rational.py

An (over) simplified Rational class

class Rational:
 def __init__(self, num, denom = 1):
 def gcd(a, b):
 while b:
 a, b = b, a % b
 return a

 # First normalize sign (always numerator)
 if denom < 0:
 num *= -1
 denom = int(abs(denom))
 # Then reduce
 gcddivisor = gcd(num, denom)
 self.numerator = num / gcddivisor
 self.denominator = denom / gcddivisor

 def add(self, other):
 n = self.numerator * other.denominator + \
 self.denominator * other.numerator
 d = self.denominator * other.denominator
 # gcd will take care of any necessary reductions
 return Rational(n, d)

 # "Overloading" existing operators.
 def __add__(self, other):
 return self.add(other)

 def __sub__(self, other):
 n = self.numerator * other.denominator - \
 self.denominator * other.numerator
 d = self.denominator * other.denominator
 return Rational(n, d)

 def __str__(self):
 if self.denominator == 1:
 return str(self.numerator)
 else:
 return str(self.numerator) + "/" + str(self.denominator)

 def __eq__(self, other):
 return self.numerator * other.denominator == \
 self.denominator * other.numerator

 def __cmp__(self, other):
 diff = self.__sub__(other).numerator
 if diff > 0:
 return 1
 elif diff < 0:
 return -1
 else:
 return 0

 def __lt__(self, other):
 return self.__cmp__(other) < 0

 def __le__(self, other):
 return self.__cmp__(other) <= 0
print "print Rational(-2,-3)"
print Rational(-2,-3)

print "print Rational(-2,3)"
print Rational(-2,3)

print "print Rational(2,-3)"
print Rational(2,-3)

print "print Rational(20,55)"
print Rational(10,55)

print "half = Rational(1,2)"
half = Rational(1,2)

print "quarter = Rational(1,4)"
quarter = Rational(1,4)

print "third = Rational(1,3)"
third = Rational(1,3)

print "sixth = Rational(1,6)"
sixth = Rational(1,6)

print "one = Rational(1)"
one = Rational(1)

print "print str(half + sixth)"
print str(half - sixth)

print "print str(half + sixth)"
print str(half - sixth)

print "str(half + quarter + quarter)"
print str(half + quarter + quarter)

print "half + quarter == Rational(3,4)"
print half + quarter == Rational(3,4)

print "half < quarter"
print half < quarter

print "quarter < third"
print quarter <= third

print "quarter <= (half - quarter)"
print quarter <= (half - quarter)
>>> import rational

>>> print(rational.Rational(-2, 3))
-2/3

>>> print(rational.Rational(-2, 3))
-2/3

>>> print(rational.Rational(2, -3))
-2/3

>>> print(rational.Rational(20, 55))
2/11

>>> half = rational.Rational(1, 2)
>>> quarter = rational.Rational(1, 4)
>>> third = rational.Rational(1, 3)
>>> sixth = rational.Rational(1, 6)
>>> one = rational.Rational(1)

>>> print(str(half + sixth))
1/3

>>> print(str(half + sixth))
1/3

>>> print(str(half + quarter + quarter))
1

>>> half + quarter == rational.Rational(3, 4)
True

>>> half < quarter
False

>>> quarter < third
True

>>> quarter <= (half - quarter)
True

>>>