
CS612 - Algorithms in Bioinformatics

Structural Manipulation

April 7, 2025

Rapid Structural Analysis Methods

Emergence of large structural databases which do not allow
manual (visual) analysis and require efficient 3-D search and
classification methods.

Structure is much better preserved than sequence – proteins
may have similar structures but dissimilar sequences.

Structural motifs may predict similar biological function

Getting insight into protein folding. Recovering the limited (?)
number of protein folds.

Comparing proteins of not necessarily the same family.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Rapid Structural Analysis Methods

Implementing structural algorithms (folding, docking,
alignment) requires geometric manipulation of protein
structures.

A 3-D protein structure is represented as a set of x , y , z
coordinates (vectors).

Structural manipulation is done via geometric transformations
(translation, rotation) of some or all the coordinates.

Transformations can be represented using matrices applied on
the coordinate vectors.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Degrees of Freedom (DOFs)

Definition (Degrees of Freedom)

The degree of freedom (DOF) is the set of independent parameters
that can be varied to define the state of the system

Examples:
The location of a point in a 2-D cartesian system has two
independent parameters – its (x , y) coordinates.

x

y

Nurit Haspel CS612 - Algorithms in Bioinformatics

Degrees of Freedom (DOFs)

Definition (Degrees of Freedom)

The degree of freedom (DOF) is the set of independent parameters
that can be varied to define the state of the system

Examples:
An alternative representation – (r , θ), distance from the origin and
rotation about the origin, respectively.

r
θ

z

x

r

θ

r cos θ

r sin θ

a c

b

dist(a,b)=r

Nurit Haspel CS612 - Algorithms in Bioinformatics

Degrees of Freedom (DOFs)

Definition (Degrees of Freedom)

The degree of freedom (DOF) is the set of independent parameters
that can be varied to define the state of the system

Examples:

The location of a point in a 2-D cartesian system has three
independent parameters – its (x , y) coordinates.

An alternative representation – (r , θ), distance from the origin
and rotation about the origin, respectively.

A molecule with n atoms can be represented by a set of 3×N
cartesian coordinates, so it has 3× N DOFs...

Or does it?

The actual number of DOFs is smaller, since distance and
angle constraints restrict the atomic movement.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Representation by Internal Coordinates

When trying to manipulate the structure internal coordinates
may be easier to work with.

The internal coordinates represent bond length, angles and
dihedrals.

Remember that we treat bond lengths and planar angles as
fixed, but we still need them.

They help us infer the connectivity of the structure and switch
between representations.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Representation by Internal Coordinates

Representing protein conformations with the dihedral angles
as the only underlying degrees of freedom is known as the
idealized or rigid geometry model.

Ignoring bond lengths and bond angles greatly reduces the
number of degrees of freedom and therefore the
computational complexity of representing and manipulating
protein structures.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Representation by Internal Coordinates

As a reminder – there are two freely rotatable backbone
dihedral angles per amino acid residue in the protein chain: ϕ
is a consequence of the rotation about the bond between N
and Cα, and ψ , which is a consequence of the rotation about
the bond between Cα and C.

The peptide bond between C of one residue and N of the
adjacent residue is not rotatable.

The number of backbone dihedrals per amino acid is 2
(except the first and last), a total of 2N-2.

but the number of side chain dihedrals varies with the length
of the side chain. Its value ranges from 0, in the case of
glycine, which has no side chain, to 5 in the case of arginine.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Representation by Internal Coordinates

One can generate different three dimensional structures of the
same protein by varying the dihedral angles.

There are 2N-2 backbone dihedral DOFs for a protein with N
amino acids, and up to 4N side chain dihedrals that one can
vary to generate new protein conformations.

Changes in backbone dihedral angles generally have a greater
effect on the overall shape of the protein than changes in side
chain dihedral angles (why?)

Nurit Haspel CS612 - Algorithms in Bioinformatics

Manipulation of Molecular Structures

When generating new conformations by manipulating the
dihedral angles, we will normally require a way to modify the
Cartesian coordinates when dihedral rotations are performed,
to reflect the new atomic positions.

This can be easily done with rotation matrices.

Therefore we will probably need to keep the two
representations simultaneously.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Rotation Matrices and Translation Vectors

An N ×N matrix R is a rotation matrix in dimension N if it is
orthonormal (its columns are pairwise orthogonal and
normalized) and det(R) = 1.

Such matrix has the property RT = R−1.

A vector t = {t1, t2, ..., tN} is a translation vector in
dimension N.

A rigid transformation on a vector v (rotation + translation)
has the form Rv + t

Notice that a rotation is followed by a translation and not the
other way around.

Rotation matrices are a group under matrix multiplication.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Homogeneous Coordinates

A translation is not a linear transformation, since it does not
keep the origin fixed.

However, it is an affine transformation that does not bend or
twist its input: lines have to stay linear, parallel lines have to
stay parallel and planes have to stay planar.

Therefore, a rotation matrix and a translation vector can be
combined into rigid affine transformation using homogeneous
coordinates.

This is done by adding a ”dummy” zero vector to the rotation
component and 1 to the translation component.

In other words, we add a dimension to the matrix, so now it is
of the form:

T =

[
R t

0 1

]

Nurit Haspel CS612 - Algorithms in Bioinformatics

Homogeneous Coordinates

By doing this we transform the system from the Euclidean
space to the Projective space.

The new translation vector, {t1, t2, . . . , tN , 1} is the
representation of t in the projective plane rather than the
Euclidean plane.

The added component is a scaling factor which in principle
can be any non-zero number, so for convenience we will use 1.

A 0 would indicate a ”point at infinitiy”.

To transform a vector v = {v1, v2, . . . , vn} using homogenous
coordinates we simply use v = {v1, v2, . . . , vn, 1} so that we
can apply the transformation in N + 1 dimensions.

To transform a point back from the projective plane into
Euclidean coordinates we simply ignore the 1.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Rotation Matrices and Groups

Group – A set G with an operation defined on it.

4 defining axioms:
1 Closure: ∀a, b ∈ G , a ◦ b ∈ G
2 Associativity: ∀a, b, c ∈ G , (a ◦ b) ◦ c = a ◦ (b ◦ c)
3 Identity: ∃e ∈ G s.t∀a ∈ G , a ◦ e = e ◦ a = a
4 Inverse: ∀a ∈ G∃a−1 ∈ G s.t ∀a ∈ G , a ◦ a−1 = e

Rotation matrices are groups under matrix multiplication.
1 Closure: The multiplication of every two rotation matrices is a

rotation matrix.
2 Associativity: True for every matrix.
3 Identity: The identity matrix, which is a rotation by 0 degrees.
4 Inverse: Rotation in the inverse direction. Multiplying a

rotation by its inverse gives the identity.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Transformation Matrices

Objects undergo transformations in space – translation,
rotation in 2D or 3D.

Matrices can encode transformations

Translation vectors, rotation matrices.

Example – Rotation in 2D:

A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
θ is the rotation angle in the 2D plane.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Example – Rotation in 2D

Nurit Haspel CS612 - Algorithms in Bioinformatics

Representing Rotations in 2D – SO(2)

0◦

90◦

−90◦

180◦

θ

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

Nurit Haspel CS612 - Algorithms in Bioinformatics

Combining Rotations using Euler’s Representation

Matrix multiplication ↔ unit complex multiplication.

R(Θ1) ∗ R(Θ2) R(Θ1 + Θ2)
↓ ↑

e iΘ1 ∗ e iΘ2 → e i(Θ1+Θ2)

a+ bi ↔
[

a −b
b a

]
≃ S1

Nurit Haspel CS612 - Algorithms in Bioinformatics

Representing Rotations in 3D

SO(3) – special orthogonal group in 3D, rigid body rotation in
3D.

Not a simple extension of 2D rotation.

How many degrees of freedom are there in SO3?

O(3) → AAT = 1.

3 constraints on unit row vectors, 3 constraints on
orthogonality.

SO(3) → det(A) = 1.

When det(A) = −1 it is a reflection.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Representing Rotations in 3D

3x3 matrix

Euler angles (phi,theta,psi)

Yaw, pitch, roll angles

Axis-angle representation

Quaternions

Nurit Haspel CS612 - Algorithms in Bioinformatics

3X3 Matrix

x y

z

x̃

ỹ

z̃

R =

 x̃1 ỹ1 z̃1
x̃2 ỹ2 z̃2
x̃3 ỹ3 z̃3

 =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 ∈ SO(3)

Nurit Haspel CS612 - Algorithms in Bioinformatics

Spherical Coordinates in 3D

An extension of polar
coordinates.

ρ – the magnitude of the
vector.

r – the projection of the
vector on the xy plane

θ – same as in polar
coordinates w.r.t r on the
xy plane.

ϕ – angle around the z axis.

O

ρ

x

y

z

rθ

φ

Nurit Haspel CS612 - Algorithms in Bioinformatics

Performing a Rotation on a Point

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 px
py
pz

 =

 R11px + R12py + R13pz
R21px + R22py + R23pz
R31px + R32py + R33pz

Nurit Haspel CS612 - Algorithms in Bioinformatics

CCW Rotations Around Axes

To combine rotations around
axes multiply matrices

Notice that matrix
multiplication is not
commutative (order
matters!)

Look at order from right to
left. For example –
Rx(γ)Ry (β) rotates by beta
around y and then rotates
the result around x by γ

Rx(γ) =

 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

Ry (β) =

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

Rz(α) =

 cosα − sinα 0
sinα cosα 0
0 0 1

Nurit Haspel CS612 - Algorithms in Bioinformatics

CCW Rotations Around Axes – Example

Rotation by 30 degrees around z

x y

z

x′

y′

z

θ = 30◦

Rotation Sequence – xzy

x y

z

x′

y′

z′

Rotation by 45 degrees around y

x y

z

x′

y

z′

θ = 45◦

Rotation sequence – xyz

x y

z

x′

y′

z′

Rotation by -15 degrees around x

x y

z

x

y′

z′

θ = −15◦

Rotation Sequence – yzx

x y

z

x′

y′

z′

Nurit Haspel CS612 - Algorithms in Bioinformatics

CCW Rotations Around Axes – Numerical Example

Let us rotate the vector v = {1, 2, 3} around the z axis by 60◦ and
then around the y axis by −60◦: cos 60 − sin 60 0

sin 60 cos 60 0
0 0 1

 1
2
3

 =

 1 ∗ 0.5− 2 ∗ 0.866 + 3 ∗ 0
1 ∗ 0.866 + 2 ∗ 0.5 + 3 ∗ 0

0 + 0 + 3 ∗ 1

 =

 −1.232
1.866
3

Then: cos 60 0 − sin 60

0 1 0
sin 60 0 cos 60

 −1.232
1.866
3

 =

 −1.232 ∗ 0.5 + 1.866 ∗ 0− 3 ∗ 0.866
−1.232 ∗ 0 + 1.866 ∗ 1 + 3 ∗ 0

−1.232 ∗ 0.866 + 1.866 ∗ 0 + 3 ∗ 0.5

 =

 −3.214
1.866
0.433

Nurit Haspel CS612 - Algorithms in Bioinformatics

Roll, Pitch, Yaw

x

y

z

yaw

pitch

roll

β

α

γ

R(α, β, γ) =

 cosα cos β cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ
sinα cos β sinα sin β sin γ + cosα cos γ sinα sin β cos γ cosα sin γ
− sin β cos β sin γ cos β cos γ

Nurit Haspel CS612 - Algorithms in Bioinformatics

Euler Angles

R =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 1 0 0
0 cosβ sinβ
0 − sinβ cosβ

 cosα sinα 0
− sinα cosα 0

0 0 1

Nurit Haspel CS612 - Algorithms in Bioinformatics

Euler Angles – Example: −60◦, 30◦, 45◦

Nurit Haspel CS612 - Algorithms in Bioinformatics

Problems With Representations

Two major problems with yaw, pitch, roll and Euler angles:

Cases where a continuum of values yield the same rotation
matrix (no unique solution in certain cases).

Cases where non-zero angles yield the identity rotation matrix
which is equivalent to zero angles

Nurit Haspel CS612 - Algorithms in Bioinformatics

Gimbal Lock

Example – when β = 0, Euler angle representation becomes:

R =

cosα − sinα 0
sinα cosα 0
0 0 1

1 0 0
0 1 0
0 0 1

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

=

cos(α+ γ) − sin(α+ γ) 0
sin(α+ γ) cos(α+ γ) 0

0 0 1

Nurit Haspel CS612 - Algorithms in Bioinformatics

Axis-Angle Representations

v
θ

Nurit Haspel CS612 - Algorithms in Bioinformatics

Axis-Angle Representations

Given a rotation axis represented as a unit vector k̂ , rotating a
vector v by an angle θ, a nice way to model the rotation is
through Rodrigues’ formula:

vrot = v cos θ + (k̂ × v) sin θ + k̂(k̂ · v)(1− cos θ)

Explanation: The plane of rotation is perpendicular to k̂ .
Using the dot and cross products, the vector v can be
decomposed into components parallel and perpendicular to
the axis k as follows:

v = v∥ + v⊥

Where v∥ = (v · k̂)k̂ is the vector projection of v on the

rotation axis k̂ .

This part is parallel to the rotation axis and hence is not
affected by the rotation.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Axis-Angle Representations

The three vectors k̂ , k̂ × v
and k̂ × (k̂ × v) are three
mutually perpendicular unit
vectors

k̂ × v is perpendicular to the
plane defined by k̂ and v ,
and k̂ × (k̂ × v) is
perpendicular to both k̂ and
k̂ × v .

Therefore v⊥ = v − v∥ =
v − (k̂ · v)k̂ = −k̂ × (k̂ × v).

k̂

v

v′

θ

k̂(k̂ · v)

k̂ × vk̂ × (k̂ × v)

Nurit Haspel CS612 - Algorithms in Bioinformatics

Axis-Angle Representations

The only part that rotates is
v⊥ = v − (k̂ · v)k̂, and it is a
2D rotation by θ around the
plane perpendicular to k̂ :

v ′⊥ = (k̂ × v) sin θ

− (k̂ × (k̂ × v)) cos θ

= (k̂ × v) sin θ + v cos θ

− (k̂ · v)k̂ cos θ

Add to it the v∥ component
that did not change and get:

v ′ = (k̂ × v) sin θ + v cos θ

+ (k̂ · v)k̂(1− cos θ)

k̂

v

v′

θ

k̂(k̂ · v)

k̂ × vk̂ × (k̂ × v)

Nurit Haspel CS612 - Algorithms in Bioinformatics

✐

✐�✁ ✐�✂

✐�✄

❛�✁✂

✐

✐✄☎ ✐✄✆

✐✄✝

Nurit Haspel CS612 - Algorithms in Bioinformatics

Axis-Angle Representations Through Quaternions

Quaternions are an extension of complex numbers.

h = a+ bi + cj + dk, a,b,c,d real numbers.

i,j,k : imaginary components s.t.:

i2 = j2 = k2 = −1
ij = k , jk = i , ki = j
ij = −ji , jk = −kj , ki = −ik

Magnitude of a quaternion: ||h|| =
√
a2 + b2 + c2 + d2

a unit quaternion: ||h|| = 1

Nurit Haspel CS612 - Algorithms in Bioinformatics

Axis-Angle Representations Through Quaternions

v
θ

−v

2π − θ

h = cos
θ

2
+ (vx sin

θ

2
)i + (vy sin

θ

2
)j + (vz sin

θ

2
)k

h = cos
θ

2
+ v sin

θ

2

−h = − cos
θ

2
− v sin

θ

2

We assume that v is a unit vector!

Nurit Haspel CS612 - Algorithms in Bioinformatics

Operations on Quaternions – Multiplication

Given two quaternions – h1 = a1 + ib1 + jc1 + kd1,
h2 = a2 + ib2 + jc2 + kd2

Assume v = [b, c, d], like a 3-D vector.

h1 · h2 = (a1 ∗ a2 − v1 · v2, a1v2 + a2v1 + v1 × v2)

v1 · v2 is the dot product of v1 and v2, v1 × v2 is the cross
product.

h1 · h2 = a3 + ib3 + jc3 + kd3 Where:

a3 = a1a2 − b1b2 − c1c2 − d1d2

b3 = a1b2 + a2b1 + c1d2 − c2d1

c3 = a1c2 + a2c1 + b2d1 − b1d2

d3 = a1d2 + a2d1 + b1c2 − b2c1

Nurit Haspel CS612 - Algorithms in Bioinformatics

Operations on Quaternions – Rotation

Given a unit quaternion h = a+ bi + cj + dk, define its
conjugate quaternion h∗ = a− bi − cj − dk:

Transform point p(x , y , z) by sandwiching: h · p · h∗
Treat p as a quaternion with no real component (a=0).

The rotated point p′(x ′, y ′, z ′) is obtained by the i,j,k
components of the result

To multiply a vector and a quaternion, see matrix
representation above.

Don’t forget to translate the vector to the origin and translate
back.

Nurit Haspel CS612 - Algorithms in Bioinformatics

Operations on Quaternions – Combining Two Rotations

Lemma: (pq)∗ = q∗p∗.

Sandwiching: Sh(v) = h · v · h∗
(Sh1 ◦ Sh2)(v) = Sh1(Sh2(v)) = Sh1(h2 · v · h∗2) =
h1(h2 · v · h∗2)h1∗ = (h1h2)v(h

∗
2h

∗
1) = Sh1h2(v)

Nurit Haspel CS612 - Algorithms in Bioinformatics

Operations on Quaternions – Useful Examples

a b c d Description

1 0 0 0 Identity, no rotation

0 1 0 0 180◦ turn around X axis

0 0 1 0 180◦ turn around Y axis

0 0 0 1 180◦ turn around Z axis√
0.5

√
0.5 0 0 90◦ rotation around X axis√

0.5 0
√
0.5 0 90◦ rotation around Y axis√

0.5 0 0
√
0.5 90◦ rotation around Z axis√

0.5 -
√
0.5 0 0 -90◦ rotation around X axis√

0.5 0 -
√
0.5 0 -90◦ rotation around Y axis√

0.5 0 0 -
√
0.5 -90◦ rotation around Z axis

from http://www.ogre3d.org/ .

Nurit Haspel CS612 - Algorithms in Bioinformatics

Example – Rotation by 90◦ around Y axis

v = [0, 1, 0] (the rotation axis, which is the Y axis).

θ = 90◦.

h = cos θ
2 + (v1 sin

θ
2)i + (v2 sin

θ
2)j + (v3 sin

θ
2)k =√

0.5 + 0 ∗ i +
√
0.5 ∗ j + 0 ∗ k

h =
√
0.5 +

√
0.5 ∗ j

h∗ =
√
0.5−

√
0.5 ∗ j

Say p = [1, 2, 3] = 1 ∗ i + 2 ∗ j + 3 ∗ k
Transforming p:
p′ = h·p·h∗ = (

√
0.5+

√
0.5∗j)·(i+2∗j+3∗k)·(

√
0.5−

√
0.5∗j)

Nurit Haspel CS612 - Algorithms in Bioinformatics

Example – Rotation by 90◦ around Y axis

h1 · h2 = (a1 ∗ a2 − v1 · v2, a1v2 + a2v1 + v1 × v2)

p · h∗ =
−[1, 2, 3] · [0,−

√
0.5, 0],

√
0.5∗ [1, 2, 3]+[1, 2, 3]× [0,−

√
0.5, 0]

a3 = a1a2 − b1b2 − c1c2 − d1d2 = 2 ∗
√
0.5

b3 = a1b2 + a2b1 + c1d2 − c2d1 =
√
0.5 + 3

√
0.5

c3 = a1c2 + a2c1 + b2d1 − b1d2 = 2
√
0.5

d3 = a1d2 + a2d1 + b1c2 − b2c1 = 3
√
0.5−

√
0.5

Nurit Haspel CS612 - Algorithms in Bioinformatics

Example – Rotation by 90◦ around Y axis

Then,
p′′ = h ·p′ = [

√
0.5, 0,

√
0.5, 0] · [2∗

√
0.5, 4

√
0.5, 2∗

√
0.5, 2∗

√
0.5]:

a3 = a1a2 − b1b2 − c1c2 − d1d2 = 2 ∗ 0.5− 2 ∗ 0.5
b3 = a1b2 + a2b1 + c1d2 − c2d1 = 4 ∗ 0.5 + 2 ∗ 0.5
c3 = a1c2 + a2c1 + b2d1 − b1d2 = 2 ∗ 0.5 + 2 ∗ 0.5
d3 = a1d2 + a2d1 + b1c2 − b2c1 = 2 ∗ 0.5− 4 ∗ 0.5

So in the end: h · p · h∗ = [0, 3, 2,−1]
h · p · h∗ = 0, 3, 2,−1

Nurit Haspel CS612 - Algorithms in Bioinformatics

Quaternions Vs. Matrices

A quaternion needs 4 doubles instead of 9

Sandwiching takes 28 multiplications while matrices need 9

Composing rotations takes 16 multiplications with quaternions
and 27 for matrices

When composing matrices, numerical inaccuracies lead to
distortions. Vectors are no longer orthonormal and angles are
distorted.

Quaternions do not distort angles and renormalization is just a
division by the quaternion magnitude : q = q/|q|
In interpolation with matrices R(t) = (1− t)R0 + tR1,R(t)
does not represent a rotation.

With q(t) = (1− t)q0 + tq1, q(t)/|q(t)| is a valid rotation

Nurit Haspel CS612 - Algorithms in Bioinformatics

Some Resources

http://mathworld.wolfram.com/RotationMatrix.html

http://mathworld.wolfram.com/EulerAngles.html

http://mathworld.wolfram.com/Quaternion.html

Nurit Haspel CS612 - Algorithms in Bioinformatics

http://mathworld.wolfram.com/RotationMatrix.html
http://mathworld.wolfram.com/EulerAngles.html
http://mathworld.wolfram.com/Quaternion.html

