
Distributed Management of
 Component Framework Specifications

Junichi Suzuki and Yoshikazu Yamamoto

Department of Computer Science,
Graduate School of Science and Technology,

Keio University
Yokohama City, 223-8522, Japan

+81-45-563-3925
{suzuki, yama}@yy.cs.keio.ac.jp

Abstract. The emergence of the Internet has radically
changed how to develop and circulate software. It drives
rapid software development using plug-compatible compo-
nents, and also requires distributed software development
allowing developers to collaborate in widely disparate
places. This paper describes our SoftDock system that lev-
erages distributed component development. It supports the
iterative and consistent evolution of component model
specifications by combining several emerging standard
technologies. We believe our work shows a blue print of a
next logical step in the business component research.

Keywords. Business components, Business objects, Dis-
tributed software development, Model interchange, Model
engineering, UML, XML, DOM, CORBA.

1 Introduction

The emergence of the Internet has radically changed how to develop
and circulate software. The development cycle at “Internet speed” re-
quires less time-to-market and more frequent updates, while maintain-
ing high levels of functionality and quality. The notions of component
and business object are the key for this issue. A business component is
defined in (Herzum et al., 1998) as follows:

A business component is the IS representation, from requirements
analysis through deployment and run-time, of an "autonomous"
business concept or process. It consists of all the software artifacts
necessary to express, implement and deploy the given autonomous
business concept as an equally autonomous, reusable element of a
larger information system.

It addresses rapid software development and adaptability to survive
in changing environment including technological and business changes.

Also, the current software development projects are becoming more
network-centric, because effective and economical communication me-
diums are available, and because the knowledge and skills required for
a large project often cannot be found in one location. The team com-
munication among developers critically impacts the quality of their
deliverables in the situation where they spread across geometrically
distributed places (Dutoit et al., 1998). The friction of distributed, and
therefore delayed, communication typically forces the information
overhead in teams, thereby works to slow development. It is highly
required to develop components independently of physical places and
assemble them.

For the above driving forces and requirements, unfortunately, there
are few collaborative platforms to manage rapid evolution of business
component models. Such an integrated framework requires several
challenges for supporting distributed business component development:

− Modeling components and relationships (dependencies, associations,
etc.) between them, which involves the modeling language that defi-
nes interchangeable semantics of components.

− Describing and interchanging component model information, which
involves the model exchange format.

− Providing a uniform means to access and circulate components, whi-
ch involves a set of published interfaces and communication proto-
col.

− Ensuring the integrity of component models, which involves the
model tracking and storage facility.

This paper describes our SoftDock system which is a platform for
distributed software development (Suzuki, 1999a-1999c). SoftDock
supports the model-based component development and management. It
allows developers to share and manage component model specifications

collaboratively, through requirements analysis to deployment, and then
produce software from the model.

Our system addresses the above four issues by combining some stan-
dard technologies. It provides a solution to the first issue by using the
Unified Modeling Language (UML) (OMG, 1999a), to the second one
by providing an application-independent interchange format for UML
models, called UXF (UML eXchange Format) (Suzuki, 1998a and
1999d), and to the third and fourth issues by distributing UXF descrip-
tions through DOM (Document Object Model) interface (W3C, 1998a)
implemented on top of CORBA (Common Object Request Broker Ar-
chitecture) (OMG, 1998b).

The SoftDock system provides following benefits:

− It addresses model-based component development.
SoftDock allows developers specify component models indepen-
dently of implementation technologies such as programming lan-
guage, network facility and operating system.

− It leverages model reuse by tool interoperability.
SoftDock allows component models to be interchangeable and reus-
able between different development tools with different strengths,
throughout the lifecycle of software development. With this capabil-
ity, development teams do not have to lock-in any specific tools.

− It addresses cost-effectiveness.
The seamless tool interoperability and model reusability reduces the
information overhead between tools, project members or develop-
ment phases. Also, SoftDock has the potential to reduce cost, i.e.
time and money, by incorporating promising open standards. Using
promising standards helps risk management.

− It has the potential to speed up model development.
The above characteristics increase the model continuity and improve
developers’ productivity. SoftDock has great potential to streamline
distributed business component development.

The remainder of this paper is organized as follows. Section 2 over-
views enabling technologies for SoftDock: UML, XML, UXF, RDF,
DOM and CORBA. Section 3 describes the SoftDock architecture and
its implementation. We conclude with a note on future work, in Section
4 and 5.

2 Foundation Technologies for SoftDock

This section briefly overviews backgrounds, motivations and benefits
of enabling technologies used in SoftDock.

2.1 Unified Modeling Language (UML)

The Unified Modeling Language (UML) is the union of the previous
leading object modeling methodologies; Booch, OMT and OOSE. It is
a standard object-oriented modeling language that defines most of the
semantics and their notations required for representing software con-
structs. UML provides nearly independent 9 diagrams for modeling a
given problem domain in terms of various perspectives. UML has been
widely accepted by academic and commercial developers, and used for
representing various software models including real-time system mod-
els, hypermedia models, business models, engineering design models,
multi-agent models, etc.

2.2 Component Model Interchange: UXF and XMI

Model interchange is a quite important capability in software develop-
ment, because there are few application-neutral exchange format be-
tween development tools. The most important factor in interchanging
model information is that the semantics within the model should be
described explicitly and transferred precisely. To address this issue, we
developed UXF (UML eXchange Format), which is an interchange
format for UML models (Suzuki, 1998a and 1999d). Object Manage-
ment Group also completed the XMI (XML Metamodel Interchange)
format (OMG, 1999). Both UXF and XMI are based on eXtensible
Markup Language (XML) (W3C, 1998b), and serves as a communica-
tion vehicle for component model information between development
tools or developers (Suzuki, 1998a and 1999d).

UXF is carefully designed to be simple and well-structured enough to
encode, publish, access and interchange UML models. We are now
using UXF in the SoftDock system, because it preceded XMI at the
time of beginning of our project, and because it is much simpler than

XMI. However, we are considering to support XMI as well in SoftDock
(see Section 4). Note that due to space limitations, the basics and bene-
fits of using XML as an interchange format are not covered here. Please
see (Suzuki, 1999c and 1999d) for more depth discussion.

2.3 Distributed Component Model Interchange: DOM and
CORBA

SoftDock manages component model information written in UXF
through the Document Object Model (DOM) interface implemented on
CORBA (Common Object Request Broker Architecture). DOM defines
general-purpose interfaces to manipulate a parsed tree structure of a
XML document. It provides a set of APIs for the following capabilities:

− Structure navigation, which is the navigation of document structures
such as accessing and searching elements or attributes.

− Structure manipulation, which is the manipulation of document
structures such as adding, changing and removing elements or attrib-
utes.

− Content manipulation, which is the manipulation of document con-
tents such as putting or getting values to elements and attributes.

The DOM interface is defined with the OMG Interface Definition
Language (IDL), a primary component in the CORBA specification
(see below), because it is designed to be programming language neu-
tral. DOM does not intend to be implemented with CORBA, but im-
plementing DOM interfaces on CORBA is reasonable strategy for our
goal to distribute component models on the network environment (Su-
zuki, 1999a).

Common Object Request Broker Architecture (CORBA) is a stan-
dard for object middleware used in the heterogeneous environment. It
provides a standard way to interoperate distributed objects. CORBA
defines the interfaces and components that organize Object Request
Brokers (ORBs). An application accessing the service of a remote ob-
ject uses an ORB to send a message and receive the results. A series of
interfaces in CORBA allows to distribute remote objects on multiple
platforms in a transparent way to applications. One of the key compo-
nents in CORBA is OMG Interface Definition Language (IDL), a lan-
guage to define the interface of a remote object. It is programming lan-

guage neutral by providing a mapping to various languages. Another
important component is Internet Inter-ORB Protocol (IIOP), which is a
standard on-the-wire protocol based on TCP. IIOP leverages the in-
teroperability between different ORBs as well as between objects on a
single ORB. The benefits from combining DOM and CORBA are de-
scribed in (Suzuki, 1999c).

2.4 Component Metadata: RDF

Metadata is data about data, or specifically descriptive information
about software models, e.g. objects, components, packages, etc., in the
context of our system. It is used to index, retrieve, manage, interchange
or automate model information. The concept of metadata is becoming
important in the web community. The Resource Description Frame-
work (RDF) specification (W3C, 1999) has been completed by the
World Wide Web Consortium (W3C). RDF allows us to define meta-
data of arbitrary web resources including an entire web document, a
part of a document, a collection of documents and even an object that is
not directly accessible via the web. RDF is an XML-based format.

In the SoftDock system, we use RDF to define metadata of various
software models. However, it can integrate any other metadata descrip-
tion languages that are based on XML. For example, we have used the
IMS Meta-Data specification (IMS, 1999), which is a metadata de-

Figure 1: SoftDock Architecture

scription language for educational resources, in order to build a distance
learning/training system for teaching software modeling based on
SoftDock (Suzuki, 1999c). Section 3.2 shows component metadata is
used for describing its non-functional aspects.

3 The SoftDock System

This section describes the foundation architecture, system organization,
design strategy, deployment and applications of the SoftDock system.

3.1 Architecture and System Organization

Figure 1 shows the SoftDock architecture, which describes the relation-
ships between different APIs to access component model specifications
encoded in UXF. UXF descriptions are manipulated through either
DOM or SAX (Simple API for XML) interface (SAX, 1998). SAX is a
de-facto standard parser interface, the interface between a XML parser
and its applications, which has been developed in the XML community.
SAX is an event-based parser interface, while DOM is tree-based
(Chang, 1998). DOM compliant parsers often use SAX-based parsers
internally. Any parsers supporting either DOM or SAX can be plugged
into our architecture without affecting other components in the system.
The extension part in the architecture provides a series of utility objects
that are useful for building various SoftDock applications (see Figure
1). One of the most important objects in this part is a document proxy.
Its responsibilities are:

− Fetching remote model specifications consistently.
− Connecting a parser interface with external environments such as the

Internet, CORBA, file systems and repositories.
The design details of document proxy is described in Section 3.3.
Figure 2 shows our current system organization. All the UXF de-

scriptions are stored in the resource server. The SoftDock system
provides the connectivity with a web server and CORBA environment.
The HTTP connection provides the oneway communication between
clients and servers, which aims to allow client applications including
web browsers to refer model information� within a resource server

through a web server. Whenever a UXF description is updated in re-
source server, SoftDock pushes the updated description to a web server.

The IIOP connection provides the two-way communication between
clients and servers, which aims to allow developers at separated places
to refer, create and modify arbitrary model specifications. Client appli-
cations include CASE tools, documentation tools, design metrics tools,
source code generators, reverse engineering tools.

3.2 Description of Business Components

There is an emerging consensus about business components, apparent
in (Herzum et al., 1998 and Herzum, 1998), though there has never
been any standard consensus (Sutherland, 1998). It proposes four major
dimensions for business components:

− The concept of the business component itself.
− The business component system –the groups of business components

that cooperate to deliver the system functionality.
− The internal architecture of the business component.
− The business component system development process.

The SoftDock system supports the categorization and internal structure
of business components.

Figure 2: The current SoftDock system organization

(Herzum et al., 1998) defines the layered categorization of business
components:

− Business process components, representing business processes and
workflows

− Business entity components, representing components upon which
business processes operate.

− Utility components, fine-grained components used by the above
components.

A business component at a given level can depend on business com-
ponents at any of the levels below. SoftDock supports business entity
component and utility components by modeling and describing them
with UML. Business process components are partially supported by
specifying business processes and workflows using UML sequence and
activity diagrams. The complete support of business process compo-
nents is future work, because UML does not have enough model ele-
ments to specify business processes and workflows. We are investigat-
ing an extension to the UML metamodel for modeling them (see Sec-
tion 4).

 (Herzum et al., 1998) also defines the layered internal structure of
each business component: a presentation layer, a workspace layer sup-
porting a business transaction, an enterprise layer defining business
logic, rules and interaction between components, and a resource layer
supporting transaction, persistence, security and other services. Our
system currently supports the description of an enterprise layer.

For the above supports, we extended UXF and introduced the notion
of component metadata. UXF is extended to describe the enterprise
level of three kinds of components. A sample description is shown in
the Appendix. Currently, we suppose all the business components are
modeled with UML and UXF, though we are aware the current UML is
not sufficient to specify them. What model elements should be prepared
for defining business components is beyond the scope of this paper.
When further standard consensus or UML extension is emerged, we
will plug-in it to the SoftDock system.

Component metadata contains important information to circulate and
assemble components. It is described with RDF, and linked to a corre-
sponding component description (see Appendix). Section 3.3 describes
how they are transferred and handled in SoftDock.

3.3 Design and Implementation

This section describes design strategies we chose for the IIOP commu-
nication subsystem depicted in Figure 2.

3.3.1 Model Management Interfaces

As described earlier, SoftDock allows client applications to access re-
mote UXF-formatted model information through the DOM interface
built on CORBA. Every UXF description is parsed into a tree structure
according to its tag hierarchy with a DOM-compliant XML parser, and
maintained as a set of CORBA objects (Figure 3). The CORBA objects
are registered into the Basic Object Adapter (BOA), which is a server-
side facility used for managing their lifecycle and dispatching incoming
requests to them. Every root node (or object) of tree structures is pub-
lished to client applications using the CORBA naming service, a white
page service for CORBA objects. Client applications locate the root

Figure 3: Access to a remote UXF description

node of a target UXF description and then navigate its structure and
contents.

This design strategy is straightforward, but it does not scale well in
the situation where the size of a single UXF document is large or it has
many tags. It raises object management problem and increased over-
head problem. The object management problem means that an under-
lying ORB (or BOA, specifically) have to register huge amount of ob-
jects potentially. This is because a UXF tag is mapped to a DOM node,
which is in turn mapped to a CORBA object. The overhead problem
means that a remote method invocation is always required when refer-
ring to and/or changing any node in a remote UXF description.

To avoid the overhead problem, SoftDock allows a client application
to cache remote UXF documents locally (Figure 4). It provides the IDL
interface extending the DOM APIs for fetching and maintaining remote
UXF descriptions at client-side. Figure 5 shows three extended inter-
faces: UXFDescription, CorbaDocAgent and CorbaDo-
cProxy.

Figure 4: Local cache of a remote UXF description

UXFDescription represents a server-side root node of an entire
UXF description. It is derived from dom::Document defined in the
DOM specification, which provides the methods for accessing to the
document’s data and creating its internal elements. UXFDescription
is also derived from CosEventComm::PushSupplier and Co-
sEventComm::PushConsumer, which are the interfaces for push-
style event notification in the CORBA event service. These interfaces
are used to notify the change events between a remote UXF description
and its local cache. The document change notification is described Sec-
tion 3.3.2. UXFDescription has an attribute revision to track its
revision number and exposes five methods. externalize() trans-
lates a document’s tree structure into a file, and content() returns its
representation as a sequence of string data. lockNode() and re-
leaseNode() are used to require and release a lock of the document

#pragma prefix "jp.ac.keio.SoftDock"
#include <dom.idl>
#include <CosEventComm.idl>
module SoftDockExtention
{
 typedef long UID;
 interface UXFDescription
 :dom::Document,
 :CosEventComm::TypedPushConsumer,
 :CosEventComm::TypedPushSupplier
 {
 attribute UID nodeId;
 readonly attribute float revision;
 void externalize();
 sequence<string> content();
 boolean isLocked();
 oneway void lockNode(in CorbaDocProxy proxy);
 oneway void releaseNode();
 void update(in string docName,
 in UID changePoint,
 in short changeTypeId);
 };

interface CorbaDocProxy
 :UXFDescripion,
{
 attribute dom::Document remoteDoc;
 oneway metadata(in sequence<string> mdata);

 };
interface CorbaDocFactory
{

 dom::Document createDocument(in string docName);
 dom::Document cloneDocument(in UXFDescriiption doc);
 oneway void releaseNode(in UXFDescriiption node);
 void destroyDocument(in UXFDescriiption doc);
 };
};

Figure 5: Extended IDL definition for SoftDock

passed as an argument. update() is used to notify any change of a
UXF description (see Section 3.3.2).

The CorbaDocProxy interface is a client-side proxy for a remote
UXF description, shown in Figure 4. This interface is derived from
UXFDescription. It has references to root nodes of both a remote
document and its local cache. The method metadata() transfers
component metadata (see also Section 3.2).

The CorbaDocFactory interface represents the local and remote
factory for a UXF description. The DOM specification does not define
the way of creating an XML document instance, and therefore this in-
terface provides factory methods for creating, cloning and destroying a
document.

Figure 6 shows the server-side class structure of CorbaDocFacto-
ry and its implementations, which are generated by an IDL-Java com-
piler. CorbaDocFactory in Figure 6 is a Java interface class, which
is a Java-side equivalent of the IDL CorbaDocFactory interface.
_CorbaDocFactoryImplBase and
_CorbaDocFactoryImplBase_tie are skeleton classes for
CorbaDocFactory, which unmarshal parameters contained in
method invocations. We are using the tie approach in which a skeleton

Figure 6: Class structure of the CorbaDocFactory interface and its
implementations

asks for its delegate class to perform method invocations, instead to
perform them by itself. _CorbaDocFactoryImplBase_tie dele-
gates method executions to CorbaLocalDocFactoryImpl and
CorbaRemoteDocFactoryImpl. These classes implement the
CorbaDocFactory interface. They are the client-side and server-
side factory classes for a UXF description respectively (see Figure 4).

3.3.2 Change Notification

When a server-side UXF description is updated, the change is notified
to the corresponding CorbaDocProxy at client-side. This notification
is performed by calling the CorbaDocProxy’s update() method.
SoftDock transfers typed events through event channel based on the
push model.

Event data is passed by means of the parameters defined in up-
date(). The parameter changeTypeId shows what kind of change
is occurred in an original description at server-side. The kinds of
changes include copy, movement, insertion, deletion and modification
of a node. An event channel is an intermediate object that allows multi-
ple event suppliers to communicate with multiple event consumers in
the decoupled manner. An event channel is both a consumer and sup-
plier of events. It is a standard CORBA object, and the communication
with an event channel is accomplished using normal CORBA requests.
In SoftDock, UXFDescription transfers a push-style change notifi-
cation to an event channel, and then the event channel pushes the
change to CorbaDocProxy (Figure 7).

Figure 7: Change notification through an event channel

3.3.3 Synchronous and Asynchronous Accesses

The caching mechanism described above allows SoftDock to support
both synchronous and asynchronous manipulation of a UXF descrip-
tion.

The synchronous editing is performed as shown in the left of Figure
8. A client-side CorbaDocProxy locks a remote document using its
method lockNode() to prevent modifications by other applications.
Once the document is locked, its metadata is transferred to its Corba-
DocProxy. Then, it accesses and manipulates the remote document
based on the obtained metadata. After editing the remote documents,
CorbaDocProxy releases the lock with its method release-
Node(). The synchronous editing is a simple model and ensures the
document’s consistency by preventing overwrites. However, it does not
scale well in the situation where many learners are accessing a remote
document frequently because every access requires a lock even if the
document is not changed.

In contrast to the exclusive lock, our system provides an alternative
lock, shared lock, which allows a group of applications to share a single
lock on a document. This lock enables the asynchronous remote edit-
ing. Users can continue to work even when they are offline, e.g. using
mobile computers, and merge changes later. Merging a change to the
original description, a client application uses the method update() of

Figure 8: Synchronous (left) and Asynchronous interactions between
client and server (right)

UXFDescription. The asynchronous editing can reduce the number
of remote method invocations. The right of Figure 8 shows the interac-
tions between client and server in the asynchronous mode. This mode
works best in environments in which participants know each other’s
activities, or just refer the remote document.

3.4 Deployment

SoftDock has been deployed with:

− DOM compliant XML parser: We have used XML4J (IBM), and are
replacing it with our own parser.

− CORBA compliant ORB: We are using two different ORBs, ORBa-
cus (OOC) and Fnorb (DSTC), which are Java-based and Python-
based ORBs respectively. The IIOP protocol ensures the interoper-
ability between these ORBs.

− Web server: Our in-house web server, OpenWebServer (Suzuki et al.,
1998b, 1999e and 1999f), is used for the HTTP connection (see Sec-
tion 2).

− Programming languages: CORBA server applications are written
with Java, while its client applications are with Java and Python. Our
web server is developed with Java.

− Operating systems: CORBA server applications are run on Linux and
Windows NT, while its client applications are on Windows 95, Win-
dows NT.

3.5 Applications

We have interchanged some simple component models in SoftDock,
e.g. CurrencyBook component, which is designed based on the OMG
Finance DTF’s Currency specification (OMG, 1998c), Invoice compo-
nent, Customer component and InvoiceManager component.

SoftDock has a command-line and graphical (Java applet-based and
Tk-based) model reference/revision tools. Also, we have developed
model documentation tools and connectivity glues for commercial
CASE tools. These tools fetch a UXF description from a resource
server and translate it into HTML, RTF, PDF, PostScript or proprietary
formats used in Rational Rose and MagicDraw.

4 Future Work

We are extending our system from several viewpoints.
As described in Section 3.2, our work has not addressed how busi-

ness components should be modeled. SoftDock incorporates a mini-
mum extension to UML and UXF. We are investigating some proposals
for metamodel extensions and techniques for specifying business proc-
esses and workflow with UML (Bock, 1998, Wiegart, 1998 and Hruby,
1998). We plan to build some prototype applications for testing their
feasibility.

We are adding some capabilities to SoftDock, which allows more ef-
fective distributed model management. The first one is a transparent
communication between a remote UXF description and its local cache
to whether a target description is cached in client-side, while client ap-
plications currently have to know that in advance. The second capabil-
ity is a yellow page service for each root node of UXF descriptions. It
provides more semantics-aware search mechanism than the current
white page service. We are now designing it with the CORBA trading
service. The third one is secure communication facility. We are consid-
ering to use IIOP over SSL. The fourth one is adding a different locking
scopes to a UXF description, e.g. a lock for a collection of documents.
We are also analyzing the system behavior in the asynchronous editing
mode, and investigating the consistent distributed document manage-
ment.

We also plan to align some other specifications such as the Docu-
ment Repository Integration by the OMG Business Object DTF (OMG,
1998c), the XMI format (OMG, 1999b), and the Meta Object Facility
(MOF) specification (OMG, 1997) for evaluating the possibility and
implications of a highly interoperable and semantics-interchangeable
infrastructure.

5 Conclusion

This paper describes our SoftDock system that leverages distributed
business component development. It supports the iterative and consis-
tent evolution of component model specifications by combining some

emerging standard technologies such as UML, XML, DOM and
CORBA. We describe our system architecture, design strategies, tech-
niques and implications for managing component models effectively in
the distributed environment. We believe our work shows a blue print of
a next logical step in the business component research.

Appendix Sample Description of a Component and its Metadata

<UXF Version="2.0"
 xmlns:UXF="http://www.yy.cs.keio.ac.jp/~suzuki/project/uxf/">
 <!-- Component description -- >
 <UXF:BusinessComponent>
 <UXF:Name>Invoice</UXF:Name>
 <EnterpriseLevel>
 ...
 </EnterpriseLevel>
 ...
 </UXF:BusinessComponent>
 ...
</UXF>
<!-- Component metadata definition -->
<RDF
 xmlns="http://www.yy.cs.keio.ac.jp/~suzuki/RDF"
 xmlns:UXF="http://www.yy.cs.keio.ac.jp/~suzuki/project/uxf/">
 <Description about="http://www.yy.cs.keio.ac.jp/SoftDock/invoice.uxf">
 <UXF:ComponentCategory>
 Entity
 <UXF:ComponentCategory>
 <UXF:Dependency>
 <UXF:BusinessComponent>
 <Name>CurrencyBook</Name>
 </UXF:BusinessComponent>
 ...
 </UXF:Dependency>
 <UXF:Author>
 <UXF:Name>
 ...
 </UXF:Author>
 <UXF:Date>
 ...
 </UXF:Date>
 <UXF:Version>
 ...
 </UXF:Version>
 ...
 </Description>
</RDF>

References

[Bock, 1998] C. Bock. Suggested Revisions to Activity Models for Business Process Modeling.
OMG document number ad/98-06-13, available at uml.systemhouse.mci.com/artifacts.htm,
1998.

[Chang, 1998] D. Chang and D. Harkey. Client/Server Data Access with Java and XML. Wiley,
1998.

[Dutoit et al., 1998] A. H. Dutoit and B. Bruegge. Communication Metrics for Software Devel-
opment. In IEEE Trans. On Software Engineering vol. 24, no. 8, August 1998.

[DSTC] CRC for Distributed Systems Technology. Fnorb ORB. available at
www.dstc.edu.au/Fnorb/

[Herzum et al., 1998] P. Herzum and O. Sims. The Business Component Approach. In the Pro-
ceedings of the OOPSLA’98 Workshop on Business Object Design and Implementation,
1998.

[Herzum, 1998] P. Herzum. The Business Object Component. OMG document, ormsc/98-09-01.
[Hruby, 1998] P. Hruby. Structuring Specification of Business Systems with UML (with an

Emphasis on Workflow Management. In Proceedings of OOPSLA'98 Workshop on Business
Object Design and Implementation, 1998.

Systems)
[IBM] IBM. XML parser for Java. available at www.alphaworks.ibm.com/tech/xml4j.
[IMS, 1999] IMS Project. IMS Meta-Data Specification, version 1.02. February 1999, available

at www.imsproject.org/
[OOC] Object-Oriented Concepts, Inc. ORBacus for Java. available at www.ooc.com/ob/.
[SAX, 1998] D. Megginson. SAX 1.0: The Simple API for XML. available at

www.megginson.com/SAX/.
[Sutherland, 1998] J. Sutherland. OOPSLA’98 Workshop Report on Business Object Design

and Implementation IV: From Business Objects to Complex Adaptive Systems. 1998, avail-
able at www.jeffsutherland.org/oopsla98/.

[Suzuki et al., 1998a] J. Suzuki and Y. Yamamoto. Managing the Software Design Documents
with XML. In Proceedings of the 16th ACM Annual International Conference of Computer
Documentation (SIGDOC '98), pages 127–136, Quebec City Canada, September 1998.

[Suzuki et al., 1998b] J. Suzuki and Y. Yamamoto. Building an Adaptive Web Server with a
Meta-architecture: AISF approach. In Proceedings of SPA'98, Kusatsu, Japan, March 1998.

[Suzuki et al., 1999a] J. Suzuki and Y. Yamamoto. Toward the Interoperable Software Models:
Quartet of UML, XML, DOM and CORBA. In the 4th IEEE International Software Engi-
neering Standards Symposium (ISESS '99), pages 163–172, Curitiba, Brazil, May 1999.

[Suzuki et al., 1999b] Junichi Suzuki and Yoshikazu Yamamoto. SoftDock: a Distributed Col-
laborative Platform for Model-based Software Development. In the 10th International Work-
shop on Database and Expert Systems Applications (DEXA '99), Florence, Italy, September
1999, to appear.

[Suzuki et al., 1999c] J. Suzuki and Y. Yamamoto. Building A Next-Generation Infrastructure
for Agent-based Distance Learning. In the International Journal of Continuing Engineering
Education and Life-Long Learning, November 1999, to appear.

[Suzuki et al., 1999d] J. Suzuki and Y. Yamamoto. Making UML Models Interoperable with
UXF. In P. Muller and J. Bezivin, editors, Unified Modeling Language, LNCS 1618, 1999,
to appear.

[Suzuki et al., 1999e] J. Suzuki and Y. Yamamoto. OpenWebServer: an Adaptive Web Server
Using Software Patterns. In IEEE Communications Magazine, Vol.37, No.4, pp. 46 - 52,
April 1999.

[Suzuki et al., 1999f] J. Suzuki and Y. Yamamoto. Dynamic Adaptation in the Web Server
Design Space using OpenWebServer. In Proceedings of SPA '99, Atagawa, Japan, March
1999.

[OMG, 1997] Object Management Group. Meta Object Facility Specification. OMG document
ad/97-08-14, ad/97-08-15 and ad/97-09-04, available at
www.omg.org/techprocess/meetings/schedule/Technology_Adoptions.html, 1997.

[OMG, 1998] Object Management Group. Common Object Request Broker Architecture 2.2.
available at www.omg.org/library/c2indx.html, February 1998.

[OMG, 1998b] Object Management Group. Currency Specification. available at
www.omg.org/corba/cfinchp.html, 1998.

[OMG, 1998c] Object Management Group. Document. Repository Integration RFP. OMG
document dtc/98-09-01, 1998.

[OMG, 1999a] Object Management Group. Unified Modeling Language Specification. version
1.3R5, available at uml.systemhouse.mci.com, 1999.

 [OMG, 1999b] Object Management Group. XML Metadata Interchange (XMI) Specification.
OMG document, ad/98-10-05 and ad/98-10-06, available at uml.shl.com/xml/xmi.htm, 1999.

[W3C, 1998a] World Wide Web Consortium, M. Champion et. al., editors. Document Object
Model Level 1 Specification. August 1998, available at www.w3.org/TR/REC-DOM-Level-
1/.

[W3C, 1998b] World Wide Web Consortium, Tim Bray et. al., editors. Extensible Markup
Language (XML) 1.0. February 1998, available at www.w3.org/TR/1998/REC-xml-
19980210.

[W3C, 1999] World Wide Web Consortium, O. Lassila and R. R. Swick, editors. Resource
Description Framework (RDF) Model and Syntax Specification. February 1999, at
www.w3.org/Press/1999/RDF-REC.

[Wiegart, 1998] O. Wiegart. Business Process Modeling & Workflow Definition with UML.
OMG document number ad/98-04-04, available at
uml.systemhouse.mci.com/artifacts.htm1998.

