prevent Ti from committing, if T j commits before Ti starts.

Condition 2 states that Ti cannot commit if Ti read data that was modified by a concurrent

(but already committed) transaction T j. Condition 2 effectively prohibits Ti--rw→T j
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dependencies between concurrent transactions, which is something that PSSI allows. Like

condition 2, condition 3 also prohibits Ti--rw→T j dependencies. In addition, condition 3

provides an analog to the first committer wins rule: Ti is not allowed to commit if a

concurrent (but committed) T j wrote data that Ti is attempting to write.

Despite these differences, there are philosophical similarities between OCC and SI:

both mechanisms attempt to improve concurrency through a reduction in locking. [KR81]

noted that optimistic methods could be advantageous of disadvantageous, depending on

the specifics of the database workload. The same characterization could also be made of

PSSI.

2.5 Summary

This chapter presented dependencies, dependency serialization graphs, SI-RW diagrams,

and a justification for using cycle tests do determine whether an SI history H is

serializable. We have looked at examples of dependency serialization graphs, and we have

seen that these structures have much in common with their counterparts from classic

serializability theory, conflict serialization graphs. Finally, we have examined two

approaches related to PSSI: dangerous structure testing and optimistic concurrency

control.

Chapter 3 will present a conceptual design form implementing PSSI in a DBMS, but

without focusing on any particular implementation. Chapter 4 will present our

implementation of this design in MySQL’s InnoDB storage engine.
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CHAPTER 3

A CONCEPTUAL DESIGN FOR PSSI

This chapter presents a conceptual design for PSSI. The presentation focuses on PSSI’s

high-level features, saving the low-level details for an implementation case study in

Chapter 4, where we describe the process of adding PSSI support to MySQL 5.1.31’s

InnoDB storage engine. This chapter discusses strategies for finding dependencies

between transactions, explains how and when cycle testing is done, and provides a method

for determining when a committed transaction Ti cannot be part of any future cycle. We

begin the chapter with one of snapshot isolation’s more germane issues: how to

implement multiversioning. Multiversioning is not a new area of research, but it is a

fundamental part of any SI system design.

This chapter frequently uses the term data item. Although the term is ambiguous, it

has enjoyed common use in database literature (e.g., [Ady99], [FLO05], [CRF09],

[FOO04], and others). We use the term “data item” to refer to rows and secondary

(non-clustered) index entries, but not to units of larger granularity, such as pages, tables,

or files. In particular, Section 3.3’s lock table algorithms assume that the same treatment is

applied to both rows and secondary indexes, and the term data item helps to capture this.
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3.1 Timestamps and Versioning

When Ti reads x, Ti sees the most recent version of x that was committed prior to start(Ti)

[ROO11]. This means that Ti observes a particular state of x (the version), which came

into existence at a well-defined point in time, prior to start(Ti). SI allows several versions

of x to exist simultaneously, and indeed, we have already seen an example of this in

history H1.1, which is repeated below for reference.

H1.1 r1(x0,10), w2(x2,20), r1(x0,10), c1, c2, r3(x2,20), c3.

In H1.1, w2(x2) is followed by r1(x0), implying that x2 and x0 must co-exist, and the

DBMS must make these versions available to transactions that require them. This example

illustrates how SI imposes operational requirements on the way that versions are managed,

so it is only natural to begin the discussion with versioning.

Section 1.1.1 described a technique for implementing SI, based on transactions ids and

invisibility lists. (Recall that Ti’s invisibility list is the list of transactions ids for T j that

were active at start(Ti); these T j are concurrent with, and invisible to Ti.) This section

presents the invisibility list technique in algorithmic form. Each SI transaction is defined

by its lifetime [start(Ti),commit(Ti)], and each Ti is guaranteed to receive a unique start

timestamp, and (assuming Ti commits) a unique commit timestamp. The uniqueness of

start timestamps makes it possible to use them as transaction ids.

Start-Transaction (Algorithm 1) illustrates the process of assigning a new transaction

id (i.e., a new start timestamp), initializing Ti’s invisibility list, and initializing Ti’s

commit timestamp. Algorithm 1’s global_timestamp_counter is a global counter that is

incremented each time a new timestamp is required. The construction of Ti’s invisibility

list makes the rudimentary assumption that the database transaction manager maintains
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1: procedure Start-Transaction
2: Ti = new transaction
3: Ti.txid = ++global_timestamp_counter
4: Ti.invisibility_list = { j | j is the transaction id of an active transaction}
5: Ti.commit_ts = ∞

6: Rest of transaction initialization steps
7: end procedure

Algorithm 1: Assignment of Ti’s start timestamp and invisibility list

some form of active transaction list, so that Ti.invisibility_list is simply a copy of those

active transaction ids, made at start(Ti). Ti.invisibility_list is fixed, and does not change

during Ti’s lifetime. If T j starts while Ti is still active, then it is not necessary to add j to

Ti.invisibility_list, because the timestamp relationship start(Ti)< start(T j)< commit(T j)

prevents T j’s writes from being visible to Ti.

Ti.commit_ts is initialized to a placeholder value of ∞, and this placeholder value is

used for as long as Ti is active. Ti’s actual commit timestamp is assigned during the

commit process, as shown in Commit-Transaction (Algorithm 2). Ti.commit_timestamp is

drawn from the same global_timestamp_counter as Ti.txid. The last line of Algorithm 2

removes Ti from the list of active transactions, which prevents Ti’s transaction id from

appearing in future invisibility lists. Note that Algorithm 2 is only a skeletal outline of the

commit process; line 3 consists of many steps, which will be discussed throughout this

chapter.

Algorithms 1 and 2 show that timestamps are assigned during two events: when Ti

starts and when Ti issues a commit statement. These are the only events that increment

global_timestamp_counter. Note that the treatment of global_timestamp_counter is
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1: procedure Commit-Transaction(transaction Ti)
2: Ti.commit_timestamp = ++global_timestamp_counter
3: Rest of commit process, including ensuring that Ti is serializable
4: Remove Ti from the active transaction list
5: end procedure

Algorithm 2: Assignment of Ti’s commit timestamp

consistent with SI’s general semantics, namely, that reads occur at start(Ti) and writes

becomes visible to transactions that begin after commit(Ti).

Our next objective is to show how Ti can use its invisibility list to choose the correct

version of x during a read operation, after accessing x via primary key lookup, or after

accessing x via table scan. In showing this, we make three assumptions: (1) the DBMS

stores versions in a way that allows them to be accessed from newest to oldest, (2) for

each version x j of x, x j’s header contains the writer’s transaction id as x j.txid, and (3) for

each version x j of x, x j’s header contains a boolean field x j.is_deleted that indicates

whether x j is a deleted (“dead”) version.

Versioned-Read (Algorithm 3) shows how Ti determines which version of x is in its

snapshot (if any). The input parameter “vlist” represents the list of versions of data item x,

ordered from newest to oldest. The if-statements in lines 4 and 7 skip over x j that are too

new for Ti to see. The first x j that fails to satisfy these conditions is the version of x in Ti’s

snapshot; line 10 stores this version in the variable “found” for further examination. It’s

possible that “found” – the x j in Ti’s snapshot – represents a deleted version, or that x is

not part of Ti’s snapshot at all. Line 14 tests these cases, returning a NOT_FOUND

condition if appropriate. Otherwise, “found” is the x j in Ti’s snapshot, and this version is
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1: procedure Versioned-Read(Transaction Ti, Version List vlist)
2: found = NULL . variable to hold the return value
3: for x j ∈ vlist do . iterate from newest version to oldest version
4: if x j.txid > Ti.txid then
5: continue . commit(T j)> start(Ti). x j is not visible to Ti

6: end if
7: if x j.txid ∈ Ti.invisibility_list then
8: continue . T j’s writes are not visible to Ti

9: end if
10: found = x j . This x j is in Ti’s snapshot
11: break
12: end for
13: . examine candidate return value
14: if (found == NULL) or (found.is_deleted) then
15: return NOT_FOUND
16: end if
17: return found
18: end procedure

Algorithm 3: Versioned reads: how Ti selects the appropriate version of x

returned to Ti. Versioned-Read implies that PSSI employs special handling for deleted

data items; we will discuss this topic in Section 3.2.

3.1.1 Version Storage

Algorithm 3 assumed a facility for iterating over versions in reverse-chronological order.

This sections presents chaining, a technique for organizing versions in a way that supports

reverse-chronological iteration.

Chaining places versions in a linked list: each version x j contains a header field

x j.pred, and x j.pred “points to” x j’s immediate predecessor. For the sake of discussion, let
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Page 96

Page 47

x84. pred=(96, 74)

x73. pred=(47, 64)

x18. pred=NULL

offset 7

offset 74

offset 64

x141. pred=(96, 7)

Figure 8: Four versions of x, chaining approach

us assume that x j.pred consists of a page number and an offset. Figure 8 illustrates the

idea behind chaining. In Figure 8, x141 is the newest version of x, stored by whatever

means the DBMS uses for managing the physical storage of rows. x141.pred = (96,7)

indicates that x141’s immediate predecessor is located on page 96, offset 7. Following

x141.pred brings us to x84, whose immediate predecessor is located on page 96, offset 74.

Following x84.pred takes us to x73, whose immediate predecessor is located on page 47,

offset 64. Following x73.pred takes us to x18; x18.pred is NULL, which means that there

are no earlier versions of x.
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Chaining gives the DBMS the flexibility to employ separate strategies for storing

current and old versions of data items. For example, the DBMS could store pred(x j) in a

compressed format in which pred(x j) contains only those column values where pred(x j)

differs from x j.

3.1.2 Remarks on Version Management Strategies

Section 3.1 described a versioning strategy that is based on transaction ids and invisibility

lists. Several real-world SI implementations utilize this strategy, including Postgres

[PG10, Section 9.23] and Netezza [HHS07]. InnoDB’s MVCC also uses transaction ids

and invisibility lists.

Section 3.1.1 presented chaining as a method for physically organizing versions, and

for allowing Ti to locate the version of x in its snapshot. This chaining presentation was

based on InnoDB’s MVCC implementation. Another technique stores two transaction ids

in each version header: xi.creator_txid, and xi.deleter_txid. The creator_txid is the

transaction id of the transaction that installed xi, and the deleter_txid is the transaction id

of the transaction that deleted xi (perhaps by installing a newer version of x). For example,

if transaction T35 inserts x, then this creates the version x35 where x35.creator_txid = 35

and x35.deleter_txid = NULL. If T47 later updates x, then T47 would set

x35.deleter_txid = 47 (i.e., T47 “deletes” x35 by creating a newer version of x), and T47

would also install x47, with x47.creator_txid = 47 and x47.deleter_txid = NULL. The

combination of these two transactions ids allows Ti to judge the visibility of individual

versions, without having them organized in a linked list. We did not use the creator_txid,

deleter_txid technique in our research, but we mention the technique because it is used by
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several SI implementations, including Postgres [PG10, Section 54.5] and Netezza

[HHS07].

3.2 Zombie Transactions

Chapter 2 showed how a committing transaction Ti can form dependency cycles with

already-committed transactions. This highlights the need for retaining information about

transactions after they commit, and we call special attention to this need in History H3.1.

H3.1 : r1(x0), r2(z0), w1(y1), c1, r2(y0), w2(x2), c2

History H3.1 is an example of write skew. There is a T1--rw→T2 dependency caused by

r1(x0) and w2(x2), and there is an T2--rw→T1 dependency caused by r2(y0) and w1(y1).

Taken together, this pair of dependencies creates a cycle. The important point of history

H3.1 is the following: neither dependency existed when commit(T1) occurred; it was only

after commit(T1) that T2 read y and wrote x, causing the cycle to form.

To detect such cases, PSSI needs to “remember” information about a transaction Ti for

some period of time after Ti commits. Specifically, Ti’s actions must be remembered for

as long as there is the potential for Ti to become part of a cycle. While this potential

exists, Ti is referred to as a zombie transaction, as defined in Definition 3.1.

Definition 3.1 (Zombie Transaction): A zombie transaction Ti is a committed transaction

that has the potential to become part of a future cycle. In order to detect cycles, PSSI must

retain information about Ti’s data accesses, and the dependency edges incident to Ti.

When it is no longer possible for Ti to become part of a cycle, then Ti ceases to be a

zombie transaction, and PSSI can discard information about Ti’s data accesses, and the

dependency edges incident to Ti.
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In history H3.1, T1 becomes a zombie after commit(T1), and remains a zombie until

commit(T2) completes. Section 3.4.1 provides algorithms for determining whether a

transaction Ti is a zombie, and for discarding information about Ti when Ti is no longer a

zombie.

Zombie transactions influence PSSI’s handling of deleted data items. Suppose that Td

deletes x, creating the dead version xd . PSSI must retain xd’s immediate predecessor

pred(xd) for as long as there is an active transaction Ti where pred(xd) appears in Ti’s

snapshot; but how long should xd itself remain in the database? xd must remain in the

database for as long as Td is a zombie transaction. The reasoning behind this is as follows:

if T j “reads” xd while Td is a zombie, then T j must make note of the operation r j(xd). xd

does not affect the results of of T j’s query, but PSSI needs to know about the conflicting

operations wd(xd) (the delete) and r j(xd) in order to detect the dependency Td--wr→T j.

Once Td is no longer a zombie, then PSSI can garbage-collect the deleted data item xd .

Example 3.2 illustrates this idea.

Example 3.2 (Treatment of Deleted Data Items): Suppose we have the table accounts =

(acctid, type, branch, balance) with the row x = (a1234, checking, Boston, 100.00). Now,

consider the following set of transactions:

T1: select count(*) from accounts where type = ’checking’; -- count includes x

T2: delete from accounts where acctid = ’a1234’; -- delete x

T2: commit;

T3: select count(*) from accounts where branch = ’Boston’; -- does not include x

T3: commit;

T1: commit;
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In this example, T2 deletes x, and x matches the where clauses of both T1 and T3. T1

and T2 are concurrent; therefore, T1 does not see the effect of T2’s delete, and T1’s count

includes x. T3 starts after T2 commits; therefore, T3 sees the effect of T2’s delete, and T3’s

count does not include x. Reasoning about these facts implies that the serialization order

is T1 before T2, and T2 before T3. From the standpoint of dependency theory, this

example contains the dependencies T1--rw→T2 and T2--wr→T3, which imply the same

serialization order: T1, T2, T3. The focus of this example lies in showing how PSSI

detects T2--wr→T3.

T2’s delete does not immediately remove x from the database; instead, T2’s delete

creates the dead version x2 (i.e., x2.is_deleted = TRUE). PSSI relies on T3 “reading” x2,

and noting the operation r3(x2). x2 does not contribute to the result of T3’s count query,

but the operations w2(x2), r3(x2) are necessary for detecting the dependency T2--wr→T3.

Furthermore, x2 must remain in the database for as long as there is a T j such that

T2--wr→T j might contribute to a cycle (i.e., x2 must remain in the database for as long as

T2 is a zombie transaction).

The term zombie transaction first appeared in [ROO11, Sec. 3], but the general

problem of needing to “remember” information about Ti beyond commit(Ti) occurs in

other contexts. This topic is further discussed in Section 3.4.2.

3.3 Lock Table

This section introduces the first of two components that form the cornerstone of PSSI’s

design: PSSI’s lock table and cycle testing graph (CTG). The lock table and cycle testing

graph work together in a cooperative fashion – the lock table is responsible for keeping
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track of data accesses, finding dependencies caused by these data accesses, and

communicating these dependencies to the CTG. The CTG is responsible for determining

if commit(Ti) would cause a cycle, and for determining when a committed transaction T j

cannot be part of any future cycle (i.e., when T j is no longer a zombie). The CTG informs

the lock manager (and other database components, if necessary) when it determines that

T j is no longer a zombie.

Database locks are usually associated with the notion of “lock wait”, so the name lock

table is slightly misleading in our case. PSSI’s lock table resembles the structure of a

traditional pessimistic lock manager, but its behavior is significantly different. For

example, conflicting reads and writes do not delay transactions, so one could think of

PSSI’s lock table as a mechanism for “non-blocking locking”.

3.3.1 Lock Table Data Structures

The data structure behind PSSI’s lock table is derivative of Gray and Reuter’s lock

manager design [GR92, Figure 8.8]. Many lock manager optimizations can be adapted to

work with PSSI’s lock table, and in Chapter 4 we will describe how InnoDB’s lock

manager was modified to function as a PSSI lock table.

The lock table’s primary data structure is a multilist [AHU83, p. 147], where each list

element is a lock control block (LCB). Figure 9 shows the layout of a lock control block.

In Figure 9, LCB.txn is a pointer to the owning transaction, which provides access to

information such as the transaction’s start and commit timestamps. LCB.data_item_name

is an identifier that describes the locked data. The data item name might be a row identifier

(RID) that refers to a physical storage address, or it might be a hashed key that refers to a
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txn
data_item_name
access_mode
tx_prev
tx_next
lock_chain_prev
lock_chain_next

Figure 9: PSSI lock control block (LCB)

logical address. As noted in the introduction to this chapter, the term data item refers to

rows and secondary index entries, but not to larger objects such as pages, tables, or files.

LCB.access_mode distinguishes read accesses from write accesses, and the remaining four

fields are linked list pointers. LCB.tx_prev and LCB.tx_next link the LCBs for a single

transaction, while LCB.lock_chain_prev and LCB.lock_chain_next link the LCBs for a

single data item. PSSI’s lock table contains LCBs for both active and zombie transactions.

Figure 10 illustrates the lock table’s multilist structure. Figure 10’s vertical linked lists

represent tx_prev and tx_next. These lists are rooted in the transaction objects themselves,

so that Ti.tx_locks is the head of a linked list, and this linked list contains all of Ti’s LCBs.

Within Ti.tx_locks, reads are grouped together at the head of the list, and writes are

grouped together at the tail of the list, a minor optimization for later processing. Figure

10’s horizontal linked lists are lock chains, where each lock chain contains all accesses for

a particular data item. Lock chains are accessed through a hash table, so that hash(x)

produces the header cell containing x’s lock chain. Within each lock chain, LCBs are kept

in timeline order, so that reads appear at start(Ti) and writes appear at commit(Ti). We
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Transaction

Manager

Lock
Table

r1(v)

Figure 10: PSSI lock table

make the simplifying assumption that lock chains are homogeneous and contains LCBs

for a single data item, but this simplifying assumption is not a requirement.

History H3.2 corresponds to the lock table in Figure 10.

H3.2 : r1(v), r2(x), r2(y), c2, r3(z), w3(y), c3, r1(x), w1(z), c1
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By examining the lock chains in Figure 10, one can easily identify the dependencies that

H3.2 creates: there is T2--rw→T3 (from data item y), and T3--rw→T1 (from data item z).

There are obvious parallels between PSSI’s lock table and the SI-RW diagrams

introduced in Chapter 2. An SI-RW diagram presents a timeline view of an SI history,

where reads occur at start(Ti) and writes occur at commit(Ti). The timeline ordering

within lock chains is a direct manifestation of the SI-RW treatment.

3.3.2 Lock Table Algorithms for PSSI with FUW

This section presents a set of PSSI lock table algorithms where concurrent write-write

conflicts are handled by first updater wins. As stated earlier, our goal is to present a

general design that’s independent of any particular DBMS implementation. Chapter 4 will

discuss how these designs were implemented within the constraints of MySQL/InnoDB’s

lock manager.

Several themes underlie the algorithms presented in this section:

1. LCBs are added to the lock table as reads and writes occur.

2. The only lock waits that occur are those caused by FUW. Writes never wait for

reads, and reads never wait at all.

3. Dependency testing is postponed until Ti issues a commit statement, since

commit(Ti) is the earliest time that we can determine the full set of dependencies

that Ti creates. This differs from earlier approaches (e.g., [CRF08, pg. 733]) which

attempt to find dependencies as individual reads and writes occur.
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1: procedure Add-Read-LCB(Transaction Ti, Data Item x)
2: add ri(x) to the head of Ti.tx_locks
3: add ri(x) to x’s lock chain, positioned in timeline order, at start(Ti)

4: end procedure

Algorithm 4: Procedure to add a read LCB ri(x) for FUW

4. PSSI finds dependencies between a committing transaction Ti and committed

zombie transactions T j. Suppose our DBMS is executing the history H, and let

CH(H) be the committed projection of H containing all transactions that committed

prior to commit(Ti). Given the assumption that CH(H) is serializable, our goal is to

ensure that CH(H)∪Ti is also serializable.

5. The algorithms assume that all conflicts (including predicate conflicts) can be

observed through conflicts on data items. This assumption holds for ARIES-style

range locking algorithms (e.g., [Moh95, Section 10.3.2]). Chapter 4 will describe

how InnoDB’s range locking (a variant of index-specific ARIES/IM) was modified

for PSSI.

Coupled with cycle testing, these underlying themes make PSSI a serialization graph

testing certifying scheduler [BHG87, Section 4.4]. The algorithmic time complexity of

PSSI appears similar to the serialization graph testing designs presented in [BHG87], but

unlike [BHG87]’s designs, PSSI does not require cascading aborts.

Add-Read-LCB (Algorithm 4) and Add-Write-LCB (Algorithm 5) show the steps

involved in adding an LCB to PSSI’s lock table, a process that is carried out each time a

read or write occurs. Add-Read-LCB contains two steps: add ri(x)’s LCB to the head of

Ti.tx_locks, and place ri(x) in x’s lock chain, positioned in timeline order at start(Ti). If

ri(x) is positioned within x’s lock chain at start(Ti), then all LCBs to the left of ri(x) will
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1: procedure Add-Write-LCB(Transaction Ti, Data Item x)
2: add wi(x) to the tail of Ti.tx_locks
3: append wi(x) to the tail of x’s lock chain
4: . iterate right-to-left, checking for concurrent write-write conflicts
5: let lcb = wi(x).lock_chain_prev
6: let wait_for = NULL . the lock Ti needs to wait for, if any
7:

8: while lcb 6= NULL do
9: if lcb.txn committed before start(Ti) then

10: break . concurrent write-write conflicts must be found by now
11: end if
12: if (lcb.access_mode == Write) and (lcb.txn is committed) then
13: return FUW_VIOLATION . concurrent writer, already committed
14: end if
15: if (lcb.access_mode == Write) and (lcb.txn is active) then
16: if wait_for == NULL then
17: let wait_for = lcb
18: end if
19: end if
20: let lcb = lcb.lock_chain_prev . iterate left to previous LCB in timeline
21: end while
22:

23: if wait_for 6= NULL then
24: return LOCK_WAIT . Ti must wait until wait_for.txn commits or aborts
25: end if
26: return SUCCESS . lock granted
27: end procedure

Algorithm 5: Procedure to add a write LCB wi(x) for FUW

be r j(x) where start(T j)< start(Ti), or wk(x) where commit(Tk)< start(Ti). By a similar

observation, all LCBs to the right of ri(x) will be r j(x) where start(Ti)< start(T j), or

wk(x) where start(Ti)< commit(Tk).
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The procedure for adding a write LCB wi(x) is more complex, because it involves

checking for FUW violations, and handling lock waits. Add-Write-LCB appends wi(x) to

the tail of Ti.tx_locks, and to the tail of x’s lock chain. While Ti is active,

Ti.commit_ts = ∞, so placing wi(x)’s LCB at the tail of x’s lock chain is equivalent to

positioning the LCB at commit(Ti). Lines 8–21 of Add-Write-LCB examine x’s lock

chain for concurrent write-write conflicts. The idea is to iterate over x’s lock chain from

right to left, looking for a w j(x) where T j executed concurrently with Ti. There is a

subtlety in this algorithm: the w j(x) that causes a FUW violation may not be the first w j(x)

encountered during a right-to-left scan. Consider History H3.3, where T2 has just added

w2(x) to the tail of x’s lock chain, and needs to check for concurrent write-write conflicts.

H3.3 : r1(y), r2(z), w1(x), c1, w3(x), w2(x) [w2(x) just added to x’s lock chain]

In History H3.3, T1 and T2 are concurrent, so the FUW violation between w1(x) and w2(x)

should cause T2 to abort immediately. For this to happen, T2’s right-to-left scan needs to

look beyond the granted w3(x); in other words, T2 should not enter lock wait because of

w3(x).

Add-Write-LCB handles this case by using the variable “wait_for” to record the first

(concurrent) write LCB found by the right-to-left scan. If no immediate FUW violation is

found during lines 8–21 and wait_for 6= NULL, then Ti must enter lock wait. By contrast,

if no immediate FUW violation is found and wait_for is NULL, then there is no

concurrent write-write conflict, and Ti acquires its write lock. Add-Write-LCB’s

LOCK_WAIT outcome means that deadlock is possible, so the DBMS must maintain a

waits-for graph, and must perform deadlock detection each time a Ti enters lock wait.

The lock table’s most important function is that of finding dependencies between a

committing transaction Ti and each T j in the set of zombie transactions.
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1: procedure Dependency-Check(Transaction Ti)
2: for each li in Ti.tx_locks do
3: let lock_chain = li’s lock chain
4: for each o j in lock_chain do
5: if Locks-Need-Dependency-Edge(li, o j) then
6: Add-Dependency-Edge(li, o j)
7: end if
8: end for
9: end for

10: end procedure

Algorithm 6: Top-level procedure for finding dependencies during Ti commit

Dependency-Check (Algorithm 6) contains the top-level procedure for finding these

dependencies. Dependency-Check is invoked once per transaction, after Ti.commit_ts is

assigned, but before cycle testing is done. In order to find dependencies caused by Ti, one

must find the dependencies caused by each ri(x) and wi(x); this is evident in the for-loop

of lines 2–9, which iterates over the LCBs in Ti.tx_locks. Each of Ti’s LCBs resides in a

lock chain, and the inner loop of lines 4–8 examines the lock chain containing an

individual Ti LCB, adding dependency edges when conflicts are found.

The procedure Locks-Need-Dependency-Edge (Algorithm 7) is responsible for

determining whether two LCBs li and o j conflict, which would warrant adding a

dependency edge between their respective transactions, Ti and T j. Note that

Locks-Need-Dependency-Edge only considers LCBs belonging to zombie transactions,

and not LCBs from active transactions. A dependency edge is warranted when the LCBs

belong to different transactions, and at least one of them is a write.

Given a pair of conflicting LCBs, Add-Dependency-Edge (Algorithm 8) is responsible

for adding the appropriate dependency edge to the CTG. Add-Dependency-Edge assumes
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1: procedure Locks-Need-Dependency-Edge(LCB li, LCB o j)
2: let Ti = li.txn . Ti is the committing transaction
3: let T j = o j.txn . T j is some other transaction
4: if Ti == T j then
5: return FALSE . Ti cannot conflict with itself
6: end if
7: if T j is not committed then
8: return FALSE . do not consider T j because T j is not (yet) a zombie
9: end if

10: if (li.access_mode == Write) or (o j.access_mode == Write) then
11: return TRUE . different transactions, conflicting access modes
12: end if
13: return FALSE
14: end procedure

Algorithm 7: Procedure to determine whether two LCBs warrant a dependency edge

that LCB li belongs to the committing transaction, and that LCB o j belongs to a zombie

transaction. There are three cases to consider, which are reflected in the three if-conditions

of Algorithm 8. In the first case (lines 4–9), li is a read, which appears at start(Ti) in its

lock chain, and o j is a write, which may appear to the left or to the right of li. If o j appears

to the left of li, then T j commits before Ti starts, and the appropriate edge is T j--wr→T j.

On the other hand, if o j appears to the right of li, then T j commits after Ti starts, and the

appropriate edge is Ti--rw→T j.

Lines 10–11 and 12–13 of Add-Dependency-Edge handle the cases where li is a write.

Write LCBs appear at commit(Ti), so the only LCBs that can appear “later” are those

representing uncommitted writes, which are not considered by the dependency checking

process (these write LCBs will be considered when their respective transactions commit).

In these two cases, o j must appear to the left of li. Lines 10–11 add T j--rw→Ti when o j is

a read, and lines 12–13 add T j--ww→Ti when o j is a write.
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1: procedure Add-Dependency-Edge(LCB li, LCB o j)
2: let Ti = li.txn . Ti is the committing transaction
3: let T j = o j.txn . T j is a zombie transaction
4: if (li.access_mode == Read) and (o j.access_mode == Write) then
5: if T j committed before Ti started then
6: add T j--wr→Ti to CTG
7: else
8: add Ti--rw→T j to CTG
9: end if

10: else if (li.access_mode == Write) and (o j.access_mode == Read) then
11: add T j--rw→Ti to CTG
12: else if (li.access_mode == Write) and (o j.access_mode == Write) then
13: add T j--ww→Ti to CTG . FUW prevents Ti, T j from being concurrent
14: end if
15: end procedure

Algorithm 8: Procedure for determining which type of edge to add to the CTG

At this point, we should note a technicality regarding write LCBs and the timeline

ordering within lock chains. Recall that Ti.commit_ts is initialized with a value of ∞, and

the value of ∞ is used until Ti.commit_ts is assigned. Accordingly, write LCBs are always

added to the tail of lock chains (see Algorithm 5, line 2). We have been making the

simplifying assumption that lock chains are homogeneous, and contain LCBs for a single

data item. Under this simplifying assumption, FUW guarantees that wi(x) for a

committing Ti will be in the correct timeline-ordered position. However, if lock chains are

heterogeneous (i.e., containing LCBs for different data items), then it will generally be

necessary to reposition wi(x) after Ti.commit_ts is assigned, to maintain the timeline

order. Reposition-Write-LCBs (Algorithm 9) gives the procedure for repositioning write

LCBs during commit(Ti). Example 3.3 illustrates why repositioning is necessary for

50



1: procedure Reposition-Write-LCBs(Transaction Ti)
2: let lcb = tail of Ti.tx_locks . writes are grouped at the tail of Ti.tx_locks
3: while (lcb 6= NULL) and (lcb.access_mode == Write) do
4: reposition lcb in its lock chain, so that it appears in timeline order
5: at Ti.commit_ts
6: let lcb = lcb.tx_prev
7: end while
8: end procedure

Algorithm 9: Procedure to reposition write LCBs, after Ti.commit_ts assigned

heterogeneous lock chains, and Example 3.4 illustrates why repositioning is not necessary

for homogeneous lock chains.

Example 3.3 (Repositioning and Heterogeneous Lock Chains): Consider the history

fragment w1(x), w2(y), c2 with the assumption that w1(x) and w2(y) appear in the same

(heterogeneous) lock chain. Prior to c2, T1 and T2 are both active, and w1(x) and w2(y)

are placed in timeline order, according to commit_ts = ∞. w2(y) appears to the right of

w1(x), because w1(x) occurred before w2(y).

Once c2 occurs, T2 is assigned a commit timestamp (causing T2.commit_ts < ∞) and

T1 is still active; this means that w1(x) and w2(y) are no longer in timeline order. To

restore timeline order, w2(y) must be moved to the left of w1(x). Note that when T1

commits, we will have commit(T2)< commit(T1) which also requires w2(y) to appear

before w1(x) in timeline order.

Example 3.4 (Repositioning and Homogeneous Lock Chains): Consider a homogeneous

lock chain for x. While Ti is active, the lock table treats Ti.commit_ts as the value ∞, and

all wi(x) are placed at the tail (rightmost end) of x’s lock chain. If several active

transactions have requested write locks on x, then the corresponding LCBs will appear at
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the tail (right side) of x’s lock chain; the first write lock requested (call it wi(x)) is granted,

and any w j(x) to the right of wi(x) represent transactions in lock wait.

If Ti commits, then all T j having w j(x) to the right of wi(x) will be aborted (to enforce

FUW), and wi(x) will become the right-most LCB in x’s lock chain. Let tc = commit(Ti).

We have tc < ∞, but tc is also the largest timestamp assigned so far. Therefore, a wi(x) that

is positioned at timestamp tc appears at the right-most end of x’s lock chain, which is the

position already occupied by wi(x). Thus, it is not necessary to change the position of

wi(x) when Ti commits.

Finally, note that any r j(x) LCBs added to the lock table while Ti is active will be

positioned in timestamp order according to start(T j). We always have start(T j)< ∞,

which means that such r j(x) will be placed to the left of a wi(x) held by an active

transaction Ti.

Once PSSI determines the set of dependencies that commit(Ti) would cause, PSSI

performs a cycle test, as described in Section 3.4. If no cycle is found, then Ti’s commit

will succeed; on the other hand, if a cycle is found, then Ti will be forced to abort. In

either case, a DBMS that employs FUW must be prepared to clean up any T j that are

waiting for Ti’s write locks.

If Ti’s commit succeeds, then Abort-FUW-Waiters (Algorithm 10) is applied to each

of Ti’s write locks. Recall that Ti’s write locks are grouped together at the tail of

Ti.tx_locks, a minor optimization for this step of the commit process. Abort-FUW-Waiters

scans left to right from each wi(x), looking for waiting w j(x). Each waiting transaction T j

is added to the set “to_abort” and once the set of waiting transactions is found, they are

aborted in one fell swoop.
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1: procedure Abort-FUW-Waiters(LCB lock)
2: let Ti = lock.txn . Ti commit succeeded, “lock” is wi(x)
3: to_abort = /0
4: let lcb = lock.lock_chain_next . waiting write locks must be to the right of wi(x)
5: while lcb 6= NULL do
6: if lcb is a waiting write lock then
7: let T j = lcb.txn
8: to_abort = to_abort ∪ T j

9: end if
10: let lcb = lcb.lock_chain_next . iterate right to next LCB in lock chain a
11: end while
12: abort all T j ∈ to_abort
13: end procedure

Algorithm 10: Procedure for aborting transactions with waiting w j(x) locks

If Ti aborts (i.e., if Ti caused a cycle), then Unblock-FUW-Waiters (Algorithm 11) is

applied to each of Ti’s write locks. Unblock-FUW-Waiter unblocks the first T j that is

waiting behind wi(x) (other transactions may still be left waiting). One must take care to

avoid race conditions when implementing this pair of algorithms. Consider history H3.4,

where three concurrent transactions attempt to write x.

H3.4 : w1(x), w2(x) (lock wait), w3(x) (lock wait)

If T1 aborts, then Unblock-FUW-Waiters needs to unblock T2 by granting w2(x), and

leave T3 in lock wait. However, if T1 commits, then Abort-FUW-Waiters needs to abort

both T2 and T3, but the abort of T2 must not unblock T3.

3.3.3 Optimizations to Dependency Checking

The timeline ordering of lock chains may make it possible to optimize

Dependency-Check’s inner loop (lines 4–8 of Algorithm 6). If we think of dependencies
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1: procedure Unblock-FUW-Waiters(LCB lock)
2: let Ti = lock.txn . Ti aborting, “lock” is wi(x)
3: let lcb = lock.lock_chain_next
4: while lcb 6= NULL do
5: if lcb is a waiting write lock and T j is not already aborted then
6: let T j = lcb.txn
7: unblock T j

8: break . locks to the right of w j(x) continue to wait for T j

9: end if
10: let lcb = lcb.lock_chain_next
11: end while
12: end procedure

Algorithm 11: Procedure for unblocking a waiting w j(x) lock request

as relationships and consider the cardinalities involved, Ti--wr→T j is a 1 : N relationship

between one writer and many readers; Ti--rw→T j is an N : 1 relationship between many

readers and one writer; and Ti--ww→T j is a 1 : 1 relationship between two writers. In all

three cases, each “w” side of the dependency is unique, and first updater wins guarantees a

well-defined ordering of writes. This combination of circumstances may allow

Dependency-Check to restrict the inner loop scan to a portion of a timeline-ordered lock

chain.

Let oi(x) be any LCB in x’s lock chain, where o may be a read or a write. Any

Ti--rw→T j or Ti--ww→T j dependency that comes from oi(x) will be caused by the first

committed w j(x) that appears to oi(x)’s right; therefore, when examining the lock chain to

the right of oi(x), it is not necessary to look beyond the first committed w j(x). Similarly

any T j--wr→Ti or T j--ww→Ti dependency that comes from oi(x) is caused by the first

w j(x) that appears to oi(x)’s left; therefore, when examining the lock chain to the left of

oi(x), it also not necessary to look beyond the first w j(x) encountered.
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The usefulness of this optimization depends on the actual lock table implementation.

This optimization will work perfectly well for lock chains having one LCB per data item;

however, if the lock table uses LCBs to represent sets of data items, then this operation

may not be feasible: if an LCB represents oi({x,y}), then lock chain scans cannot stop

before finding both w j(x) and wk(y) to the right of oi({x,y}) and both w j(x), wk(y) to the

left of oi({x,y}). InnoDB’s lock table uses LCBs to represent sets of data items; this

optimization was not beneficial for InnoDB, and we elected not to use it. We will return to

the topic of InnoDB’s lock table in Chapter 4.

3.4 Cycle Testing Graph

Chapter 2 introduced dependency serialization graphs. A dependency serialization graph

(DSG) is a directed graph where nodes are committed transactions, and edges represent

dependencies between pairs of committed transactions. DSGs represent complete

histories, so it is impractical to use these graphs directly in database schedulers, just as it

is impractical to use conflict serialization graphs over complete histories. This section

introduces the cycle testing graph (CTG), a directed graph that contains only zombie

transactions – committed transactions with the potential to become part of a future cycle –

plus the transaction currently committing (if any). The CTG is capable of performing the

same cycle testing functions as the DSG, but with a significantly smaller set of graph

nodes. As an invariant, the CTG remains acyclic. Thus if C is a CTG and Ti is the

currently committing transaction, then Ti is allowed to commit if C∪Ti forms a new CTG

C′, and C′ is acyclic. Unlike the DSG, CTG edges are unlabeled, and there is at most one

edge from Ti to T j. Therefore, there will be a CTG edge Ti→ T j if there are any

dependencies from Ti to T j.

55



1: procedure CTG-Add-Edge(Transaction Ti, Transaction T j)
2: if T j 6∈ Ti.out_edges then
3: add T j to Ti.out_edges
4: increment T j.in_edge_count
5: end if
6: end procedure

Algorithm 12: Procedure for adding a Ti→ T j edge to the CTG

1: procedure CTG-Remove(Transaction Ti)
2: for T j ∈ Ti.out_edges do
3: decrement T j.in_edge_count
4: end for
5: remove Ti’s node from the CTG
6: end procedure

Algorithm 13: Procedure for removing Ti from the CTG

Each zombie transaction Ti contains two CTG-specific fields: Ti.out_edges and

Ti.in_edge_count. Ti.out_edges contains a list of Ti’s out-edges (i.e., the transactions ids

of T j, such that there is an edge from Ti→ T j), while Ti.in_edge_count contains the

number of distinct transactions Tk that have an edge Tk→ Ti. PSSI’s CTG uses out-edges

for cycle testing, and in-edge counts for pruning transactions that are no longer zombies.

CTG-Add-Edge (Algorithm 12) and CTG-Remove (Algorithm 13) are the chief

manipulators of Ti.out_edges and Ti.in_edge_count. The former adds an edge from

Ti→ T j and the latter removes Ti from the CTG. As these algorithms show,

Ti.in_edge_count must be updated whenever an edge is added to, or removed from the

CTG.

We have seen how PSSI uses Dependency-Scan to find dependency edges during Ti’s

commit, and Add-Dependency-Edge to add these edges to the CTG. Once these
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dependencies are known, the CTG performs a cycle test. The cycle test is an ordinary

depth-first search [CLR90, Section 23.3], starting from Ti. Using acyclicity as an invariant

makes it possible to perform a single depth-first search per transaction. If the CTG C is

acyclic but C∪Ti contains a cycle, then that cycle must pass through Ti, and that cycle can

be found by a depth-first search that starts from Ti. Earlier papers [CRF09, Section 2.5]

have postulated that cycle testing might be prohibitively expensive, but since only a single

depth-first search per transaction is required, we believe the approach is quite economical.

3.4.1 CTG Pruning

In order to conserve memory, it’s important to remove zombie transactions from the CTG,

once we are certain that these transactions cannot be part of any future cycle. The process

of removing transactions from the CTG is called pruning, and PSSI carries out this

process each time there is a change in the set of active transactions. Theorem 3.5 gives the

criteria for pruning zombie transactions from the CTG.

Theorem 3.5 (Pruning Theorem): A zombie transaction Ti cannot be part of any future

cycle if Ti satisfies the following two conditions:

(1) Ti.in_edge_count = 0, and

(2) commit(Ti)< t0, where t0 is the start timestamp of the oldest active transaction.

Proof: In order to be part of a cycle, it is necessary for Ti to have an edge leading in, and

an edge leading out. Condition (1) requires Ti to have no in-edges, therefore, Ti must

acquire a new in-edge before it can become part of a cycle.

Condition (2) guarantees that Ti cannot acquire new in-edges. Without loss of

generality, let Tk be any active transaction. If t0 is the start timestamp of the oldest active
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transaction, then we have t0 ≤ start(Tk), and by condition (2), we have

commit(Ti)< t0 ≤ start(Tk). Because commit(Ti)< start(Tk), Tk’s commit could only

cause the following types of dependency edges to become incident to Ti: Ti--wr→Tk,

Ti--ww→Tk, or Ti--rw→Tk. None of these adds a new in-edge to Ti, therefore, any new

edges incident to Ti must be out-edges.

In summary, if Ti has no in-edges, and Ti cannot acquire new in-edges, then Ti cannot

become part of a future cycle. If Ti cannot become part of a future cycle, then Ti is no

longer a zombie, and Ti may be pruned from the CTG. �

Theorem 3.5 provides a set of conditions that are sufficient to ensure that Ti cannot be

part of a future cycle, but we do not claim these conditions are necessary. (e.g., one could

replace (1) with the condition “Ti.out_edges = /0”, and use that as the basis for an alternate

version of the pruning theorem. However, such a set of conditions would likely be more

difficult to check.)

The process for pruning the CTG consists of two phases, which are shown in

Algorithm 14. The first phase finds a set of transaction S that already satisfy the pruning

theorem and are, by definition, prunable. The second phase recursively examines each

Ti ∈ S, since the removal of Ti may make it possible to prune additional transactions T j,

where T j 6∈ S. Example 3.6 illustrates the pruning process.

Example 3.6: Suppose we have the CTG shown in Figure 11, where T1 was the first

transaction to start and the last transaction to commit, and where T1’s commit leaves no

active transactions. (In this special case, we can take t0 to be the next start timestamp that

would be assigned.)
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1: procedure CTG-Prune
2: let t0 = start timestamp of the oldest active transaction
3: let S = transactions with no in-edges, that committed before t0
4: for Ti ∈ S do
5: CTG-Prune-Recursive(Ti, t0)
6: end for
7: end procedure
8:

9: procedure CTG-Prune-Recursive(Transaction Ti, timestamp t0)
10: if (Ti.commit_timestamp > t0) or (Ti.in_edge_count > 0) then
11: return
12: end if
13: let R = {T j | T j ∈ Ti.out_edges}
14: CTG-Remove(Ti)
15: Notify-Observers(Ti)
16: for T j ∈ R do
17: CTG-Prune-Recursive(T j, t0)
18: end for
19: end procedure

Algorithm 14: Procedures for pruning the CTG

The first phase of CTG-Prune identifies the set of transaction S that already satisfy the

pruning theorem; this gives S = {T1,T2 }. The second (recursive) phase consists of the

following steps:

1. T1 is removed from the CTG. T1 has a single out-edge, T1→ T3, so T3 is examined

next.

2. T3.in_edge_count = 1 (from T2→ T3). This makes T3 ineligible for pruning, and

the recursive examination of T1 ends.
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T2
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Figure 11: CTG for Example 3.6

3. T2, the next member of S, is removed from the CTG. T2 has a single out-edge,

T2→ T3, so T3 is examined again.

4. Upon re-examination, T3.in_edge_count = 0, which allows T3 to be removed from

the CTG. T3 has a single out-edge, T3→ T4, so T4 is examined next.

5. T4.in_edge_count = 0. T4 is removed from the CTG, and this ends the recursive

examination of T2.

When CTG-Prune ends, the CTG in this example will be empty. Note that the pruning

order (T1, T2, T3, T4) is a topological sort, and provides an equivalent serial history over

the set of zombie transactions.

There is one remaining aspect of the pruning process that needs to be discussed: the

Notify-Observers call that appears in CTG-Prune-Recursive. This is a straightforward

application of the observer pattern. The idea is that several database components may

have to retain information about Ti while it is a zombie transaction. For example, the lock

table needs to retain Ti’s read and write locks, and the transaction manager needs to retain

Ti’s basic data structure. Notify-Observers provides a way for the CTG to let other

components know that Ti is no longer a zombie, thereby allowing those components to

release any resources dedicated to Ti.
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1: procedure Notify-Observers(Transaction Ti)
2: for each CTG observer o do
3: o.Clear-Transaction(Ti)
4: end for
5: end procedure

Algorithm 15: Use of the observer pattern to remove Ti from DBMS internal components

The implementation of Notify-Observers appears in Algorithm 15. Each observer

provides a Clear-Transaction callback, and Notify-Observers invokes these callbacks,

passing the just-pruned transaction Ti. These callbacks would typically be established

early in the database startup sequence, before any transactions are serviced.

3.4.2 Zombies and Pruning in Other Contexts

Section 3.2 stated that the problem of zombie transactions — the need to remember

information about Ti for some time after Ti commits — occurs in contexts other than

PSSI. This section describes two such contexts.

As noted in [CRF09, pg. 26], the strategy of essential dangerous structure testing

(ESSI) requires the DBMS to keep track of an already-committed transaction Ti if Ti

executed concurrently with a still-active transaction T j. In other words, the DBMS cannot

discard information about Ti until commit(Ti)< t0, where t0 is the start timestamp of the

oldest active transaction. This matches condition (2) of the Pruning Theorem (Theorem

3.5).

Zombie transactions also appear in the discussion of basic serialization graph testing

(basic SGT) from [BHG87, pg. 123] (although [BHG87] does not use the term “zombie

transaction”). A basic SGT scheduler must retain information about a committed
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transaction Ti for as long as Ti has an in-edge count greater than zero. This matches

condition (1) of the Pruning Theorem.

Thus, PSSI’s Pruning Theorem can be seen as the union of conditions imposed by two

other approaches: a committed PSSI transaction Ti remains a zombie for as long as Ti has

in-edges (as in basic SGT), or executed concurrently with a still-active transaction T j (as

in ESSI).

3.5 Summary

This chapter presented PSSI’s design fundamentals. The chapter began with a discussion

of timestamps, and techniques for version storage and management. Version management

is not a new area of research, but it is an integral part of any SI implementation.

PSSI requires the database to keep track of already-committed zombie transactions,

since zombie transactions ultimately play a role in the formation of dependency cycles,

and influence the handling of deleted data items.

The lock table and cycle testing graph are the two central components in PSSI’s

design. The lock table is responsible for finding dependencies and reporting them to the

CTG; the CTG is responsible for detecting cycles, and for determining when a zombie

transaction Ti cannot be part of any future cycle.

Chapter 4 will describe how these designs were incorporated into the InnoDB storage

engine that ships with MySQL 5.1.31, serving as a case study for the implementation of

PSSI in a working database system.
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CHAPTER 4

PSSI IMPLEMENTATION WITH MYSQL/INNODB

This chapter presents a case study where we describe our implementation of PSSI in

MySQL 5.1.31’s InnoDB storage engine. InnoDB was a good starting point for this

project, given its support for multiversioning (but not snapshot isolation), and a variant of

index-specific ARIES/IM locking [Moh95]. (ARIES is a family of algorithms for B-tree

isolation and recovery, and the acronym “ARIES/IM” stands for “Algorithm for Recovery

and Isolation Exploiting Semantics for Index Management”.) Starting from a standard

distribution MySQL/InnoDB 5.1.31, our prototype work required three phases of

development:

1. adding support for first updater wins, thereby providing traditional snapshot

isolation (i.e., as defined in [BBG95]),

2. implementing the algorithms presented in Chapter 3, slightly modified to fit the

design of InnoDB’s lock manager, and

3. adapting pessimistic index-specific IM to work with an optimistic multiversioned

system.

Any database management system depends not only on individual components, but on

the way those components work together in a cooperative fashion; InnoDB is no exception
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to this rule. Consequently, in order to provide a comprehensive view of this system, we

will have to describe a number of different parts. We begin with the implementation of SI

in InnoDB, since that was a small and straightforward addition. From there, we move to

InnoDB’s physical structures: how rows and secondary index records are stored as a set of

B-trees. Next, we present InnoDB’s lock manager, and our modifications to it. Our lock

manager coverage describes InnoDB’s variant of index-specific IM, and how it is used to

lock ranges and avoid phantom anomalies. Next, we describe our CTG implementation,

and the issues we discovered in moving from conceptual design to a real-world system.

The chapter concludes with a list of miscellaneous issues: durability, replication, and

garbage collection of old versions.

4.1 Adding SI Support to InnoDB

As noted earlier, InnoDB provides MVCC but not snapshot isolation. Consequently, our

first task was to add support for SI, by implementing first updater wins (see Definition 1.2,

page 3).

Adding FUW involved little more than implementing Algorithms 5, 10, and 11 from

Section 3.3.2. Let Ti be the transaction that has written x most recently, let T j be a

concurrent transaction that also wishes to write x, and recall that FUW must be prepared

to handle two cases: (1) where w j(x) occurs before ci, and (2) where w j(x) occurs after ci.

Case (1) is handled entirely within the lock manager. Case (2) is handled as follows:

before T j writes x, T j must examine x.txid. If x.txid is visible to T j (i.e., the last

transaction that wrote x committed prior to start(T j)), then T j may write x and continue.

Otherwise, x must have been written by a concurrent (and already-committed) transaction,
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and T j must abort. Ordinary SI does not have zombie transactions, so case (2) must be

handled by checking timestamps in the row update code.

Each MySQL/InnoDB transaction is tied to a separate operating system thread, and

one must be careful to avoid race conditions during FUW aborts (as alluded to in Section

3.3.2, during the discussion of Algorithm 10). We use the following strategy to void race

conditions during FUW aborts: when Ti commits, Ti first identifies the set of waiting

transactions T j that have write-write conflicts with Ti; Ti marks such T j by setting the

field T j.has_fuw to TRUE. Once this marking is done, Ti brings each T j out of lock wait.

When T j comes out of lock wait, T j notices that its has_fuw flag is set and rolls itself

back. Thus, T j is rolled back by its own operating system thread, and the rollback does

not delay Ti’s commit.

4.2 InnoDB Physical Structures

InnoDB uses B-trees exclusively for data storage. Every InnoDB table consists of (1) a

clustered B-tree index called “PRIMARY” and (2) zero or more secondary B-tree indexes.

InnoDB uses a logical addressing scheme where PRIMARY holds table rows, and

secondary indexes refer to PRIMARY rows by primary key. This arrangement allows

InnoDB to treat record locks and range locks uniformly: every InnoDB record lock is a

range lock on a B-tree index. In this chapter, the term record lock means “a row lock” or

“a lock on a secondary, non-clustered, index tuple”.

InnoDB versions PRIMARY index rows. Each PRIMARY index row xi contains two

system header fields: the transaction id of the writing transaction Ti, and a pointer to xi’s

immediate predecessor. This is the chaining scheme described in Section 3.1.1 and
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illustrated in Figure 8. InnoDB stores old versions in a set of pages called the rollback

segment, and like other data pages, these are managed by InnoDB’s buffer pool. InnoDB

stores old versions in a manner that is reminiscent of compressed value logging [GR92,

Section 10.3.4]. If x j = pred(xi), then x j will contain (1) the transaction id j, (2) a pointer

to pred(x j) (which may be a null pointer), and (3) the set of column values where x j

differs from xi.

InnoDB does not version secondary index records. Instead, the header of each

secondary index page p contains a field called PAGE_MAX_TRX_ID, which holds the

largest transaction id i of the Ti that modified p. When T j wishes to read from p, T j

begins by reading i from p.PAGE_MAX_TRX_ID; if Ti’s writes are visible to T j, then T j

may read p as-is. On the other hand, if Ti’s writes are not visible to T j, then T j must

dereference the PRIMARY row each time that T j reads a secondary index record from p.

Dereferencing the PRIMARY row allows T j to locate the row version (if any) that is in

T j’s snapshot. If one assumes that secondary index updates are infrequent, then this is

useful space-saving compromise.

Every data page p contains a counter, PAGE_N_HEAP, that’s used to assign heap

numbers to individual records on p. Heap numbers uniquely identify records in individual

pages, and the combination of (tablespace id, page number, heap number) acts as a row id

(RID) and uniquely identifies any physical record in the database. Heap numbers denote

the temporal order in which records were added to a leaf page, and these numbers are

independent of dictionary ordering. Thus if u, v, y, and x are inserted into an empty page

p, these records will be given the following heap numbers: u = 2, v = 3, x = 5, and y = 4.

(Heap numbers zero and one have special meanings, which will be described shortly.)

Once assigned, heap numbers do not change, unless the page splits, or undergoes
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reorganization. This constancy is imperative, since InnoDB locks the physical location of

records: the combination of tablespace id, page number, and heap number.

Heap numbers zero and one have special significance to InnoDB. Heap number zero is

the page infimum; InnoDB temporarily locks this record during page reorganization. Heap

number one is the page supremum; this record represents the gap at the far “right” side of

the page, above the largest record in dictionary order. The supremum acts like an

end-of-file marker for page p, so that if Ti has locked the supremum record on page p,

then we know that Ti has scanned past the largest record on p. The infimum and

supremum are physical records: the infimum record contains the string infimum offset 99

bytes from the start of the page, and the supremum record contains the string supremum

offset 112 bytes from the start of the page.

Within B-tree leaf pages, records are organized as a linked list in dictionary order. The

page directory is an array of entries that point to every nth element of the linked list, for

n≤ 8. This is an interesting design choice. This arrangement permits binary searches of

the page directory, but the result of the binary search will be a sub-list of eight (or fewer)

elements, and the sub-list must be scanned linearly. Consequently, binary searches on

InnoDB page directories are slightly slower than a design that allocates separate directory

entries to each record. On the other hand, inserts are generally very fast, since InnoDB

only needs to manipulate a pair of linked list pointers, and if necessary, adjust the page

directory so that there are no more than eight records between directory entries.

Figure 12 illustrates the u, v, y, x insertion scenario described earlier. The records are

contained in a linked list in dictionary order, so that a range scan would traverse the heap

numbers 2, 3, 5, 4, and 1. There are also two page directory entries: the first directory

entry points to the sublist (u, v), and the second directory entry points to the sublist (x, y).
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u v x y supremum

2 3 5 4 1

Page Directory

B-Tree Leaf Page

Heap Numbers

Figure 12: Structure of a B-tree leaf page, containing four records

A subsequent insert of vv would produce the page shown in Figure 13. In Figure 13, note

that vv has been placed in the linked list between v and x, and assigned the heap number

six.

The key point of these examples is the following: heap numbers are independent of

dictionary order, and with the exception of page reorganizations, the mapping between

heap numbers and records does not change. This fact is critically important to the working

of InnoDB’s lock manager, which locks physical row locations, based on the combination

of tablespace id, page number, and heap number.

4.3 InnoDB’s Lock Manager

The standard distribution InnoDB has a sophisticated lock manager, and a robust

implementation of ARIES/IM index locking. InnoDB’s lock manager provided a solid

foundation for implementing PSSI’s algorithms. This section explains how InnoDB’s lock

manager works, and how we modified it to support PSSI. A large portion of this work
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u v x y supremum

2 3 5 4 1

Page Directory

B-Tree Leaf Page

Heap Numbers

vv

6

Figure 13: B-tree leaf page from Figure 12, after inserting vv

involved replacing the original lock manager code with the algorithms presented in

Section 3.3. Changing the underlying lock manager semantics was one of the more

challenging aspects of the project. InnoDB guarantees serializability through pessimistic

S2PL, where the notions of lock wait and conflict are equivalent. PSSI treats lock wait and

conflict as two different concepts (i.e., reads and writes may conflict, but do not cause lock

waits), consequently, it was necessary to separate the notions of lock wait and conflict at

the API layer within the lock manger.

InnoDB’s lock manager has an interesting design. Rather than creating an LCB (or

lock_t, as they’re called the InnoDB source code) for each record accessed by Ti, InnoDB

creates one LCB per page accessed by Ti. Along with standard bookkeeping information

(transaction id, lock mode, and so forth), each LCB contains a bitmap denoting which

records have been locked. Suppose that transaction Ti wishes to lock record x on page p in

mode m. One of two things will happen: if Ti already has an LCB for page p in mode m,

then Ti simply turns on the bit that corresponds to x’s heap number. On the other hand, if

Ti does not have an LCB for page p in mode m, then Ti creates a new LCB, and sets the
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bit for x’s heap number. This design requires slightly more memory when Ti locks few

records on p, but it is very efficient for range scans (i.e., Ti can lock all records on p with a

single LCB). The bitmaps work well for dependency testing: let li and l j be two LCBs

with conflicting modes, owned by distinct transactions Ti and T j. We can determine

whether there is a dependency between Ti and T j with a simple (and efficient) bitmap

intersection.

InnoDB organizes locks in a hashtable, similar to the one shown in Figure 10. A hash

of p’s page number determines a hashtable cell, and the hashtable cell contains all LCBs

for page p. There are two structural differences between InnoDB’s lock manager and

Figure 10: the granularity of LCBs and the organization of lock chains. Figure 10 uses

one LCB for each record that Ti accesses, but InnoDB uses one LCB for each page that Ti

accesses. This was a minor obstacle to overcome, requiring only small changes to the

algorithms presented in Chapter 3. The standard distribution InnoDB’s lock chains are

singly-linked lists, where new LCBs are appended to the right side of the chain. This is a

more marked contrast from Figure 10, where lock chains are doubly-linked lists, and

LCBs appear in timeline order. To permit bi-directional iteration, we replaced the

singly-linked lock chains with doubly-linked ones, and implemented the requisite timeline

ordering.

InnoDB utilizes multi-granular locking [BHG87, Sec. 3.9]. In the ordinary case of Ti

accessing record x in table T, Ti must acquire an intention lock on T, and then a shared or

exclusive lock on x. PSSI is concerned with finding dependency cycles based on record

accesses; table locks are more of an implementation detail and really do not influence the

working of PSSI.
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4.3.1 Lock Modes and Lock Flags

Each InnoDB LCB has a 32-bit integer called type_mode, that contains the lock mode

along with several flags. type_mode is organized as follows:

• Access mode. The low eight-bits of type_mode (type_mode & 0xf) represent the

data access mode. The possible values are LOCK_S (4), LOCK_X (5), LOCK_IS

(2), and LOCK_IX (3); these values correspond shared, exclusive, intention shared,

and intention exclusive access modes. PSSI is strictly concerned with shared

(LOCK_S) and exclusive (LOCK_X) record locks.

• Table vs. record lock. The next eight bits of type_mode (type_mode & 0xf0)

contain one of LOCK_TABLE (0x10) or LOCK_REC (0x20). The former denotes a

table lock, while the latter denotes a record lock.

• Wait flag. The LOCK_WAIT bit (type_mode & 0x100) denotes a waiting (not

granted) lock request. This bit is turned on when Ti enters lock wait, and turned off

when Ti leaves lock wait.

• Gap bits. InnoDB uses gap bits (type_mode & 0x600 – two bits) to distinguish

between locks on records and locks on gaps between records.

LOCK_ORDINARY (0) means that the lock applies to the record x, and to the gap

immediately below x in dictionary order. LOCK_GAP (0x200) means that the lock

applies to the gap below x in dictionary order, but not to x itself.

LOCK_REC_NOT_GAP (0x400) means that the lock applies to x, but not the gap

below. InnoDB’s gap bits are a useful refinement to ARIES/IM, and can avoid some

of the false positives inherent in the original ARIES algorithms.
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• Insert intention flag. The LOCK_INSERT_INTENTION bit (type_mode &

0x800) is not an intention lock per-se. LOCK_INSERT_INTENTION denotes a

newly-inserted record; the range locking algorithms (described in Section 4.3.2) use

this flag to detect range conflicts.

Below, we provide several examples to illustrate the use of lock modes and the LCB’s

bitmap.

Example 4.1: Suppose we have a non-unique index with the following keys and heap

numbers:

Key: A A B B C C D

Heap Number: 2 3 5 4 7 6 8

and let Ti perform the scan “=B”. Ti create the following two LCBs:

LCB1: bitmap: 5, 4

type_mode: LOCK_ORDINARY | LOCK_REC | LOCK_S

LCB2: bitmap: 7

type_mode: LOCK_GAP | LOCK_REC | LOCK_S

LCB1 denotes the bitmap 0000 1100, and LCB2, denotes the bitmap 0000 0010 (the

left-most position is bit zero, the next position is bit 1, and so on). These two LCBs lock

both “B” keys, the gaps below each “B” key, and the gap between “B” and “C” (but not

“C” itself). Consequently, a concurrent transaction T j could acquire an exclusive lock on

bit 7 without conflicting with Ti.

Example 4.2: Given the index in Example 4.1, let Ti perform the range scan “between A

and B”. Ti creates the following LCB:
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LCB3: bitmap: 2, 3, 5, 4, 7

type_mode: LOCK_ORDINARY | LOCK_REC | LOCK_S

Note the difference in behavior here: when the scan is “=B”, InnoDB locks the first

non-matching key with LOCK_GAP, but when the scan is “between A and B”, InnoDB

locks the first non-matching key with LOCK_ORDINARY. In other words, an equality

condition locks the gap below “C” but not “C” itself, while the “between” condition locks

“C” and the gap below. The standard distribution InnoDB exhibits this behavior with

unique and non-unique indexes. There appears to be an opportunity for improvement here

(having “between” scans lock the first non-matching key with LOCK_GAP, instead of

LOCK_ORDINARY), but we elected not to change this aspect of InnoDB’s behavior.

Example 4.3: Suppose we have a unique index with the following keys and heap

numbers:

Key: A C D

Heap Number: 2 4 3

and let Ti perform the range scan “=C”. Ti creates the following lock:

LCB4: bitmap: 4

type_mode LOCK_REC_NOT_GAP | LOCK_REC | LOCK_S

In this case, Ti locks “C” but not the surrounding gaps. A concurrent transaction T j could

insert “B” without conflicting with Ti.

Example 4.4: Given the index from Example 4.3, let T j perform the range scan “=B”.

This is a NOT FOUND condition, as “B” does not exist in the index. The NOT FOUND

condition is represented with the following LCB:

LCB5: bitmap: 4

type_mode: LOCK_GAP | LOCK_REC | LOCK_S
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OS OX RS RX GS GX GXI

OS Y Y Y Y

OX Y Y

RS Y Y Y Y Y

RX Y Y Y

GS Y Y Y Y Y Y

GX Y Y Y Y Y Y

GXI Y Y Y

Table 1: InnoDB Lock Compatibility Matrix

This locks the gap between “A” and “C”, but not “C” itself. In Section 4.3.2, we will see

how LCB5 will create a conflict, should a concurrent T j try to insert “B”.

As these examples show, InnoDB locks are a combination of orthogonal attributes: the

data access mode (read/shared or write/exclusive), and the gap mode. Using an analysis

technique from [Gra10, pg. 12], we can form a compound lock mode by concatenating the

individual attributes. Two compound lock modes are compatible if all of the individual

attribute pairs are compatible. Table 1 gives the lock compatibility matrix for InnoDB,

where “Y” denotes compatible lock modes.

In Table 1, the first character represents the gap mode: (O)rdinary, (R)ecord-only, or

(G)ap. The second character represents the data access mode: (S)hared or e(X)clusive.

The third character represents the presence of the (I)nsert intention bit. It is worth pointing

out several characteristics about Table 1. First, the compatibility matrix is symmetric.

Second, the insert intention bit only appears in conjunction with LOCK_GAP and
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LOCK_X. Third, gap locks only conflict with locks whose insert intention bit is set. The

purpose of gap locks is to detect conflicts with inserts, and we will discuss how this is

done in Section 4.3.2.

4.3.2 Range Locking and Phantom Avoidance

InnoDB prevents phantom anomalies with a variant of ARIES/IM, and this section focuses

on how InnoDB’s range locking algorithms were adapted for PSSI. The same code is used

for SI, ESSI and PSSI, but our primary focus is the end product for PSSI. (The differences

between the original S2PL implementation and the implementation we arrived at for PSSI

are relatively minor, and mostly involve the handling of read/write conflicts; read/write

conflicts cause lock waits for S2PL, but not for PSSI.) Before presenting these algorithms

in detail, we will need to introduce the concepts of implicit and explicit locks.

Definition 4.5 (Implicit Lock, Explict Lock): An implicit lock is represented by x.txid, the

transaction id in x’s row header, while an explicit lock is represented by an LCB in the

lock manager.

The idea behind implicit locks is as follows: suppose T j inserts x and at the time of

insert, T j determines that the insert does not cause a (range) conflict. In this case, T j does

not need to add a w j(x) LCB to the lock manager; instead, the lock implied by x.txid is

used to detect any subsequent conflicts. The term “implicit lock” appears frequently in the

comments of InnoDB’s source code (lock0lock.c in particular), but it is not a standard

term in database literature.

Implicit locks require cooperation from accessing transactions. Let Ti be a transaction

that wishes to access x; Ti must apply procedure Convert-Implicit-to-Explicit, given in
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1: procedure Convert-Implicit-to-Explicit(Transaction Ti, Data Item x)
2: let j = Find-Implicit-Locker-Txid(x)
3: if ( j 6= NULL) and (T j is an active or zombie transaction) then
4: if T j does not have an explicit lock on x then
5: create an explicit w j(x) lock with
6: LOCK_REC_NOT_GAP | LOCK_REC | LOCK_X
7: end if
8: end if
9: Ti enqueues its own oi(x) lock here

10: end procedure

Algorithm 16: Conversion of Implicit to Explicit Locks

Algorithm 16. If the implicit locker (i.e., the inserting transaction) T j is an active or

zombie transaction, and there is no explicit w j(x) LCB, then Ti creates an explicit w j(x)

on T j’s behalf, and then enqueues its own oi(x) LCB. Implicit-to-explicit conversions

must be done before Ti enqueues its own LCB; if oi(x) is wi(x), then Ti may need to wait,

and may need to undergo FUW resolution. (If T j is a zombie transaction that committed

prior to start(Ti), then FUW resolution is not necessary, and PSSI will only note the

T j--ww→Ti dependency.) Implicit-to-explicit conversion occurs regardless of whether x

is visible to Ti, since the access must be noted for dependency testing.

Implicit locking has an obvious benefit for bulk inserts: Ti can insert a large number of

rows, without having to record each one in the lock table. This can reduce the number of

LCBs in the lock table’s hashtable which, in turn, helps speed up lock table operations.

Algorithm 17, Find-Implicit-Locker-Txid shows the procedure used to find the

transaction id j for the T j that may hold an implicit lock on x; this procedure varies

according to whether x is PRIMARY or secondary index record. If x is a PRIMARY index

record, then x.txid identifies the implicit locker. The procedure is more complex when x is
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1: procedure Find-Implicit-Locker-Txid(Data Item x)
2: if x is a PRIMARY index record then . PRIMARY (clustered) index case
3: return x.txid
4: end if
5: let m = PAGE_MAX_TRX_ID for page containing x . secondary index case
6: if Tm is neither active nor zombie then
7: return NULL . no implicit lock
8: end if
9: let y = PRIMARY index row for x

10: return y.txid
11: end procedure

Algorithm 17: Finding an Implicit Locker

a secondary index record, since secondary index records are not versioned, and have no

txid header field. For a secondary index, the first step is to examine

p.PAGE_MAX_TRX_ID for the page p containing x. Let Tm be the transaction where

m = p.PAGE_MAX_TRX_ID; if Tm is neither an active nor a zombie transaction, then Tm

cannot be part of any future cycle, and there is no implicit lock. On the other hand, if Tm

is an active or zombie transaction, then Find-Implicit-Locker-Txid must locate y, the

PRIMARY index row that x refers to, and use y.txid to find the implicit locker (which

may, or may not be Tm). Lock manager mutexes are temporarily released in line 9 of

Algorithm 17, since retrieving y may require a disk IO; the mutex is re-acquired when the

function returns. (The temporary lock release was carried forward from the original S2PL

implementation.)

Example 4.6 illustrates the process of implicit to explicit lock conversion with a

PRIMARY index record. Example 4.8 (located at the end of this section) illustrates the

use of implicit locks in a secondary index.
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Example 4.6 (Insert Before Range Scan): Suppose we have a unique index with keys “A”

and “F”. T1 will insert “C”, T2 will scan “between A and D”, and both transactions will

commit. The following sequence of events takes place:

1. T1 positions a cursor over “A”. (“C” will be inserted immediately after “A”.)

2. T1 examines NEXT(A) = F. There are no locks on “F”, so inserting “C” does not

cause a range conflict.

3. T1 inserts “C”, with an implicit lock. No LCB is added to the lock manager.

4. T2 begins its scan “between A and D”.

5. T2 enqueues r2(A) with LOCK_REC_NOT_GAP | LOCK_REC | LOCK_S. (This is

a unique index and “A” matches the lower boundary of the range scan, so, T2 only

needs to lock “A”, and not the gap below.)

6. T2 examines the transaction id in C’s row header. This transaction id indicates that

“C” is not visible to T2, and there is no explicit lock on this record. T2 converts T1’s

implicit lock into an explicit one, and enqueues w1(C) on T1’s behalf. This lock has

flags LOCK_REC_NOT_GAP | LOCK_REC | LOCK_X, which locks “C” but not

the gap below.

7. T2 enqueues r2(C). This lock has flags LOCK_ORDINARY | LOCK_REC |

LOCK_S. “C” does not affect the results of T2’s query, but the lock is necessary in

order to detect the T2--rw→T1 dependency.

8. T2 enqueues r2(F), also with LOCK_ORDINARY | LOCK_REC | LOCK_S.

Assuming that “C” and “F” reside on the same page, T2 can take the LCB created in
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the prior step, and turn on the bit corresponding to F’s heap number (both locks

have the same type_mode).

9. T1 and T2 commit.

Example 4.6 illustrates the one case where PSSI generates false positives. When

scanning “between A and D”, T2 locked “F”, the first non-matching key encountered. If a

T3 were to insert “E”, then PSSI would find a dependency between T2 and T3; although

there is not a logical conflict between these two transactions, T2 has locked “F” and the

gap below, and T3 is inserting a record into this gap. This is an inherent shortcoming of

ARIES/IM, and would affect any system that uses ARIES/IM.

Next, we will look at the more interesting case for range locking: where Ti inserts x

and a range conflict is evident at the time of insert. This procedure is outlined in

Algorithm 18, Insert-Range-Check.

Let Ti be a transaction that inserts x. In preparation for the insert, Ti positions a cursor

immediately over data item y, where y is the record immediately before x in dictionary

order. Lines 4–5 collect the set of LCBs for z = NEXT(y), the data item immediately after

y in dictionary order (i.e., Ti will insert x between y and z). In these steps, our goal is to

identify LCBs that cover the gap that x is being inserted into; these are o j(z) LCBs with

the LOCK_ORDINARY or LOCK_GAP bits set. (LOCK_REC_NOT_GAP LCBs are not

included, since they do not cover the gap below z.) If there are no conflicting LCBs on z,

then Ti may insert x (with an implicit lock) and return.

The rest of Algorithm 18 handles the case where a range conflict is apparent. Lines

11–16 examine the set of z LCBs, looking for a wk(z) that would warrant FUW handling

(i.e., a write lock on the next key z, held by a concurrent transaction Tk). If such a wk(z)

79



1: procedure Insert-Range-Check(Transaction Ti, Data Item x)
2: acquire x-latch on data page
3: let y = data item such that x will be inserted immediately after y
4: let z = NEXT(y)
5: let S = set of LCBs on z with LOCK_ORDINARY or LOCK_GAP
6: if S = /0 then . no range conflict
7: insert xi . Ti has implicit lock on x
8: release x-latch on data page
9: return

10: end if
11: if there is an LCB ∈ S that would warrant FUW handling then
12: enqueue wi(x) with
13: LOCK_INSERT_INTENTION | LOCK_GAP | LOCK_X
14: release x-latch on data page
15: return . caller waits, with FUW handling
16: end if
17: insert x, immediately after y . range conflict, but no FUW handling
18: enqueue wi(x) with LOCK_REC_NOT_GAP | LOCK_X
19: Insert-Inherit-Locks(Ti, x, z)
20: release x-latch on data page
21: end procedure

Algorithm 18: Range Checking for Newly-Inserted Data Items

exists, then Ti will enqueue a wi(z) with mode LOCK_INSERT_INTENTION |

LOCK_GAP | LOCK_X; this is the GXI lock in Table 1. Enqueueing this lock request

will cause Ti to enter lock wait (Tk is still active), or abort immediately (Ti, Tk concurrent,

and Tk has already committed). If the insert does not require FUW handling, then Ti

proceeds to lines 17–20; Ti inserts x, enqueues a wi(x) lock with LOCK_REC_NOT_GAP

and calls procedure Insert-Inherit-Locks (Algorithm 19). The lock manager needs to know

x’s heap before it can enqueue wi(x), but the heap number is not known until after x is

inserted; thus, x must be locked after insert.
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1: procedure Insert-Inherit-Locks(Transaction Ti, Data Item x, Data Item z)
2: let S = set of o j(z) LCBs with LOCK_ORDINARY or LOCK_GAP
3: for each lcb ∈ S do
4: let T j = lcb.txn . T j is an active or zombie transaction
5: enqueue o j(x) with LOCK_ORDINARY . x inherits lock mode from z
6: end for
7: end procedure

Algorithm 19: Lock Inheritance, Post Insert

Insert-Inherit-Locks takes two data items: x, the newly-inserted record, and z, the data

item immediately above the gap where x was inserted. For each conflicting LCB on z, Ti

creates an o j(x) with the LOCK_ORDINARY gap bit. Thus, if T j had locked the gap

between y and z (recall that y is the record immediately before x in dictionary order), then

Insert-Inherit-Locks guarantees that T j will have locks on the gap between x and z, a lock

on x itself, and a lock on the gap between y and x.

Note that Ti acquires a page latch at the beginning of Algorithm 18, and holds the

latch for the duration of the procedure. This latch prevents a concurrent T j from

modifying the page while Ti inserts x and checks for range conflicts. This latch is an

essential part of range locking, since it ensures that the notion of “next record” does not

change while the insert occurs. Example 4.7 illustrates the case of inserting a record

which conflicts with an earlier range scan.

Example 4.7 (Range Scan Before Insert): Suppose we have a unique index with keys “A”

and “F”. T1 will scan “between A and D”, T2 will insert “C”, and both transactions will

commit. The following sequence of events takes place.
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1. T1 enqueues r1(A) with LOCK_REC_NOT_GAP | LOCK_REC | LOCK_S. (As

before, this is a unique index and “A” matches the beginning of the scan range; so,

T1 can lock “A” without locking the gap below.)

2. T1 enqueues r1(F) with LOCK_ORDINARY | LOCK_REC | LOCK_S. “F” is the

first non-matching key; this record does not affect the outcome of T1’s query, but

since the record was accessed, T1 must lock it.

3. T2 positions a cursor above “A”. (“C” will be inserted after “A”.)

4. T2 looks for locks on NEXT(A) = F, and finds (only) r1(F) with

LOCK_ORDINARY | LOCK_REC | LOCK_S. This tells T2 that there is no FUW

violation, but the insert causes a range conflict.

5. T2 inserts “C”, immediately after “A”.

6. T2 enqueues w2(C) with LOCK_REC_NOT_GAP | LOCK_REC | LOCK_X.

7. T2 calls Insert-Inherit-Locks(T2, C, F), which enqueues r1(C), on T1’s behalf.

We conclude this section with one final example, to illustrate the use of implicit locks

in conjunction with secondary indexes.

Example 4.8 (Implicit Locking, Secondary Index): For this example, we will use a table

TBL with three integer columns: PK (the primary key), C1 (with a non-unique secondary

index, C1_IDX), and V1 (an un-indexed column). InnoDB uses logical addressing, where

each secondary index record contains the concatenation of (1) the indexed columns and

(2) the primary key; therefore, C1_IDX records have the form (C1, PK). Our example

begins with the following table and index structure:
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TBL, page p1

PK C1 V1 heap #

7 4 0 8

8 4 0 9

9 5 0 10

C1_IDX, page p2

C1 PK heap #

4 7 21

4 8 22

5 9 23

In this sample data, heap # does not denote a physical column; instead it denotes

InnoDB’s heap numbers (see Figure 12, page 68) for the individual records. During this

example, we denote locked records in the form (p : h) where p is a page number and h is a

heap number; this is the same physical record specification that InnoDB uses. For

example, r1(p1 : 9) means T1’s read lock on page p1, heap number 9, which is the TBL

row (8, 4, 0); r2(p2 : 21) means T2’s read lock on page p2, heap number 21, which is the

C1_IDX record (4, 7).

Let T1 be a transaction that inserts the row (100, 4, 0) into TBL. This insert leaves

TBL and C1_IDX in the following state:

TBL, page p1

PK C1 V1 heap #

7 4 0 8

8 4 0 9

9 5 0 10

100 4 0 111

C1_IDX, page p2

C1 PK heap #

4 7 21

4 8 22

4 100 222

5 9 23

Notice that two inserts have taken place: (100, 4, 0) in TBL (as heap number 111) and

(4, 100) in C1_IDX (as heap number 222). When inserting these records, T1 has to check
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for conflicting range locks in both TBL and C1_IDX. For the sake of discussion, let us

assume that T1 observed no range conflicts with either record; both records have implicit

locks coming from x.txid for x = (100,4,0).

Now, let T2 be a transaction (concurrent with T1) that executes the query select

count(*) from TBL where C1 = 4, which is an index-only query on C1_IDX. The

following events take place.

1. T2 reads the PAGE_MAX_TRX_ID field from p2, and sees that T1 was the last

transaction to modify the page. (More specifically, T1 is the transaction with the

largest transaction id that modified p2.) T1 is an active transaction, and this tells T2

two things: (1) T2 will have to dereference the TBL row each time it accesses a

C1_IDX record on p2 (as secondary index records are not versioned, and may

correspond to rows which are not visible to T2), and (2) T2 will have to check for

implicit locks when accessing C1_IDX records.

2. T2 fetches the first record (4, 7) from C1_IDX, and checks for an implicit lock.

Using the primary key, T2 fetches the TBL row (7,4,0), and examines the

transaction id in (7,4,0)’s row header. This row was written by a (non-zombie)

transaction that committed prior to start(T2), so there is no implicit lock.

3. T2 enqueues a r2(p2 : 21) lock on (4, 7), with LOCK_ORDINARY | LOCK_REC |

LOCK_S.

4. T2 returns to the row (7, 4, 0), already determined to be visible to T2. T2 enqueues a

r2(p1 : 8) lock on the row with LOCK_REC_NOT_GAP | LOCK_REC | LOCK_S.

LOCK_REC_NOT_GAP is used because (7, 4, 0) was obtained via exact match on

primary key.
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5. T2 reads C1 from the TBL row. In this row, C1 = 4, so T2’s “count(*)” becomes one.

6. T2 fetches the next C1_IDX record, (4, 8). In doing so, T2 performs actions similar

to those in steps 2–5. T2 will

(a) Take a r2(p2 : 22) lock on (4, 8), with LOCK_ORDINARY | LOCK_REC |

LOCK_S.

(b) Take a r2(p1 : 9) lock on (8, 4, 0), with LOCK_REC_NOT_GAP |

LOCK_REC | LOCK_S.

(c) Read C1 = 4 from row (8, 4, 0), which increments T2’s “count(*)” to two.

7. T2 fetches the next C1_IDX record, (4, 100) and checks for an implicit lock. T2

uses the primary key to find the TBL row (100, 4, 0), examines the transaction id in

(100, 4, 0)’s row header, and sees that (100, 4, 0) was written by a concurrent

transaction T1. T2 checks for an explicit w1(p2 : 222) lock on (4, 100), and finds

none. T2 enqueues two lock requests:

(a) w1(p2 : 222), converting T1’s implicit lock on (4, 100) to an explicit lock. This

lock has LOCK_REC_NOT_GAP | LOCK_REC | LOCK_X.

(b) r2(p2 : 222), with LOCK_ORDINARY | LOCK_REC | LOCK_X.

8. T2 returns to the TBL row (100, 4, 0). This row is not visible to T2, and does not

affect the result of T2’s “count (*)” query, but T2 must lock (100, 4, 0) nonetheless,

to ensure that the T2--rw→T1 dependency can be noticed via conflicts on data

items. Again, implicit-to-explicit lock conversion is necessary, and T2 enqueues two

more lock requests, one for T1 and one for itself:

(a) w1(p1 : 111), with LOCK_REC_NOT_GAP | LOCK_REC | LOCK_X.
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(b) r2(p1 : 111), with LOCK_REC_NOT_GAP | LOCK_REC | LOCK_S.

9. T2 fetches the next record from C1_IDX, (5, 9). As before, T2 dereferences the

original row, (9, 5, 0), and examines the writer’s transaction id. (9, 5, 0) was written

by a (non-zombie) transaction that committed prior to start(T2), so there is no

implicit lock. T2 enqueues r2(p2 : 23) with LOCK_ORDINARY | LOCK_REC |

LOCK_S.

10. T2 returns to the original row, (9, 5, 0), and enqueues a r2(p1 : 10) lock with

LOCK_REC_NOT_GAP | LOCK_REC | LOCK_S.

11. T2 reads C1 = 5 from (9, 5, 0). This is the first non-matching record T2’s range scan,

so the scan ends with “count(*)” = 2.

As this example shows, a lot goes on when T2 accesses a recently-modified secondary

index page. If p2.PAGE_MAX_TRX_ID denoted a transaction that was neither active nor

a zombie, then T2 would have been able to read p2 as-is, without dereferencing TBL rows,

or checking for implicit locks.

4.3.3 InnoDB’s Kernel Mutex

Despite its many positive qualities, InnoDB’s lock manager is not without drawbacks.

One notable drawback is InnoDB’s use of a single, monolithic mutex (called the kernel

mutex) to protect the lock manager and transaction system. The kernel mutex serializes

access to InnoDB’s lock manager, which obviously affects the lock manager’s scalability.

For example, a design that used one mutex per lock table cell would allow Ti and T j to set

locks at the same time, as long as those locks reside in different hash table cells; by

contrast, InnoDB’s kernel mutex serializes these operations. (Note that locks in different
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hash table cells affect different records, and therefore, cannot conflict.) InnoDB’s kernel

mutex limits scalability in other ways: for example, Ti cannot set a lock while InnoDB is

assigning a start timestamp to T j, since the kernel mutex covers both the transaction

system and lock manager.

Comments in InnoDB’s source code indicate that development started during the mid

1990’s, when uni-core architectures were (arguably) the most common. In that context, a

monolithic mutex shouldn’t have much negative affect on system scalability; however,

contemporary multi-core hardware would benefit from more granular mutexes. InnoDB’s

developers are aware of this situation, and plan to remove the kernel mutex in MySQL 5.6

[ORA11].

In our PSSI prototype (based on MySQL 5.1.31), the kernel mutex protects the lock

manager, the transaction system, and the cycle testing graph. The lock manager and cycle

testing graph are closely integrated, so this implementation decision was consistent with

InnoDB’s existing design. Unfortunately, protecting the CTG with the kernel mutex

increases the probability of the kernel mutex becoming a bottleneck (we will see an

example of this in Chapter 5).

4.4 Cycle Testing Graph

At an implementation level, PSSI’s CTG is a typical directed graph. Graph nodes are

C-language transaction structs, organized in a hashtable, and keyed by transaction id.

Each transaction struct has an array of out-edges and a count of in-edges, as described in

Section 3.4.
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The challenging aspect of implementing the CTG came in changing InnoDB’s

transaction lifecycle model. MySQL has a data structure called a THD (“connection

thread”) which packages together (1) a client connection to the database server, (2) an

operating system thread, and (3) a transaction struct to execute the client’s SQL

statements. Each connection is bound to a single server thread, a server thread is

associated with a single transaction struct, and the transaction struct is re-used for each of

the connection’s transactions. This arrangement is a good fit for S2PL, where information

about Ti can be discarded as soon as Ti commits, but unfortunately, this is not a suitable

arrangement for PSSI. PSSI must keep track of zombie transactions for some period of

time after they commit, which means that Ti’s transaction struct must be dissociated from

the connection thread after commit(Ti) (i.e., the connection thread may need to execute a

new transaction T j while Ti is still a zombie). To handle this situation, we modified

InnoDB as follows:

1. We added a pool of transaction structs to InnoDB’s transaction manager. These are

inactive, non-zombie transaction structs waiting to be used. Having a pool avoids

allocation overhead each time a transaction starts, and deallocation overhead each

time a transaction ceases to be a zombie.

2. When a connection thread needs to start a new transaction, the connection thread

acquires a transaction struct from the pool.

3. When Ti commits, Ti’s transaction struct is dissociated from the connection thread;

the struct becomes the property of the CTG, until the CTG determines that Ti is no

longer a zombie. Pruning occurs after Ti’s transaction struct is dissociated from its

connection thread.
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Figure 14: Lifecycle of Transaction Structs

4. When Ti is no longer a zombie (as determined by CTG-Prune), the CTG returns the

struct to the pool (step 1) for later re-use.

A single transaction struct undergoes a cycle of re-use, as illustrated in Figure 14.

Our CTG contains two optimizations to speed up pruning (Algorithm 14, page 59).

Pruning requires the CTG to identify a set of zombie transactions S where each Ti ∈ S has

no in-edges, and committed before the oldest active transaction started. From the

transaction manager, we can easily obtain t0, the start timestamp of the oldest active

transaction, but identifying the members of S requires more care, as we wish to avoid a

brute-force search of CTG nodes. Our CTG reduces this search space with an auxiliary

linked list, called ctg.commit_ts_order; this a linked list of zombie transactions, ordered

by commit timestamp.

CTG-Prune-Initial-Set (Algorithm 20) shows how the CTG uses commit_ts_order to

identify the initial set S of prunable transactions. Given t0 (the start timestamp of the

oldest active transaction), CTG-Prune-Initial-Set walks down the list of transactions in

commit_ts_order, collecting those that committed prior to t0, and stopping at the first
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1: procedure CTG-Prune-Initial-Set(timestamp t0)
2: let S = /0
3: for Ti ∈ ctg.commit_ts_order do
4: if commit(Ti)> t0 then
5: break
6: end if
7: if Ti.in_edge_count == 0 then
8: S = S∪Ti

9: end if
10: end for
11: return S
12: end procedure

Algorithm 20: Finding the Initial Set of Prunable Transactions

transaction that committed after t0. In our experiments, the if-condition in lines 4–6 is the

more important criterion. The test in lines 7–9 tends to be less selective; in low contention

workloads, there may be few transactions with in-edges.

The second pruning optimization comes from the following observation: let p1 and p2

be two successive pruning operations where t0 is the start timestamp of the oldest active

transaction during p1, and t ′0 is the start timestamp of the oldest active transaction during

p2. If t0 = t ′0, then the oldest active transaction has not changed, and p2 will not remove

any zombies from the CTG. This optimization is implemented by caching t0 between

successive calls to CTG-Prune; if the current t0 matches the last-cached t0, then

CTG-Prune can return immediately, without doing any further work.
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4.4.1 CTG Support for ESSI

As explained in Section 2.3, every non-serializable SI history contains a dangerous

structure: three transactions T1, T2, T3 (perhaps with T1 = T3), where T1 and T2 are

concurrent, T2 and T3 are concurrent, and there are dependencies T3--rw→T2 and

T2--rw→T1. This provides an alternate way of ensuring serializability for SI; instead of

aborting transactions that cause dependency cycles, one could abort transactions that

cause dangerous structures. Essential Dangerous Structure Testing (ESSI) is a refinement

to this approach, which aborts transactions that create dangerous structures where T1

commits first (see Definition 2.24, page 27). One of our goals for Chapter 5 will be to

compare the performance of PSSI and ESSI, and in this section, we describe our

implementation of ESSI. Our implementation of ESSI differs from that of [CRF09];

instead of testing for a dangerous structure with every record access, our implementation

tests for dangerous structures at commit time, using the CTG. In other words, our

prototype provides ESSI by replacing a commit-time test for cycles with a commit-time

test for essential dangerous structures.

Figure 15 shows a diagram of an essential dangerous structure (this diagram appeared

earlier, as Figure 6 in Chapter 2). In an essential dangerous structure, T1 is the first

transaction to commit. This leaves us to handle two cases: where the essential dangerous

structure would formed by the commit of T2, and where the essential dangerous structure

would be formed by the commit of T3.

The second case (T3 commits last) is easy for the CTG to detect, as we can use

T3.out_edges to find T2, and T2.out_edges to find T1. However, the first case (T2 commits

last) poses a problem, since the CTG (as presented so far), does not provide a way to
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Figure 15: An Essential Dangerous Structure (Figure 6 repeated)

traverse backwards along directional edges. We solved this problem by having the CTG

maintain both in-edge and out-edge sets when ESSI is in use, so that Ti.out_edges

represents the set of T j such that Ti→ T j, and Ti.in_edges represents the set of Tk such

that Tk→ Ti. Thus, we can detect essential dangerous structures where T2 commits last

by using T2.out_edges to find T1, and by using T2.in_edges to find T3. The dual edge sets

are only used for ESSI; PSSI continues to use Ti.out_edges and Ti.in_edge_count.

The pruning criteria for ESSI and PSSI also differ. As shown in Theorem 3.5, PSSI

can prune a zombie transaction Ti as long as (1) Ti has no in-edges, and (2)

commit(Ti)< t0, where t0 is the start timestamp of the oldest active transaction. By

contrast, ESSI can prune a zombie transaction Ti that meets only condition (2), having

commit(Ti)< t0 [CRF09, pg. 26]. Our PSSI prototype uses the same CTG pruning code

for ESSI and PSSI; the code simply ignores in-edge counts when ESSI is used.
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4.5 Durability, Replication, and Garbage Collection

This section addresses three miscellaneous implementation topics: durability, data

replication, and garbage collection.

4.5.1 Durability

Durability is described by the property whereby a transaction Ti’s state transformations are

made durable and public, after Ti successfully commits [GR92, pg. 17]. Like many other

systems, InnoDB supports durability through the write-ahead logging (WAL) protocol, in

combination with log flush at commit. During commit, Ti is assigned a commit log

sequence number, commit-LSN(Ti), and InnoDB’s write-ahead log is flushed up to

commit-LSN(Ti) before commit(Ti) completes. As distributed, InnoDB employs a variant

of early lock release, whereby Ti releases its locks after commit-LSN(Ti) is assigned, but

before Ti’s logs are flushed to disk. Comments in the InnoDB source code rationalize this

design choice as follows: if T1 and T2 are update transactions, and T2 is waiting for T1,

the we are guaranteed to have commit-LSN(T2)> commit-LSN(T1). Therefore, if a crash

prevents T1’s logs from being flushed to disk, then T2’s logs will not be flushed to disk

either. The monotonicity of commit LSNs ensures that the database cannot be corrupted

by early lock release, but this design offers no protection for reader transactions (i.e.,

transactions that wrote no data). If a reader transaction T3 was waiting for T1, then it is

possible for T3 to read values written by T1 (and subsequently for T3 to commit) before

T1’s logs are flushed to disk. If the database were to crash before T1’s logs were flushed,

then recovery would undo T1, and T3 would have read values that never existed.
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We surmise that InnoDB takes this calculated risk in order to improve performance.

The standard distribution InnoDB achieves serializability through strict two-phased

locking, so holding locks during a log flush will increase wait times and reduce system

throughput. Holding locks during a log flush is less of an issue for PSSI (i.e., reads and

writes do not block each other), and we modified InnoDB’s commit sequence so that Ti’s

locks are not released (and Ti’s commit timestamp is not assigned), until after Ti’s logs

have been flushed to disk. From the standpoint of durability, this is a safer approach. We

also note that other researchers have made similar changes when using InnoDB for their

research projects [CRF09, pg. 23]. In Chapter 6, we discuss a strategy that would allow

early lock release, while preserving the durability guarantee for reader transactions.

4.5.2 Replication

Database replication is a popular feature of MySQL. Replication was not our main area of

research (and we did not implement replication support for our PSSI prototype), but we

feel that it is important to mention some of PSSI’s implications for this area.

MySQL replication is implemented above the storage engine layer; MySQL can

support database replication in any storage engine, so long as the storage engine provides

the necessary API support. MySQL’s database replication works as follows: when a

transaction Ti commits, all of Ti’s changes are written to a binary replication log, which is

separate from the storage engine’s (i.e., InnoDB’s) transaction log. Once replication logs

have been written on the master node, the logs are copied to one or more slave nodes, and

replayed in serial order. The idea is that we start with two identical database nodes N1 and

N2, apply a history H to N1 (the master) and an equivalent serial history S(H) to N2 (the

slave), and these transformations leave N1 and N2 in identical final states.

94



MySQL offers two forms of replication: statement-based, and row-based.

Statement-based replication replicates entire insert, update and delete statements, while

row-based replication replicates changes on a row-by-row basis. MySQL’s row-based

replication works well with PSSI’s semantics, but statement-based replication does not.

Recall that MySQL writes its replication log during transaction commit; for

statement-based replication, this assumes that the order of commits in a history H forms a

conflict-equivalent serial history S(H). This assumption holds for S2PL, but not for PSSI.

(In S2PL’s case, this assumption comes from a property called external consistency, which

is discussed in Section 6.2.) In order to have MySQL’s statement-based replication work

with PSSI, one would need to write replication logs as transactions are pruned from the

CTG, since CTG pruning order (and not commit order) gives an equivalent serial history.

MySQL’s row-based replication is compatible with PSSI, even if rows are written to

the binary replication log during transaction commit. For an individual row, FUW

guarantees that changes are made in a well-defined order, by non-concurrent transactions.

Therefore, the version ordering on a slave node will be identical to the version ordering on

the master node.

4.5.3 Garbage Collection

Given InnoDB’s support for MVCC, there are already mechanisms for garbage-collecting

old versions of rows; InnoDB can remove an old version xi from its rollback segment,

provided that no active transaction T j can read it. PSSI required a slight modification to

InnoDB’s garbage collection semantics: xi can be garbage-collected, provided that there is
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no active or zombie transaction T j that can read it. The motivation for this change is best

illustrated through an example.

Suppose that Ti deletes x and commits, creating a dead version xi, and let T j be a

transaction where start(T j)> commit(Ti). A T j query may depend on the deleted data

item, and although T j cannot “see” xi, T j may need to lock x in order to notice a

T j--rw→Ti dependency. As long as Ti is a zombie, any T j--rw→Ti dependency can

contribute to a future cycle; therefore, xi must be lockable (and cannot be garbage

collected) while Ti is still a zombie.

This is a conservative change to InnoDB’s garbage collection algorithm, which ensures

that dead xi are not garbage-collected too early. However, old versions may be retained for

longer than necessary, and there are opportunities for future optimizations here.

4.6 Summary

This chapter presented a case study of how PSSI can be implemented in a real-world

database system, based on our experience with adding PSSI support to MySQL’s InnoDB

storage engine. This is not a trivial effort, and the work touches many areas of the DBMS.

The goal of this chapter was to highlight some of the challenges faced, and draw attention

to some of the subtle issues encountered.
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CHAPTER 5

PSSI PERFORMANCE STUDIES

This chapter presents a performance evaluation of PSSI. We begin with a definition of

SICycles, a benchmark that we developed for testing PSSI. Next, we provide a description

of our testing environment, and the test parameters used. Finally, we present our test

results.

5.1 The SICycles Benchmark

Database systems are often evaluated using TPC-C, which is a well-established

industry-standard benchmark, developed by the Transaction Processing Council [TPC10].

Unfortunately, TPC-C is not a very good benchmark for evaluating PSSI. As shown in

[FLO05], TPC-C executes serializably when run under (ordinary) snapshot isolation,

which means that there are no dependency cycles for PSSI to avoid. This led us to develop

a new benchmark called SICycles [ROO11]. SICycles is a benchmark that allows cycles

to form in a variety of ways, tunable through workload parameters.

SICycles uses a one-million row bench table, which is modeled after the table used by

the Set Query Benchmark [ON93]. The bench table has 20 integer columns (NOT

NULL), and one character column (also NOT NULL), which are described below:
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• kseq. kseq is a sequence of integers from 1 to 1,000,000, and the primary key of the

table.

• krandseq. krandseq is kseq shuffled; integers from 1 to 1,000,000 in random order.

krandseq has a unique index, and all rows are accessed through krandseq.

• kval. kval is an unindexed integer column, whose values are randomly chosen from

the range 10,000 to 99,999. kval is the only column updated.

• kpad. kpad is an un-indexed character column, 20 bytes long. kpad is neither read

nor written; it is padding to bring each record up to 100 bytes in length.

• kn columns: k4, k8, k16, k32, k64, k128, k256, k512, k1024, k2500, k5k, k10k, k25k,

k50k, k100k, k250k, k500k. Each kn column contains values [1,n], randomly

assigned to rows. (In the knk columns, nk stands for n×1000 rows; for example,

k5k contains values [1, 5000].) The test results presented in this chapter do not

make use of the kn columns, but we document them here for completeness.

All columns are indexed, with the exception of kval (the only column updated) and kpad

(which is never accessed).

An SICycles run is described by an integer pair (k,n) for k ≥ 1, n≥ 1, and by a

hotspot size h. Each transaction Ti reads k rows from the set X = {x1, . . . ,xk }, finds the

average x.kval value v, and adds a fraction of that average c× v (or −c× v, chosen at

random) to each row in the set Y = {y1, . . . ,yn }. The set of rows X = {x1, . . . ,xk } and

Y = {y1, . . . ,yn } are chosen from a randomly-distributed hotspot H (containing h rows),

so that X ∩Y = /0. The fraction c is a constant, c = 0.001. Roughly half of transactions add
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c× v to rows in Y , while the other half adds −c× v; therefore, we expect the set of kval

values to stay approximately the same over the course of several runs.

The two procedures in Algorithm 21 provide pseudocode for the SICycles benchmark.

Procedure Hotspot-Setup is a global routine which chooses the set of “hot” rows H. All

reads and writes use rows in H, and the set of hot rows is common to all client threads.

Procedure SICycles-Transaction gives pseudocode for a single SICycles transaction Ti. Ti

begins by choosing its read set X , its write set Y , and determining whether to use

c = 0.001 or c =−0.001. Next, Ti sums x.kval values in X , computes

delta = c× avg(x.kval), and adds delta to each y.kval value in Y . Upon completion of

these steps, Ti issues a commit statement. The “random think-time” steps in Algorithm 21

denote random client-side delays of 3 ms ± 50%. These random delays prevent the system

from being saturated prematurely, and allow us to report a wider range of results. Note

that there is no think time between the final update statement and transaction commit.

For k = n = 1, Ti reads x.kval, and adds c× x.kval (or −c× x.kval) to y.kval, and we

can say that “Ti copies a portion of x to y, leaving x unchanged”. If Ti reads x and writes y

while a concurrent T j reads y and writes x, then we have a write skew cycle of length two,

similar to the one shown in Figure 4 (page 18). If Ti reads x and writes y, T j reads y and

writes z, and Tk reads z and writes x, then we have a cycle of length three. For k > 1, n = 1

it is possible for cycles to form in many different ways as the multi-programming level

(MPL) is increased. Under contention, higher read-to-write ratios tend to cause more

Ti--rw→T j anti-dependencies between pairs of concurrent transactions, and a large

number of these anti-dependencies increases the likelihood of cycle formation. This topic

is further discussed in Section 5.4.
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1: procedure Hotspot-Setup(hotspot size h)
2: H = choose h distinct krandseq values, with uniform distribution
3: end procedure
4:

5: procedure SICycles-Transaction(reads k, writes n, random r)
6: let X = select k distinct values from H
7: let Y = select n distinct values from H, such that X ∩Y = /0
8: let c = 0.001
9: if r < 0.5 then . r is a random value, r ∈ [0,1)

10: let c =−0.001
11: end if
12: let sum = 0
13: for x ∈ X do
14: sum += (select kval from bench where krandseq = :x)
15: random think-time
16: end for
17: let delta = c× (sum/k)
18: for y ∈ Y do
19: update bench set kval = kval + :delta where krandseq = :y
20: if y is not the last element in Y then
21: random think-time
22: end if
23: end for
24: commit
25: end procedure

Algorithm 21: Pseudocode for SICycles Benchmark
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It is worth calling attention to two aspects of SICycles. First, all row access occurs

through krandseq, a non-clustered index; this doubles the number of lock control blocks

(LCBs) in InnoDB’s lock manager. We intentionally chose krandseq, to put more stress on

the lock manager. Consider a row having (kseq, krandseq, kval) values (32, 500, 21000),

and a Ti that wishes to read kval where krandseq = 500. Ti uses the following data access

pattern:

1. Ti locates the record in krandseq’s index whose key is 500. InnoDB uses logical

addressing, so the value of the index record is the primary key, 32.

2. Ti locates the PRIMARY index record with kseq = 32 and reads kval.

Each of these steps enqueues an LCB in the lock manager.

Second, the hotspot H is randomly distributed over the bench table, and not confined

to a contiguous range of krandseq values. This gives a more even distribution of LCBs to

hashtable cells. Recall from Section 4.3 that InnoDB’s lock manager hashes LCBs on the

basis of page number, so a contiguous hotspot would create artificially long lock chains in

a small number of hashtable cells. Each krandseq index record is eight bytes long: four

bytes for krandseq and four bytes for kseq, the primary key. With a 16kb page size,

approximately 2000 krandseq index records fit on a single secondary index page. If we

chose a hotspot of 1000 contiguous krandseq values, then all of those LCBs would lie on

one or two secondary index pages, and hash to one or two cells in the lock manager’s hash

table.
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5.2 SICycles Experimental Setup

We ran our tests using a two-machine client/server setup. The server is an HP Z400

workstation with a quad-core 2.66 GHz Intel 3520 CPU, 4GB of RAM, running

OpenSUSE Linux 11.4, kernel version 2.6.37. The mysqld server comes from a

production (non-debug) build of MySQL 5.1.31, compiled with gcc 4.5.1. Table data was

stored on a Western Digital WDC-WD3200BEK 7200 RPM SATA disk, and logging was

done to an Intel X25-E solid state disk (SSD). All filesystems were formatted as ext4,

mounted with the noatime option, and the X25-E’s write cache was disabled. With its

write cache disabled, the X25-E can perform an fsync in approximately 2 ms, which

provides good logging performance.

The client machine was a Lenovo ThinkPad with a dual-core 2.53 GHz Intel Core-2

Duo CPU, 2 GB of RAM, also running OpenSUSE Linux 11.4. The SICycles client is

written in Java, and run with Sun JVM 1.6.0_26, and MySQL’s Connector/J version 5.1.1.

The client and server were directly connected to a gigabit ethernet switch, to minimize

network latency.

All tests use the mysqld configuration parameters shown in Table 2. The most

significant configurations parameters are described below, and full vendor documentation

can be found at [ORA09, Sec. 13.6.3].

• innodb_flush_log_at_trx_commit = 1. This configuration parameter provides

durability; InnoDB will not return an acknowledgment of Ti’s commit until Ti’s

logs have been flushed to disk. In this configuration, InnoDB flushes logs with a

group commit algorithm (i.e., [GR92, sec. 9.4.7]).
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Configuration Parameter value

innodb_additional_mem_pool_size 2M

innodb_flush_log_at_trx_commit 1

innodb_thread_concurrency 0

innodb_buffer_pool_size 1G

innodb_log_file_size 256M

innodb_log_buffer_size 16M

innodb_flush_method fsync

Table 2: mysqld Configuration Parameters Used in Testing

• innodb_thread_concurrency = 0. InnoDB thread concurrency controls the number

of threads concurrently executing inside the InnoDB storage engine. A value of zero

means “no limit”.

• innodb_buffer_pool_size = 1G. This configuration parameter specifies a

one-gigabyte InnoDB buffer pool. One gigabyte provides enough room for table

data to remain buffer-resident for the duration of the test.

• innodb_flush_method = fsync. This configuration parameter tells InnoDB to flush

logs using the fsync system call.

SI, PSSI, and ESSI results come from a single mysqld binary: our PSSI prototype,

which is a modified MySQL/InnoDB 5.1.31. S2PL results come from a standard

distribution MySQL/InnoDB 5.1.31 (a separate binary), with modifications described in

Remark 5.1.
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Remark 5.1 (Modifications to Standard Distribution InnoDB): Section 4.5.1 stated that

our PSSI prototype releases locks and assigns commit timestamps after Ti’s logs are

flushed to disk. For comparison with S2PL, we made the same modifications to the

standard distribution InnoDB, so that S2PL also releases locks after log flush. This change

was implemented by reordering steps in the InnoDB function trx_commit_off_kernel. No

other modifications were made to the standard distribution InnoDB.

Each data point comes from the median of three test runs, and each test run consists of

the following steps:

1. Start the mysqld server.

2. Perform a series of select statements to bring needed pages into buffer. Our

objective was to have mysqld’s working set in buffer for the duration of the test.

3. Perform a 70-second warmup, followed by a 60-second measurement period,

followed by a five-second cool-down.

4. Stop the mysqld server.

Our test runs varied the number of reads k, the number of writes n, and the size of the

hotspot h. We denote these parametrizations with the shorthand “skun-h” (or skun, when a

specific hotspot size is not relevant). For example, s3u1-800 means “select 3, update 1,

using an 800-row hotspot”, while s5u1 means “select 5, update 1” (without referring to

any particular hotspot size). Our tests use no think time between transactions, so that MPL

is consistent throughout the measurement period. As stated in Section 5.1, the SICycles

client introduces 3 ms ± 50% of think time between SQL statements; these think-time

delays prevent the system from becoming saturated too soon, and allows us to report on a
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wider range of MPL values. (Of course, these think times also create a lower bound on

transaction duration; Section 5.3.3 discusses this further.)

This experimental setup is a departure from the one we used in [ROO11]. The

differences are explained in Remark 5.2.

Remark 5.2: The test results we published in [ROO11] had InnoDB logging to a 7200

RPM hard disk drive, and configured to use (non-durable) asynchronous log flushes

(innodb_flush_log_at_trx_commit = 0). We used this configuration to demonstrate good

CTPS performance, and to compensate for (as we believed at the time) poor performance

of InnoDB’s group commit algorithm. The poor group commit performance we observed

was the result of MySQL Bug 13669 [ORA05], Group Commit is broken in 5.0, which

was reported in September 2005, but not fixed until after the release of MySQL 5.1.31.

At the time of writing [ROO11], we were not aware that certain MySQL

configurations could avoid Bug 13669 entirely; specifically the effects of Bug 13669

disappear if one disables MySQL replication logging. (The [ROO11] tests were, in fact,

run with replication logging disabled. We began our [ROO11] experiments both

replication logging and group commit enabled; we switched to asynchronous logging to

avoid the poor group commit performance, and then decided to eschew replication

logging, since replication logging is not necessary for a single-node system. We did not

realize that turning off replication logging would have the side effect of “fixing” the poor

group commit performance we observed.)

Nothing here invalidates the experimental results obtained in [ROO11]. Rather,

[ROO11]’s experimental results were obtained with a different system configuration than

the experimental results presented here; the purpose of this Remark is to explain why the

configurations are different. As stated earlier, the results in this chapter were obtained by
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configuring InnoDB to write transaction logs to an enterprise-grade SSD, using durable

group commit (and by disabling replication logging to prevent the effects of Bug 13669).

5.3 Test Results

Our performance tests used three different workload configurations (s5u1, s3u1, s1u1),

four different hotspot sizes (200, 400, 800, and 1200 rows), with MPL varying from 1 to

100. We tested four isolation levels: S2PL, SI, ESSI, and PSSI. Of these four isolation

levels, S2PL, ESSI, and PSSI are serializable, but SI is not. We have included SI

measurements because they provide a useful point of reference, as SI is implemented in

several popular database systems. Each of the following sections focuses on a different set

of performance metrics: throughput, abort rate and abort type, transaction duration, and

CTG characteristics.

5.3.1 CTPS Throughput

The first metric we examine is throughput, measured in committed transactions per second

(CTPS). CTPS is influenced by two factors: transaction duration, and the frequency of

transaction aborts.

5.3.1.1 s5u1 CTPS measurements

Figure 16 gives CTPS measurements for the s5u1 workload tests. Among the four hotspot

sizes, we can observe several distinct trends. First, SI provides this highest throughput; we

see this result because SI delays transactions only to prevent FUW violations, and SI does

not prevent non-serializable histories from occurring (i.e., SI allows dependency cycles to
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form). Second, as the hotspot size increases, PSSI’s performance approaches that of SI.

This occurs because larger hotspots produce less contention, and dependency cycles are

less likely to form. For example, at 80 MPL, SI gives 3183 CTPS for s5u1-400 while PSSI

gives 2879 (∆ =−11%); SI gives 3413 CTPS for s5u1-800 while PSSI gives 3370

(∆ =−1.3%); and SI gives 3511 CTPS for s5u1-1200 while PSSI gives 3487

(∆ =−0.7%).

In general, larger hotspots produce higher CTPS measurements for any given isolation

level. Larger hotspots reduce the probability of conflict between pairs of concurrent

transactions. Fewer conflicts between pairs of concurrent transactions mean fewer lock

waits under S2PL, fewer FUW aborts under SI, ESSI, and PSSI, and fewer concurrent

Ti--rw→T j anti-dependencies. Of course, it is the concurrent Ti--rw→T j

anti-dependencies that make it possible for essential dangerous structures and cycles to

form (i.e., a large number of concurrent Ti--rw→T j anti-dependencies will, in general,

increase the serialization abort rate under ESSI and PSSI).

In Figure 16, we also observe PSSI achieving a higher throughput than ESSI. At 80

MPL, PSSI has 2879 CTPS for s5u1-400 while ESSI has 2413 (∆ =−19%); PSSI has

3370 CTPS for s5u1-800 while ESSI has 2998 (∆ =−12%); and PSSI has 3487 CTPS for

s5u1-1200 while ESSI has 3247 (∆ =−7%). As we will see in Section 5.3.2, these

differences are mostly attributable to ESSI’s higher abort rates. ESSI aborts transactions

that form essential dangerous structures (which are cycles of length two, or precursors to

cycles), while PSSI always waits for complete cycles to form. In other words, ESSI may

abort transactions that do not cause non-serializable histories, and these extra aborts

reduce ESSI’s throughput.
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Figure 16: s5u1 CTPS, Varying Hotspot Sizes

The remaining isolation level is S2PL. S2PL’s CTPS throughput is predominantly

influenced by the frequency of lock waits, so S2PL throughput increases in workloads

with lower data contention (i.e., larger hotspots). One notable aspect of S2PL’s

performance appears in the s5u1-1200 test, for MPL ∈ [80,100], where S2PL’s

performance exceeds that of ESSI. Here, the implication is that ESSI’s unnecessary aborts
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impede performance more than S2PL’s lock waits. Another notable aspect of S2PL’s

performance is the negative slope in Figure 16’s s5u1-200 and s5u1-400 measurements.

These measurements show severe oversaturation, where the addition of client threads

degrades, rather than improves performance. Here, many S2PL transactions are blocked,

leading to long transaction durations, and a general inability of the system to move

forward and make progress.

5.3.1.2 s3u1, s1u1 CTPS Measurements

Figure 17 shows s3u1 CTPS measurements. This first thing we observe is that s3u1 CTPS

measurements are higher than their s5u1 counterparts; s3u1 transactions execute fewer

SQL statements, and the per-transaction execution time is proportionally lower.

Our second observation is that the relative difference between isolation levels is

smaller, which comes from reduced data contention: s3u1 has a lower read-to-write ratio

than s5u1. This creates fewer Ti--rw→T j dependencies between current transactions, and

makes it less likely for cycles (and essential dangerous structures) to form. The likelihood

of S2PL lock waits is similarly reduced.

Comparing SI and PSSI at 80 MPL, SI gives 4719 CTPS for s3u1-400 while PSSI

gives 4571 (∆ =−3%); SI gives 5032 CTPS for s3u1-800 while PSSI gives 4996

(∆ =−0.7%); and SI gives 5143 CTPS for s3u1-1200 while PSSI gives 5122

(∆ =−0.4%).

Comparing PSSI and ESSI at 80 MPL, PSSI gives 4571 CTPS for s3u1-400 while

ESSI gives 4024 (∆ =−14%); PSSI gives 4996 CTPS for s3u1-800 while ESSI gives

4718 (∆ =−6%); and PSSI gives 5122 CTPS for s3u1-1200 while ESSI gives 4959
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Figure 17: s3u1 CTPS, Varying Hotspot Sizes

(∆ =−3%). In each case, the magnitude of s3u1 ∆’s are smaller than their s5u1

counterparts.

Our final set of CTPS measurements appears in Figure 18, for an s1u1 workload. Of

the skun workload configurations we tested, s1u1 has the lowest read-to-write ratio, and

PSSI has the smallest advantage when compared to ESSI and S2PL. The most notable
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Figure 18: s1u1 CTPS, Varying Hotspot Sizes

findings from the s1u1 measurements appear with MPL ∈ [90,100] for ESSI and PSSI: at

this point, ESSI and PSSI throughput begins to “flatline”. We believe that this is caused by

contention on InnoDB’s kernel_mutex (see Section 4.3.3). At 100 MPL, PSSI and (our

implementation of) ESSI need to find dependencies and prune the CTG over 10,000 times

per second. This commit-time operation requires the committing transaction to hold the
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kernel_mutex, which protects the lock manager, transaction system, and CTG. In this

regard, PSSI is likely to benefit from a more granular set of mutexes. Note that this

flatlining behavior does not occur with S2PL or SI, as S2PL and SI do not perform the

extra commit-time steps that ESSI and PSSI perform.

5.3.2 Abort Rates and Abort Types

This section presents abort rates measured during our SICycles benchmark tests. Three

sets of measurements are provided for each workload configuration: the overall abort rate,

the first updater wins (FUW) abort rate, and the serialization abort rate. The overall abort

rate shows the percentage of executed transactions Ti that were aborted, for any reason.

These measurements provide a general comparison of abort rates for the different isolation

levels. The FUW abort rate shows the percentage of transactions Ti that were aborted for

violating the FUW rule (see Definition 1.2). The serialization abort rate shows the

percentage of PSSI transactions Ti that were aborted to break dependency cycles, or the

percentage of ESSI transactions T j that were aborted to prevent the formation of

dangerous structures.

SI transactions have only FUW aborts, while ESSI and PSSI transactions have both

FUW and serialization aborts. This means that SI’s abort rate is effectively a lower bounds

on the overall abort rates for ESSI and PSSI. S2PL transactions abort only due to

deadlock, and as we can see from Figures 19, 22, and 25, the deadlock rate in these tests is

relatively low. Deadlocks do not occur in the SI, ESSI, or PSSI tests: SI, ESSI, and PSSI

transactions enter lock wait only as necessary to support FUW, and each workload

configuration has only a single write. Therefore, deadlock is not possible for SI, ESSI, or
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PSSI in these workload configurations (SI, ESSI, PSSI deadlocks would require at least

two writes per transaction).

In general, the discussions in this section are primarily focused on FUW and

serialization aborts for SI, ESSI, and PSSI.

5.3.2.1 s5u1 Abort Rates and Abort Types

Figure 20 shows FUW abort rates for s5u1. In this figure, note that ESSI tends to have

lower FUW abort rates than PSSI; this occurs because ESSI detects precursors to cycles

and aborts some transactions unnecessarily. The unnecessary serialization aborts can have

the side effect of reducing the number of FUW aborts. Example 5.3 illustrates this

phenomenon.

Example 5.3: Consider the partial history H5.1:

H5.1 : r1(x), w1(y), r2(y), c1, w2(z), r3(z), c2, w3(v), w4(v)

In H5.1, T1 and T2 are committed, but T3 and T4 are still active (with T4 in lock wait).

There is a T2--rw→T1 dependency from r2(y) and w1(y), and a T3--rw→T2 dependency

from r3(z) and w2(z). ESSI and PSSI treat H5.1 in very different different ways. T3 creates

a dangerous structure, so ESSI aborts T3, allowing T4 to commit. By contrast, PSSI

allows T3 to commit (T3 does not form a dependency cycle), causing an FUW abort for

T4. In this example, ESSI turns an FUW abort into a serialization abort.

A similar thing can happen between PSSI and SI. Let Ti, T j be two concurrent

transactions where Ti causes a dependency cycle, and Ti, T j write common data. SI would

allow Ti to commit, and abort T j for FUW. PSSI would abort Ti, allowing T j to commit.
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Figure 19: s5u1 Overall Abort Rates for Varying Hotspot Sizes

Figure 21 shows the s5u1 serialization abort rates for ESSI and PSSI. This data clearly

demonstrates PSSI to have a lower serialization abort rate; the data also illustrates the

false positive aborts that occur with ESSI.

To really understand the differences between PSSI and ESSI, we need to examine

CTPS, FUW aborts, and serialization aborts together. Consider s5u1-800 at 80 MPL. In
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Figure 20: s5u1 FUW Aborts for Varying Hotspot Sizes

this configuration, ESSI has 2998 CTPS, 7.6% FUW aborts, and 11.8% serialization

aborts. We can compute the total number of transactions executed per second t as

(1−0.076−0.118)t = 2998, giving t = 3719 transactions executed per second. There

were 0.076t = 283 FUW aborts per second and 0.118t = 439 serialization aborts per

second. Compare this with PSSI: for s5u1-800 at 80 MPL, PSSI had 3370 CTPS, 8.6%
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Figure 21: s5u1 Serialization Aborts for Varying Hotspot Sizes

FUW aborts, and 1.2% serialization aborts. We compute the number of transactions

executed per second t as (1−0.086−0.012)t = 3370. This gives t = 3736 transactions

executed per second, 0.086t = 321 FUW aborts per second, and 0.012t = 45 serialization

aborts per second. ESSI and PSSI execute about the same number of transactions per

second (3719 for ESSI, 3736 for PSSI), but a greater number of PSSI transactions
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succeed. ESSI aborts 283+439 = 722 transactions per second, while PSSI aborts

321+45 = 366 transactions per second; a difference of 356. This is close to the difference

in CTPS, 3370−2998 = 372.

We repeat this analysis with another configuration, s5u1-400 at 80 MPL. At s5u1-400

80 MPL, ESSI had 2413 CTPS, 12.3% FUW aborts, and 22.9% serialization aborts. To

find the number of transactions executed per second, we solve

(1−0.123−0.229)t = 2413 for t. This gives t = 3723 transactions executed per second,

0.123t = 458 FUW aborts per second, and 0.229t = 853 serialization aborts per second.

In the same configuration, PSSI has 2879 CTPS, 14.8% FUW aborts, and 8.5%

serialization aborts. Solving (1−0.148−0.085)t = 2879 for t gives t = 3754 transactions

executed per second, 0.148t = 556 FUW aborts per second, and 0.085t = 319 serialization

aborts per second. ESSI aborts a total of 458+853 = 1311 transactions per second, and

PSSI aborts a total of 556+319 = 875 transactions per second. The different in abort

rates, 1311−875 = 436 transactions per second, is close to to the difference in commits

per second, 2879−2413 = 466.

In conclusion, most (> 90%) of the CTPS difference between PSSI and ESSI can be

attributed to ESSI’s higher abort rates.

5.3.2.2 s3u1, s1u1 Abort Rates and Abort Types

Figures 23 and 24 show FUW and serialization abort rates for s3u1. In general, the

number of serialization aborts decreases (due to reduced contention), and there is less

difference among FUW abort rates for SI, ESSI, and PSSI. FUW violations are the only

reason that SI aborts transactions; our three skun configurations contain the same number
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of writes, so we expect SI’s FUW abort rates to be similar for s5u1 and s3u1.

Experimental data confirms this expectation: at 80 MPL, SI has 28.1% FUW aborts for

s5u1-200 and 28.1% FUW aborts for s3u1-200; 16.1% FUW aborts for s5u1-400 and

15.9% FUW aborts for s3u1-400; 8.7% FUW aborts for s5u1-800 and 8.5% FUW aborts

for s3u1-800; 5.9% FUW aborts for s5u1-1200 and 5.8% FUW aborts for s3u1-1200.

ESSI and PSSI have higher FUW abort rates for s3u1 (as compared to s5u1) due to a

reduced number of serialization aborts, and the phenomenon illustrated in Example 5.3.

For s3u1, we still see significant differences between ESSI and PSSI serialization

abort rates. At 80 MPL, ESSI has 22.4% serialization aborts for s3u1-200 while PSSI has

9.1%; ESSI has 12.8% serialization aborts for s3u1-400 while PSSI has 1.7%; ESSI has

5.6% serialization aborts for s3u1-800 while PSSI has 0.2%; and, ESSI has 3.1%

serialization aborts for s3u1-1200 while PSSI has 0.06%.

Figures 26 and 27 show FUW and serialization aborts for s1u1. Figure 26 shows an

even greater degree of similarity between FUW abort rates, and plots of the three isolation

levels nearly converge to single line in s1u1-800 and s1u1-1200. PSSI had very slow

serialization abort rates in our s1u1 tests: at 80 MPL, PSSI had 0.2% serialization aborts

for s1u1-200, 0.05% serialization aborts for s1u1-400, 0.01% serialization aborts for

s1u1-800, and 0.005% serialization aborts for s1u1-1200.
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Figure 22: s3u1 Overall Abort Rates for Varying Hotspot Sizes
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Figure 23: s3u1 FUW Aborts for Varying Hotspot Sizes
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Figure 24: s3u1 Serialization Aborts for Varying Hotspot Sizes
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Figure 25: s1u1 Overall Abort Rates for Varying Hotspot Sizes
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Figure 26: s1u1 FUW Aborts for Varying Hotspot Sizes
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Figure 27: s1u1 Serialization Aborts for Varying Hotspot Sizes
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5.3.3 Transaction Durations

This section examines the average duration of committed transactions (these

measurements do not incorporate durations of transactions that abort). Transaction

duration can be modeled as the sum of two distinct quantities: the time to execute SQL

statements, and the time to commit. Our test configuration uses durable group commit,

and the test client does not receive acknowledgment of commit(Ti) until after Ti’s logs

have been flushed to disk. As stated in Section 5.2, we configured InnoDB to write

transaction logs to an Intel X25-E solid-state disk, with the disk write cache disabled. In

this configuration, commit(Ti) took between 2.3 and 4.4 ms, with an average time of 3.4

ms. This section reports total durations (i.e., time to execute SQL statements plus time to

commit), so the reader can assume that ≈ 2–4 ms of each duration measurement is

dedicated to log flushes.

Also recall that our test program inserts a 3 ms ±50% delay between SQL statements,

but no delay before the final commit. For our workloads, this effectively becomes one

3 ms delay per select statement. The combination of log flush times and random delays

allows us to establish a minimum lower bound on transaction duration: 17–19 ms for

s5u1, 11–13 ms for s3u1, and 5–7 ms for s1u1. Of course, the measured durations are

higher, since these lower bounds do not include time required to execute SQL statements,

nor time required for the client to process the results.

Our analysis focuses on duration measurements for the 800 and 1200-row hotspot

tests, as the S2PL durations for the 200 and 400-row hotspots were large enough to

obscure measurements for the other isolation levels. As before, we present s5u1 first, then

s3u1 and s1u1.
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Figure 28: s5u1 Avg. Duration of Committed Transactions

The most obvious feature of Figure 28’s s5u1 duration measurements is the difference

between S2PL and the other three isolation levels (S2PL transactions take significantly

longer). This occurs because all conflicts between concurrent S2PL transactions result in

lock waits, whereas SI, ESSI, and PSSI delay transactions only to resolve FUW conflicts.

SI, ESSI, and PSSI durations do increase with MPL, but these three isolation levels

produce similar duration measurements. For example, at s5u1-800 80 MPL, SI, ESSI, and

PSSI transactions all take an average of 21.5 ms. At s5u1-1200 80 MPL, SI and ESSI

transactions take 21.5 ms while PSSI transaction take 21.6 ms.

The s3u1 results in Figure 29 paint a similar picture. For s3u1-800 80 MPL, S2PL

transactions take 17.1 ms, SI and ESSI transactions take 14.7 ms, and PSSI transactions
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Figure 29: s3u1 Avg. Duration of Committed Transactions

take 14.8 ms. For s3u1-1200 80 MPL, S2PL transactions take 16.1 ms while SI, ESSI, and

PSSI transactions take 14.8 ms.

The s1u1 results in Figure 30 show the smallest difference between S2PL and SI,

ESSI, and PSSI. Also notice (in Figure 30) that ESSI and PSSI durations increase more

rapidly as MPL approaches 100. This mirrors the CTPS “flatlining” shown in Figure 18,

which we believed to be caused by kernel_mutex contention.

Taken together, the measurements in this section provide a good illustration of the

fundamental difference between S2PL and PSSI. S2PL ensures serializability by delaying

transactions (i.e., lock waits), while PSSI ensures serializability by aborting transactions

to break dependency cycles. PSSI will perform better in any scenario where increased
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Figure 30: s1u1 Avg. Duration of Committed Transactions

transaction duration (due to lock waits) overshadows the percentage of aborted

transactions.
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5.3.4 Cycle Testing Graph Measurements

The cycle testing graph (CTG) is a central part of PSSI’s design; consequently, we were

interested in studying the CTG’s behavior during our performance evaluation. This section

presents several CTG-related metrics: the average CTG size for ESSI and PSSI, the

number of edges traversed by PSSI’s cycle tests, and the average length of cycles found.

5.3.4.1 CTG Size

Each CTG node represents a zombie transaction: a committed transaction Ti with the

potential to become part of a future cycle (or, in the case of ESSI, a committed transaction

Ti with the potential to become part of a future essential dangerous structure). Thus, CTG

size gives the number of zombie transactions in the system. Figures 31, 32, and 33 show

average CTG sizes for s5u1, s3u1, and s1u1 respectively. Among these figures, we can

observe three specific trends.

First, high abort rates result in a smaller number of zombie transactions. For example,

the 200-row hotspot measurements show the smallest number of zombies. This occurs for

a fairly obvious reason: if many transactions abort, then fewer survive to become zombies,

and the size of the CTG is smaller.

Second, PSSI tends to have a larger number of zombie transactions than ESSI. This is

attributable to the different pruning criteria that ESSI and PSSI use (see Section 4.4.1).

PSSI may prune a zombie transaction Ti if (1) Ti has no in-edges, and (2) Ti committed

before the oldest active transaction started. By contrast, ESSI is not concerned with

condition (1), and can prune any Ti that meets condition (2). PSSI’s more restrictive
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Figure 31: s5u1 Avg. CTG Size

pruning criteria cause transactions to remain zombies for a longer period of time, which

increases CTG size.

Finally, as contention decreases, the number of zombie transactions for PSSI and ESSI

gets closer together, and we say that the graphs converge; this convergence is most

apparent in Figure 33’s s1u1 measurements. In the absence of in-edges, PSSI’s pruning
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criteria degenerates into ESSI’s pruning criteria. Thus, if a workload creates few

dependencies, then fewer PSSI transactions will have in-edges, and fewer PSSI

transactions will remain zombies solely by virtue of having in-edge counts greater than

zero.
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5.3.4.2 Edges Traversed During Cycle Testing

During the design of PSSI, one of the questions that concerned us was “how expensive

will cycle testing be?”. To answer this question, we instrumented our PSSI prototype to

measure the number of edges traversed during cycle tests. We can explain this measure as

follows: consider a CTG C with edges T1→ T2, T2→ T3, and T2→ T4. A cycle test for a

newly-committed transaction T1 is a depth-first search starting from T1. This depth-first

search traverses three edges: T1→ T2, T2→ T3, and T2→ T4.

We use the number of CTG edges traversed as a proxy for measuring the cost of cycle

testing: a large number of edge traversals indicates a high cost, while a low number of

edge traversals indicates a low cost. Our CTG organizes nodes in a hashtable (see Section

4.4), so that an edge traversal involves little more than a hashtable lookup (on the “sink”

transaction’s transaction id).

Figures 34, 35, and 36 show the number of edges traversed during cycle tests for s5u1,

s3u1, and s1u1 respectively. As one would expect, lower contention workloads require

fewer edge traversals per cycle test.

In the s5u1 tests at 80 MPL, PSSI performed an average of 13.0 edge traversals per

cycle test with a 200-row hotspot, 7.3 edge traversals with a 400-row hotspot, 1.36 edge

traversals with an 800-row hotspot, and 0.37 edge traversals with a 1200-row hotspot. In

the s3u1 tests at 80 MPL, PSSI performed an average of 8.1 edge traversals per cycle test

with a 200-row hotspot, 1.99 edge traversals with a 400-row hotspot, 0.28 edge traversals

with an 800-row hotspot, and 0.10 edge traversals with a 1200-row hotspot. Finally, in the

s1u1 tests at 80 MPL, PSSI performed an average of 0.42, 0.10, 0.02, and 0.001 edge

traversals per cycle test for 200, 400, 800, and 1200-row hotspots, respectively.
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Figure 34: s5u1 Avg. Number of Edges Traversed During Cycle Tests

PSSI performs one commit-time cycle test per transaction, and each edge traversal can

be done in near-constant time. Therefore, we believe that the cost of cycle testing is

reasonable. This observation also influenced the design of Algorithm 20,

CTG-Prune-Initial-Set, which treats in-edge counts as the less selective pruning criterion.
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5.3.4.3 Average Cycle Lengths

The final CTG metric we examine is the average length of cycles found. In general, we

expect many cycles to be short, having length 2–4. However, we also expect higher

contention workloads to produce longer cycles, for the following reason: workloads with a

mixture of reads and writes allow Ti--rw→T j anti-dependencies to occur between pairs of

concurrent transactions Ti, T j, and higher levels of contention tend to create more of these

anti-dependencies. Having many Ti--rw→T j anti-dependencies between concurrent pairs

of transactions makes it possible for long chains of anti-dependencies to form, leading

backwards in time. These chains look like the essential dangerous structure shown in

Figure 15 (pg. 92), but with the potential to be much longer. Consider the case of having

Ti--rw→T j (Ti, T j concurrent), with a dependency path leading backwards in time from

Ti to Tn, where commit(Tn)< start(Ti). Ti could turn this path into a cycle (a) by

overwriting data that Tn wrote (which creates Tn--ww→Ti), (b) by reading data that Tn

wrote (which creates Tn--wr→Ti), or (c) by writing data that Tn read (which creates

Tn--rw→Ti). In each case, the (long) dependency cycle is Ti→ T j→ . . .→ Tn→ Ti.

Figures 37, 38, and 39 present the average cycle lengths observed during our s5u1,

s3u1, and s1u1 tests. Smaller hotspots (high contention) produce the longest cycles, due to

scenarios like the one described above. For example, s5u1-400 average cycle lengths

varied from 2–9.0, s3u1-400 average cycle lengths varied from 2–8.3 and s1u1-400

average cycle lengths varied from 2–3.2. As the hotspot size h increased, shorter average

cycle lengths were observed. s5u1-1200 average cycle lengths varied from 2–5.2,

s3u1-1200 average cycle lengths varied from 2–3.3, and s1u1-1200 average cycle lengths

varied from 2–2.2.
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5.4 Generalizing PSSI’s Performance Characteristics

Now that we have examined PSSI’s behavior in the context of the SICycles workload, we

would like to generalize aspects of PSSI’s performance, in order to reason about how PSSI

might perform in the context of other workloads.

We have measured PSSI’s performance with three different SICycles workload

configurations – s5u1, s3u1, and s1u1 – and each of these workload configurations can be

characterized by its ratio of reads to writes; s5u1 has a 5:1 read-write ratio, s3u1 has a 3:1

read-write ratio, and s1u1 has a 1:1 read-write ratio. In terms of throughput, higher

read-write ratios appear to give PSSI the biggest performance advantage. Why might this

be the case? Higher read-write ratios tend to cause more read-write conflicts between

pairs of concurrent transactions, and these conflicts do not cause blocking in PSSI. This

gives PSSI an advantage when compared to S2PL, as S2PL resolves all conflicts by

blocking, and forcing transactions to wait.

We have also seen that higher read-write ratios give PSSI a throughput advantage over

ESSI. Again, this appears to be the result of frequent read-write conflicts: these conflicts

tend to produce many Ti--rw→T j anti-dependencies between pairs of concurrent

transactions, which in turn makes it more likely for essential dangerous structures to form.

Comparing serialization abort rates for PSSI and ESSI (e.g., Figure 21 for s5u1), we see

evidence that s5u1’s moderate read-write ratio produces many essential dangerous

structures, but relatively few of these essential dangerous structures go on to become

complete cycles.

We can think of read-write ratios as a continuum, varying between a pure write

workload (with no reads), and a pure read workload (with no writes). In a pure write
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workload, it’s very likely that S2PL would provide the best performance. As far as

isolation is concerned, the DBMS would have only one goal, namely, to avoid overwriting

dirty data; S2PL’s pessimism works perfectly well in this regard. For a pure read

workload, abandoning isolation is arguably the best solution: if the database data is not

changing, then there is no danger of anomaly, and the ideal solution is simply the one

which imposes the least amount of overhead. Between these extremes lies a spectrum, and

we believe that different isolation levels are best-suited to different regions of the

spectrum. For PSSI, the “sweet spot” seems to lie in regions with a moderate-to-high

read-write ratio. Towards the opposite end of the spectrum (low read-write ratio), there

should be workloads where S2PL outperforms PSSI, and we expect this to happen in any

workload where the penalty imposed by FUW aborts is greater than the penalty imposed

by lock waits. Example 5.4 illustrates a workload that should create these conditions.

Example 5.4 (Bank Accounts with Branch Balance): Consider a banking application with

two tables: accounts and branch_balance. The accounts table contains one row per bank

account, and transactional programs update this table each time a debit or credit occurs.

The branch_balance table contains one row, which represents the sum of all account

balances in the entire branch. Thus, each time a transactional program changes an account

balance, that transactional program must also apply a corresponding change to the

summary row in branch_balance, to ensure that branch_balance accurately reflects the

total balance of all accounts.

With this scenario in mind, consider history H5.2, where x and y represent bank

accounts, and z represents the summary row in branch_balance.

H5.2 : w1(x), w2(y), w1(z), w2(z)
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In history H5.2, T1 is updating the balance of account x, T2 is updating the balance of

account y, and both transactions update the branch balance z. Strictly speaking, each row

needs to be read before it is written. However, because each row is written immediately

after being read, it would make sense for a transactional program to use select for update,

whereby the history degenerates into a series of writes.

An S2PL scheduler would gladly accept H5.2; w2(z) would be blocked until T1

committed, but both T1 and T2 would eventually succeed. Note that T1 and T2 are

accessing the accounts and branch_balance tables in the same order, so there is no danger

of deadlock. By contrast, PSSI (and SI) would abort T2 due to FUW. This is a very

significant difference: S2PL allows concurrent updates to the accounts table, while

serializing accesses to the “hot” branch_balance row. By contrast, the FUW rule prevents

PSSI (and SI) from allowing concurrent updates to the accounts table; the need to update

the “hot” row z has the effect of completely serializing the execution. Thus, H5.2 is a

history that S2PL allows, but PSSI and SI do not.

Example 5.4 illustrates a scenario where S2PL allows more concurrency than PSSI,

and where S2PL should have better performance. Arguably, updates to the

branch_balance row in Example 5.4 would be best handled by commutable increment and

decrement operations, or by an approach like Escrow transactions [ON86].

5.5 Summary

This chapter presented SICycles, a parametrized benchmark that was designed to allow

cycles of varying lengths to form in a variety of ways. We also presented experimental

results obtained from running SICycles under four different isolation levels: S2PL, SI,
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ESSI, and PSSI. PSSI performed well in these tests, coming close to SI’s performance in

several configurations. It should be noted that while PSSI’s performance comes close to

that of SI, we should always expect SI to give (at least slightly) better performance in

workloads that allow dependency cycles to form. PSSI ensures serializability by aborting

transactions to break dependency cycles, and these aborts reduce PSSI’s throughput

relative to SI; SI, by contrast, simply permits such dependency cycles.

Our presentation of experimental results gave the most attention to CTPS and abort

rates, as these are likely the measures of greatest interest. We have also presented

additional measures that help characterize PSSI’s behavior: transaction duration, CTG

size, cycle length, and the expense incurred in cycle testing.

The next chapter, Chapter 6, describes areas of future work.

144



CHAPTER 6

FUTURE WORK

This chapter describes two area that would benefit from future research. The first area

involves a technique called early lock release; the second area deals with a property called

external consistency.

6.1 Early Lock Release

Early lock release has the potential to improve database performance by allowing Ti’s

locks to be released (and Ti’s commit timestamp to be assigned) before Ti’s logs are

flushed to stable storage. We did not implement early lock release in our PSSI prototype;

nonetheless, we can reason about the effects that early lock release would have.

Section 4.5.1 noted that the standard distribution InnoDB uses a form of early lock

release, whereby a committing transaction Ti releases its locks after Ti’s commit log

sequence number commit-LSN(Ti) is assigned, but before Ti’s logs have been flushed to

disk. Comments in InnoDB’s source code justify this approach as follows: if T1 and T2

are update transactions, and T2 is waiting for one of T1’s locks, then we are guaranteed to

have commit-LSN(T1)< commit-LSN(T2); therefore, if T1’s logs are not flushed to disk,

then T2’s logs will not be flushed to disk either. If a system crash causes T1 to roll back

during recovery, then T2 will be rolled back too.
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This is a reasonable approach for transactions that write data, but it violates the

durability guarantee for reader transactions. (Here, the term reader transaction refers to a

transaction Ti that did not write data, regardless of whether Ti was declared to be read

only via a set transaction statement. Similarly, the term writer transaction refers to

transactions that wrote data.) InnoDB reader transactions do not generate logs, so if a

reader transaction T2 (running under S2PL) is waiting for a writer transaction T1, and T1

releases locks before its logs are flushed to disk, then it’s possible for T2 to read T1’s

changes and commit, before T1’s changes become durable. If a system crash prevents T1’s

logs from being flushed to disk, then T1 will be rolled back during recovery, and T2 will

have read data that never existed.

For our research, we wanted a system that lived up to the ACID durability guarantee,

and we arranged for PSSI to use late lock release, whereby Ti’s locks are released (and

Ti’s commit timestamp is assigned) after Ti’s logs have been flushed to disk (see Remark

5.1, page 103).

In [JPS10, Sec. 3.2], the authors measured significant performance improvements

when early lock release was used with the TPC-B benchmark. Early lock release

improved performance by a factor of two when logging to a fast disk (solid state disk, with

a 100 µs flush time), and by a factor of 35 when logging to a slow disk (hard disk drive,

with a 10,000 µs flush time). These measurements show the value of early lock release as

a performance enhancement. For the case of InnoDB, the challenge comes in handling

reader transactions properly.

For the discussion that follows, we will distinguish three separate phases of transaction

commit: the commit request, the transaction end, and the commit acknowledgment.

Definition 6.1 defines these three phases.
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Definition 6.1 (Phases of Transaction Commit): A commit request occurs when a

database client program sends a commit statement to the database server.

Ti’s transaction end occurs when Ti’s writes become visible to other transactions. For

an S2PL transaction, Ti’s write become visible when Ti releases its locks. For PSSI (and

SI) transactions, Ti’s writes become visible (to transactions T j with

start(T j)> commit(Ti)) when the DBMS assigns Ti’s commit timestamp. Some papers

(like [JPS10]) use the term pre-committed to describe transactions that have ended, while

InnoDB internals use the state committed in memory; we use the term “transaction end” to

emphasize its place in the transaction lifecycle.

A commit acknowledgment occurs when the database sends an acknowledgment of

commit(Ti) back to the client. For example, in a JDBC program, Ti’s commit

acknowledgment occurs when connection.commit() returns.

In order to satisfy the ACID durability guarantee, a system that utilizes write-ahead

logging (WAL) must ensure that (1) the logs of a writer transaction Ti are flushed to stable

storage (i.e., disk) before Ti’s commit acknowledgment occurs, and (2) for a reader

transaction T j with Tk--wr→T j dependencies, all Tk logs are flushed to stable storage

before T j’s commit acknowledgment occurs. Condition (1) is automatically handled by

group commit and the WAL protocol; procedures in Algorithm 22 provide one method for

satisfying condition (2).

The main goal of Algorithm 22 is to detect reader transactions that have read

non-durable data, and to force these reader transactions to wait for the completion of the

next group commit flush. Line 1 introduces a set F ; at any moment in time, F represents

the set of transactions that have reached transaction end, and are waiting for their logs to
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1: let F = /0 . Set of transaction ids for transactions currently awaiting log flush
2:

3: procedure Post-Write(Transaction Ti)
4: set Ti.wrote_data = TRUE
5: end procedure
6:

7: procedure Post-Read(Transaction Ti, Data Item x j) . x j was written by T j

8: if (Ti.wrote_data == FALSE) and ( j ∈ F) then . j is T j’s transaction id
9: set Ti.non_durable_reader = TRUE

10: end if
11: end procedure
12:

13: procedure Modified-Flush(Transaction Ti)
14: if Ti.wrote_data == TRUE then
15: add i to F
16: normal group commit log flush for Ti

17: remove i from F
18: return
19: end if
20: . Ti is a reader transaction
21: if Ti.non_durable_reader == TRUE then
22: Ti waits for next group commit flush to complete
23: return
24: else . Ti did not read non-durable data
25: return . No need to wait for a log flush
26: end if
27: end procedure

Algorithm 22: Reader Transaction Safety for Early Lock Release
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be flushed to disk. Algorithm 22 also introduces two per-transaction variables:

Ti.wrote_data and Ti.has_read_non_durable; both variables are initialized with the value

FALSE. Ti.wrote_data is used to distinguish reader transactions from writer transactions,

and Ti.has_read_non_durable is used to identify transactions that have read non-durable

data (i.e., writes whose log records have not yet been flushed to disk).

Now, let us examine how the procedures in Algorithm 22 work together. First,

procedure Post-Write sets Ti.wrote_data to the value TRUE; the intention is for

Post-Write to be called any time that Ti writes data (via insert, update, or delete). By the

time that a database client requests Ti’s commit, a reader transaction will have

Ti.wrote_data set to FALSE, and a writer transaction will have Ti.wrote_data set to TRUE.

Procedure Post-Read is used whenever a transaction Ti reads data item x j, where x j is

the version of x that appears in Ti’s snapshot (x j may be a dead version). Note that this

read implies a T j--wr→Ti dependency. If Ti is a reader transaction, then Ti checks for the

presence of the transaction id j in the set F . If j ∈ F then we know that

commit(T j)< start(Ti), and T j is waiting for its logs to be flushed to disk. This identifies

Ti as a transaction that read non-durable data, and Post-Read sets

Ti.has_read_non_durable to TRUE.

Finally, we have the procedure Modified-Flush, which can be thought of as a wrapper

around the standard DBMS group commit function. Modified-Flush has two main code

paths: one for writer transactions, and one for reader transactions. If Ti is a writer

transaction, then Ti adds its transaction id i to the set F , performs a normal group commit

log flush, and removes i from F . Thus, for any writer transaction Ti, we have i ∈ F iff Ti is

waiting for its logs to be flushed to disk (i.e., Ti is waiting to become durable).
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If Ti is a reader transaction, then there are two sub-paths through Modified-Flush,

dependent upon the value of Ti.has_read_non_durable. If Ti.has_read_non_durable has

the value TRUE, then we know that (at some point) Ti read from T j before T j’s logs were

flushed to disk, and Ti is forced to wait for the next group commit flush to complete. Note

that Ti can get into this state only if T j was already waiting for a group commit flush; this

means that Ti waits for a flush behind T j, and T j’s logs will be flushed to disk before Ti’s

commit acknowledgment occurs. The second code path for reader transactions handles Ti

that have not read non-durable data (Ti.has_read_non_durable == FALSE). If Ti has not

read non-durable data, then Modified-Flush returns immediately, without Ti having to wait

for a log flush. (It is not necessary to log commit records of reader transactions; during

crash recovery, there is nothing to undo or redo for a reader transaction Ti).

For InnoDB, Algorithm 22 is orthogonal to isolation level, and will work for both

PSSI and S2PL. These procedures can be implemented efficiently, with constant-time

additional costs (i.e., if the set F is implemented with a hashtable).

Algorithm 22 is a conservative approach, which may cause a reader transaction Ti to

wait unnecessarily. For example, Ti might read x j before T j’s logs have been flushed to

disk, but T j’s log flush might occur by the time that Ti’s commit request occurs.

Algorithm 22 could be made more precise through the use of additional bookkeeping

information, but the additional overhead may not be worthwhile, particularly if

non-durable reads occur infrequently.
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6.1.1 Benefits of Early Lock Release for PSSI

For S2PL, the benefits of early lock release are obvious: early lock release reduces lock

wait times, particularly when log flush occupies a significant portion of the total

transaction duration. But how would early lock release benefit PSSI? As shown in Section

5.3, S2PL throughput is predominantly influenced by the number of lock waits, while

PSSI throughput is predominantly influenced by the number of transaction aborts.

Therefore, to argue that early lock release benefits PSSI is to argue that early lock release

reduces the rate of PSSI transaction aborts. We can make this argument by showing how

early lock release reduces the number of concurrent transactions executing within the

DBMS.

Chapter 5 used the term multi-programming level (MPL) to refer to the number

concurrently executing transactions. Chapter 5’s SICycles workloads did not introduce

think time between transaction executions, so the number of concurrent transactions was

equal to the number of client threads; 80 client threads generated 80 MPL, and there

would always be 80 active transactions. (In this context, an “active” transaction is one that

is still holding locks, and has not been assigned a commit timestamp.) Now, let’s consider

an 80 MPL scenario that uses early lock release, where each group commit flushes the

logs of ten transactions to disk (a group commit size of ten transactions was typical for our

s3u1 workloads). Early lock release would have the effect of turning these 80 clients into

≈ 65 MPL inside the DBMS. The 65 MPL figure is derived as follows: if each group

commit flushes the logs of n transactions to disk, then at any given time, there are n

transactions flushing logs to disk, and an average of (n/2) transactions waiting for the

next group commit. With early lock release, these 1.5n transactions have reached

transaction end (in the sense of Definition 6.1), and would not be considered active;
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therefore, for 80 clients and n = 10, we have 80−1.5(10) = 65 transactions active inside

the DBMS. Test results in section 5.3.2 show that smaller numbers of concurrent

transactions produce lower abort rates. For this scenario, we could expect early lock

release to turn our 80 MPL abort rate into (approximately) a 65 MPL abort rate.

Early lock release also has the potential to improve the performance of PSSI’s cycle

testing graph (CTG) algorithms. Our PSSI prototype assumes that Ti does not end until its

logs have been flushed to disk, which means that Ti cannot be pruned (see Section 3.4.1)

until Ti’s logs have been flushed to disk. Early lock release allows these assumptions to

change: if Ti ends before it’s logs are flushed to disk, then it should also be possible to

prune Ti before its log flush completes. This would reduce the size of the CTG, which in

turn, stands to speed up CTG pruning (i.e., Algorithm 20 on page 90).

6.2 External Consistency

The property of external consistency can be explained as follows: a DBMS provides

external consistency if the serialization order of a history H is consistent with the partial

order given by transaction commit and begin statements [JL06]. To put this another way,

external consistency guarantees that Ti serializes before T j whenever

commit(Ti)< start(T j).

PSSI guarantees serializability, but not external consistency. This is easily illustrated

with the essential dangerous structure diagram in Figure 40. Figure 40 shows a

serializable history, whose dependencies T3--rw→T2--rw→T1 yield the serialization order

T3, T2, T1. This history is not externally consistent because T3 serializes before T1, but

commit(T1)< start(T3).
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Figure 40: An Essential Dangerous Structure (Figure 6 repeated)

What are the implications of PSSI’s lack of external consistency? This is a difficult

question to answer. Returning to Figure 40, T1 and T3 might have been executed by the

same user program. Since commit(T1)< start(T3), the user program sees the appearance

of T1 serializing before T3, while PSSI serializes these transactions in the opposite order.

On the surface, there seems to be little trouble with this. In a history that produced Figure

15, we know that T3 does not depend upon T1, since such a dependency would create a

T1→ T3 dependency edge, forming a cycle, and causing T3 to abort. However, the user

program that executed T1 and T3 might have taken output from T1, and provided this as

input to T3 (see the discussion of the Transaction Handshake Theorem in [BN09, pg.

144]). The transfer of data via user input effectively creates a T1--wr→T3 dependency that

is not visible to the DBMS. Of course, this issue is easily circumvented by having T3 read

the values in question directly from the database, as opposed to taking them from user

input. There may be circumstances where PSSI’s lack of external consistency produces

results that are unintuitive (or unexpected) from the user’s point of view, despite the fact

that they are serializable from the database’s point of view.
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1: procedure Add-CS-Edges(Transaction Ti)
2: for T j ∈ ctg.commit_ts_order do
3: if commit(T j)> start(Ti) then
4: break
5: end if
6: add T j--cs→Ti to the CTG
7: end for
8: end procedure

Algorithm 23: Procedure for Adding Commit-Start Dependencies to the CTG

With a few small modifications, PSSI could be extended to provide external

consistency. To explain these modifications, we need to introduce a new dependency type,

which is given in Definition 6.2.

Definition 6.2 (Commit-Start Dependency): We say that there is a commit-start

dependency Ti--cs→T j when Ti commits before T j starts.

PSSI could provide external consistency by adding Ti--cs→T j edges to the cycle

testing graph (CTG), so that these edges are used during cycle tests. Algorithm 23

provides a way to compute the set of commit-start dependencies created by Ti’s commit.

Algorithm 23 takes advantage of one of the CTG’s auxiliary data structures,

ctg.commit_ts_order, which was introduced in Section 4.4. ctg.commit_ts_order is a list

of ctg-resident zombie transactions, ordered by commit timestamp. ctg.commit_ts_order

was originally added to improve the efficiency of CTG pruning, but it is also suitable for

the task of finding T j--cs→Ti dependencies. The procedure Add-CS-Edges iterates

through each T j in ctg.commit_ts_order, adding T j--cs→Ti edges for each T j with

commit(T j)< start(Ti).
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Providing external consistency would likely lead to a reduction in PSSI’s CTPS

throughput. Chapter 5 showed that PSSI’s throughput benefits from low abort rates;

adding commit-start dependencies would have the effect of turning some dangerous

structures into cycles, thereby increasing aborts and reducing throughput. Consider the

dangerous structure shown in Figure 40. Without commit-start dependencies, Figure 40

shows a serializable history, and PSSI would allow all three transaction to commit.

Incorporating commit-start dependencies would add T1--cs→T3 (because

commit(T1)< start(T3)), creating a cycle, and forcing T3 to abort.

6.3 Summary

This chapter described early lock release, a technique that allows a transaction Ti to “end”

before Ti’s logs have been flushed to disk. Although the standard distribution InnoDB

implements early lock release, it does so in a way that is unsafe for reader transactions.

Consequently, we elected to use late lock release for our PSSI prototype, and for our

performance testing.

This chapter presented a set of procedures that would make InnoDB’s early lock

release safe for reader transactions, regardless of the isolation level in use. Although we

have not implemented these procedures, we believe that they, in conjunction with early

lock release, could improve PSSI’s performance by reducing the number of transaction

aborts.

Finally, this chapter discussed the concept of external consistency. Our PSSI

implementation does not provide external consistency, however, support for external

consistency could be added with only a few small modifications. Further study is required
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to assess the effects that external consistency would have on PSSI’s throughput and abort

rates.
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CHAPTER 7

CONCLUSION

This dissertation began with a presentation of snapshot isolation (SI), a method of

concurrency control that uses timestamps and multiversioning in preference to pessimistic

two-phased locking. As originally proposed, SI provides a number of attractive properties

(e.g., reads and writes do not block each other), but falls short of providing full

serializability. This dissertation offers Precisely Serializable Snapshot Isolation (PSSI), a

set of extensions to SI that provide serializability, while preserving the non-blocking

qualities that makes SI attractive.

Any SI anomaly involves a dependency cycle. PSSI ensures serializability by keeping

track of write-write, write-read, and read-write dependencies, and by aborting any

transaction Ti that would cause a dependency cycle to form.

PSSI’s heart and soul is comprised of two data structures: the lock table and the cycle

testing graph (CTG). The lock table records transaction data accesses, and is responsible

for finding all Ti→ T j dependencies. Chapter 3’s lock table algorithms make the

assumption that all dependencies (including predicate dependencies) can be detected via

conflicts on individual data items. PSSI incorporates a version of index-specific

ARIES/IM, which allows these assumptions to hold. ARIES’s design principles treat
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predicates as ranges, and achieve range locking via next-key locking [Moh95, pg. 261].

Next-key locking makes range conflicts detectable via conflicts on individual records.

We are only aware of one form of imprecision in PSSI (i.e., cases where PSSI might

abort a transaction necessarily), and this imprecision comes as an inherent side-effect of

ARIES-style locking algorithms. Given an index with keys “5” and “10” and a transaction

T1 that performs a range scan between “5” and “7”, ARIES algorithms will lock [5,10],

the smallest superset of Ti’s range scan that can be represented by actual keys in the index.

Thus, a T2 that inserts “8” would be seen as conflicting with T1, even though there is no

logical conflict between the two transactions. Depending on the order of operations, the

perceived conflict would produce a T1→ T2 or T2→ T1 dependency; imprecision results

if this dependency becomes part of a cycle, causing some transaction to (unnecessarily)

abort. We note that this conservative error is not unique to PSSI, and will occur in any

DBMS that uses ARIES-style locking algorithms. Consequently, we believe that PSSI

ensures serializability as well as S2PL.

PSSI’s cycle testing graph represents a partial suffix of a history H. This graph

contains zombie transactions (committed transactions with the potential to become part of

a future cycle), plus the currently committing transaction Ti. Ti is allowed to commit if the

CTG ∪ Ti forms a new CTG C′, where C′ is acyclic.

The CTG cannot be left go grow without bounds, so PSSI incorporates a set of

algorithms for pruning, a process that identifies zombie transactions that cannot be part of

any future cycle, and removes them from the CTG. Pruning is equivalent to performing a

topological sort of the CTG, therefore, for any history H accepted by PSSI, the CTG

pruning order gives an equivalent serial history S(H). This is a marked difference from
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S2PL, where S(H) is given by the commit order of transactions. (In general, the order of

PSSI transaction commits does not give an equivalent serial history.)

Chapter 6 notes that S2PL possesses certain properties that PSSI does not. One of

these properties is external consistency, which guarantees that Ti serializes before T j any

time that Ti commits before T j. Further study is needed to fully understand the

implications of PSSI’s lack of external consistency. That said, with a few small changes

(i.e., Algorithm 23, page 154), PSSI could be extended to provide external consistency.

Further study is also needed to assess how an external consistency requirement would

affect PSSI’s performance. As explained in Section 4.5.2, external consistency is not a

prerequisite for supporting database replication.

Chapter 2 stated that every non-serializable SI history contains a dependency cycle,

and every dependency cycle contains at least one dangerous structure. The Dangerous

Structure Theorem (Theorem 2.22, page 25) provides an alternate strategy for making SI

serializable: instead of aborting any transaction Ti that causes a cycle to form, one could

abort any transaction Ti that causes an essential dangerous structure to form. The

drawback to the latter approach (called “ESSI” in Chapter 5) comes from the following: a

dangerous structure is a necessary condition for a non-serializable SI execution, but in

general, the existence of a dangerous structure does not guarantee that a non-serializable

execution will occur. (Write skew cycles of length two are an exception to this statement,

as these cycles are also dangerous structures.) Thus, preventing dangerous structures

(ESSI) may cause some transactions to be aborted unnecessarily. Chapter 5 shows that the

number of unnecessary aborts can be significant, and have a correspondingly adverse

affect on system throughput. From our experimental tests, we conclude that PSSI
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performs well because it minimizes the number of aborted transactions, and because it

preserves the “reads and writes do not block” qualities of SI.

In conclusion, we recognize that some areas of PSSI would benefit from future

research, but we believe that PSSI has the potential to become an attractive isolation

algorithm for database management systems.
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