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Why Big Data?

Not everyone here will consider themselves to be working on “Big
Data”, but it seems useful for BICOB now because

it’s where the discoveries are: new kinds of high-throughput data
are enabling new kinds of discovery. The datasets are huge and
require computational analysis.

it’s where the field is going: the same issues are arising again
and again as different areas of biology / bioinformatics undergo
the same transformation (to Big Data).

it’s teaching us: principles emerge from Big Data analyses that
unify disparate areas of methods and give new insights, new
capabilities
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Big Data: Automate Discovery

computational scalability: algorithms that find a gradient in a
lower dimensional space

statistical scalability: as datasets grow huge, IF-THEN rules fail
to cut because distributions may overlap, evidence may be weak,
even “tiny” error rates may add up to huge FDR.

model scalability: computations can find interesting things even
when (initial) models are wrong.

Christopher Lee Computational Experiment Planning and the Future of Big Data



Topics: Empirical Information Metrics for...

1 model selection
2 data mining patterns and interactions
3 data mining causality
4 computational experiment planning
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1. data mining methods: Model Selection

choose the model that maximizes a scoring function

seems so generic as to cover all the possibilities by definition

address computational scalability algorithmically, by “choosing a
space” in which there is a low(er) dimensional gradient pointing in
the direction of better (and better) models.

Examples:

energy-based structure prediction

maximum likelihood parameter estimation

“hill-climbing” methods like gradient descent,
Expectation-Maximization
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data mining methods: Domain-specific Scoring Functions

potential energy
k-means (Gaussian clustering): can think of this as k centroids µi

attached by “springs” to their respective data points xj , and
positioned to minimize the potential energy.

E =
k

∑
i=1

∑
~xj∈Si

||~xj −~µi ||2

or any scoring function you can think up...
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General Scoring Functions: Why Bother?

Since we can always make up domain-specific scoring functions, this
might seem to cover all our possible needs. But historically, people
have hit three basic reasons for seeking general scoring functions:

a domain-specific scoring function only works within narrow
range of its (implicit) assumptions

generalization both simplifies, unifies and expands our
understanding (the same idea always works).

generalization enables automation.

This addresses the need for model scalability
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Example: k-means

misclusters even simple data (assumes equal variance)

E =
k

∑
i=1

∑
~xj∈Si

||~xj −~µi ||2

overfitting: “optimal” k-means is always k=n (E=0). Yikes!
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What’s Wrong? No Cheating Allowed!

We could explicitly take the variance for each cluster into account:

E =
k

∑
i=1

∑
~xj∈Si

||~xj −~µi ||2
σ2

i

But now it always tell us “optimal” is σ → ∞. Yikes!
Solution: convert this to a real probability model (Normal distr.):

logp(x1,x2, ...xn|µ1, ...µk ,σ1, ...σk ) =
k

∑
i=1

∑
~xj∈Si

log
1

σi
√

2π
e
− ||~xj−~µi ||2

2σ2
i

=
k

∑
i=1

∑
~xj∈Si

(
− logσi

√
2π− ||~xj −~µi ||2

2σ2
i

)
= nL

Prediction power “pays” the right price for increasing σ . No cheating!

Christopher Lee Computational Experiment Planning and the Future of Big Data



Generalization: Probabilistic Scoring Functions

Various general scoring functions have been developed based on
log-likelihood with corrections to protect against certain types of
overfitting, e.g.

Akaike Information Criterion (minimize)

AIC = 2k−2 logp(x1,x2, ...xn|Ψ) = 2k−2nL

Bayesian Information Criterion (minimize)

BIC = k logn−2nL

Bayes’ Factor (maximize):

BF = logp(ψ) + nL
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2. Data Mining Patterns and Interactions
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Prediction Power, Entropy and Information

The long-term prediction power E(L) for observable X with probability
distribution p(X) is just

E(L) = ∑
X

p(X) logp(X) =−H(X)

where H(X) is defined as the entropy of random variable X.
In 1948 Shannon used this to define information as a reduction in
uncertainty (increase in prediction power). Specifically, the average
amount of information about X that we gain from knowing some other
variable Y (averaged over all possible values of X and Y) is defined as

I(X ;Y ) = H(X)−H(X |Y ) = E(L(X |Y ))−E(L(X))

which is called the mutual information.
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Example: Sequence Logos (Schneider, 1990)

The vertical height of each column is

I(X ;obs) = H(X)−H(X |obs)

where H(X) is 2 bits for DNA, and obs are the observed letters in
that column of a multiple sequence alignment.

illustrates importance of setting metric to the proper zero point.

should not be fooled by weak evidence (obs)
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Example: Detecting detailed protein-DNA interactions

Say we had a large alignment of one transcription factor protein
sequence from many species, and a large alignment of the DNA
sequences it binds (from the same set of species).

In principle co-variation between an amino acid site vs. a
nucleotide site could reveal specific interactions within the
protein-DNA complex.

mutual information detects precisely this co-variance (or
departure from independence):

I(X ;Y ) = E

(
log

p(X ,Y )

p(X)p(Y )

)
= D(p(X ,Y )||p(X)p(Y ))

where D(·||·) is defined as the relative entropy.
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LacI-DNA Binding Mutual Information Mapping

LacI protein sequence (x-axis) vs. DNA binding site (y-axis)

I(X;Y) computed from 1372 LacI sequences vs. 4484 DNA binding
sites (Fedonin et al., Mol. Biol. 2011).
Note: strong information (interaction) is often seen between high
entropy sites, rather than highly conserved sites.
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Theory vs. Practice

• Information theory assumes that we know the complete joint distribution of all
variables p(X,Y ).

• In other words, given complete knowledge of the relevant system variables
and their interactions in all circumstances, this math can compute information
metrics.

• By contrast, in science we have the opposite problem: we start with no knowl-
edge of the system, and must infer it from observation. Information metrics
would be useful only if they helped us gradually infer this knowledge, one ex-
periment at a time.
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The Mutual Information Sampling Problem

Consider the following “mutual information sampling problem”:

draw a specific inference problem (hidden distribution Ω(X)) from
some class of real-world problems (e.g. for weight distributions of
different animal species, this step would mean randomly
choosing one particular animal species);

draw training data ~X t and test data X from Ω(X);

find a way to estimate the mutual information I(~X t ;X) on the
basis of this single case (single instance of Ω).

I(~X t ;X) is only defined as an average over total joint distribution of
~X t ,X (over all possible Ω). In fact, if we sample many pairs of ~X t ,X
from one value of Ω, we will get I=0 (because ~X t ,X are conditionally
independent given Ω)!
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Empirical Information

• We want to estimate the prediction power of a model Ψ based on a sample
of observations ~Xn = (X1, X2, ..., Xn) drawn independently from a hidden
distribution Ω. We define the empirical log-likelihood

Le(Ψ) =
1

n

n∑

i=1

logΨ(Xi) → E(logΨ(X)) in probability

which by the Law of Large Numbers is guaranteed to converge to the true
expectation prediction power as the sample size n → ∞.

• We can also define an absolute measure of information from this:

Ie(Ψ) = Le(Ψ)− Le(p)

where p(X) is the uninformative distribution of X. (Lee, Information, 2010)
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Empirical Information Sampling

Say we train a model Ψ on training data ~X t ,X from some specific Ω,
and measure its prediction power via Ie, and repeat this for many
unknowns Ω. What will the average of these empirical information
values tell us?

E(Ie(Ψ)) = E(Le(Ψ))−E(Le(p)) = E(Le(Ψ)) + H(X)

= H(X)−H(X |~X t)−E~X t (D(p(X |~X t)||Ψ(X |~X t)))→ I(X ;~X t)

as Ψ becomes increasingly accurate. Hence, Ie solves the mutual
information sampling problem. Concretely, we can get an empirical
estimator of the mutual information “value” that some factor X yields
about some other variable of interest Y, by simply measuring how
much X increases our empirical information about Y (even from a
single case!).
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Example: Domain Interactions from Multi-domain Proteins

Eukaryotes contain complex multi-domain protein architectures.

Given a database of protein-protein interaction pairs across many
genomes, and the domain composition of each protein, can we
deconvolute which individual domain-domain pairs mediate these
interactions?
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Domain Interaction (Riley et al., Genome Biol. 2005)

Sij : fraction of domain i,j pairs that are in interacting protein-pairs
θij : fraction of domain i,j pairs that directly interact (bind)
Eij : total strength of evidence that i,j directly interact. Concretely,
if Ψ0

ij is the model constrained to θij = 0, then

Eij = n(Le(Ψ)−Le(Ψ0
ij )) = n(Ie(Ψ)− Ie(Ψ0

ij ))
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Domain Interaction Data Mining

Database of Interacting Proteins (DIP): 26,032 interaction pairs
among 11,403 proteins from 68 organisms

These proteins contain 12,455 distinct Pfam domain types

A total of 177,233 possible interacting domain pairs based on
co-occurrence in interacting proteins.

Predicted 3005 domain pairs with Eij > 3.0 (p<0.001)

“promiscuous”: high θij , high Eij

“specific”: low θij , high Eij
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Novel Domain Interaction Validated by 3D Structure
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Validation by 3D Structure Database (PDB/iPfam)
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Domain Interaction Data Mining Conclusions

Eij used as total evidence measure for the empirical information
∆Ie associated with allowing θij > 0, and hence for the mutual
information I(dij ;β ), where dij represents presence or absence (1
vs. 0) of domains i,j in a given protein pair, and β whether that
pair binds or not (1 vs. 0).

greatly out-performs correlation measures in prediction accuracy

indeed, biologically, high correlation (large θij ) is not even
necessarily what we want to detect (promiscuous interactions).
Specificity is a good thing!
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3. Data Mining Causality
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Chain Rules & Independence

We can always expand a joint probability in any order, e.g.

p(X ,Y ,Z ...) = p(X)p(Y |X)p(Z |X ,Y )...

Or equivalently:

H(X ,Y ,Z ...) = H(X) + H(Y |X) + H(Z |X ,Y ) + ...

Of course, this may simplify if some variables are independent

p(Y |X) = p(Y ) =⇒ H(Y |X) = H(Y ) =⇒ I(X ;Y ) = 0

or conditionally independent

p(Z |X ,Y ) = p(Z |Y ) =⇒ H(Z |X ,Y ) = H(Z |Y ) =⇒ I(X ;Z |Y ) = 0
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Graphical Models: “Information Graphs”

gives a picture of a chain rule factoring of a joint probability
distribution.

nodes are the random variables in that joint distribution.

edges are the conditional probability relations that appear in your
chosen chain rule factoring.

edges represent non-zero information links, i.e. where X is
directly informative about Y i.e. p(Y |X , ·) 6= p(Y |·).

They point from condition→ subject.

if the joint probability factoring can be simplified (due to
independence) relative to the general chain rule, that should be
reflected in the information graph as missing edges (some nodes
are not directly connected).
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Information Graphs for Three Variables

Missing edges correspond to zero mutual information (given the other
dependencies).
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Example: Causality Analysis (Schadt et al. Nat Genet. 2005)

consider three interacting factors: SNPs (L), gene expression
levels (R), and clinical traits (C).
generate population variation, e.g. by crossing mouse breeds
with big variations in C, R, and looking at F2 with recombined L.
SNPs “anchor” the causality analysis: SNPs can cause R and C,
but not vice versa.
Test for non-zero edges via I(L;C|R), I(L;R|C), I(R;C|L).
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Empirical Information Tests of Causality

is SNP L causal for gene expression level R?

∆Ie = Le(R|L, ...)−Le(R|...)
is SNP L causal for clinical trait C?

∆Ie = Le(C|L, ...)−Le(C|...)
is SNP L causal for clinical trait C when R also used in training?
(Yes in independent model; No in causal model).

∆Ie = Le(C|L,R, ...)−Le(C|R, ...)

Note: total strength of evidence reported as n∆Ie.
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mouse SNPs vs. expression vs. Obesity Study

Schadt et al. Nat Genet. 2005

111 F2 mice from BXD cross of inbred mouse strains

L: genome-wide SNP markers genotyped in these mice

C: obesity clinical trait: omental fat pad mass (OFPM)

R: genome wide expression dataset (liver)

4400 genes showed significant differential expression

440 expression traits for which SNPs had predictive value

4 major QTL peaks for predicting OFPM
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Inferring Causality: SNPs vs. Expression vs. Obesity

I(L;OFPM|Hsd11b1)≈ 0 but I(L;Hsd11b1|OFPM)� 0 implies
L→ Hsd11b1→ OFPM, with no direct edge from L→ OFPM.
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Four Problems, One Solution

k-means clustering

motif discovery

protein-DNA interaction analysis

data mining of genetics + expression + clinical traits data to
discovery causal pathways

Four rather different problems, but all solved by exactly the same
machinery -- because information metric is totally general, to any
problem.
Unifies a wide variety of problems with a common solution, often much
simpler to understand and use. For example a whole field of causal
inference exists (nicely formulated by J. Pearl’s book Causality:
Models, Reasoning, and Inference, 2000), but one can understand this
as just another subcase of information graphs.

Christopher Lee Computational Experiment Planning and the Future of Big Data



4. Computational Experiment Planning
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How do you know when you’re done?

• Version 1: The set of all possible models of the universe is infinite, but we
only calculate a tiny subset of them. How much of the total possible prediction
power does this subset capture?

• Version 2: the denominator of Bayes’ Law requires summing over this infinite
set of models. Is our calculated subset a close approximation or totally wrong?

p(θ|X) =
p(X|θ)p(θ)

∑
θ p(X|θ)p(θ)

• Version 3: Popper: a scientific theory is only useful if it is falsifiable – i.e. show
that our best model is not good enough. Bayes’ Law gives no way to do this.

• Is the absolute value of the likelihood good enough? How good should it be?
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Potential Information

• Define the total information in the infinite series of all models as I∞. The
empirical information Ie represents the terms we’ve actually calculated. Define
potential information Ip as the remainder:

Ip = I∞ − Ie

• It turns out we can estimate Ip without actually summing any more terms of
the infinite series.

Ip = E(L(Ω)− L(p))− E(L(Ψ)− L(p))

Ip = −E(L(Ψ)) + E(L(Ω)) = −E(L(Ψ))−H(Ω(X))

We can again estimate this via sampling:

Ip = −Le(Ψ)−He

where we define He as the empirical entropy computed from the sample (again
with a Law of Large Numbers convergence proof). (Lee, Information, 2010)
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Empirical Entropy Estimation

• A lot of kernel-based density estimation methods in effect apply a model (e.g.
Gaussian) to the data. But the whole point of He is to provide a test that is
independent of all models. We need a model-free density estimation method
for calculating empirical entropy.

• Lots of methods possible, e.g. we’ve used k-nearest neighbors

He = −1

n

n∑

j=1

log
k − 1

(n− 1)(|Xj:k −Xj|+ |Xj:k−1 −Xj|)

where Xj:k is the coordinate of point Xj ’s k-th nearest neighbor.
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Potential Information Convergence

• The Law of Large Numbers guarantees convergence as n → ∞, Ip(Ψ) →
D(Ω||Ψ), the relative entropy, a standard information theory measure. Specif-
ically, it guarantees a probabilistic lower bound on D with confidence ε:

p


D(Ω||Ψ) ≥ Ip(Ψ)−

√
V ar(logPe − Le)

nε


 ≥ 1− ε

• This is the ultimate hypothesis test, because D(Ω||Ψ) → 0 iff Ψ(X) =

Ω(X) everywhere.

• LLN is basic and universal, but insensitive, i.e. we can get a better lower-bound
on Ip, e.g. via re-sampling.
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Resampling Accurately Estimates Ip Lower Bound

(computed for the Poisson Distribution)
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Experiment Planning

• Empirical information is improved prediction power. If an experiment does not
lead to a change in our predictions (i.e. our model Ψ), clearly there is no
improvement in prediction power = no information value.

• An experimental observation’s total capacity to improve our predictions is sim-
ply given by its potential information vs. our current model.

• Before we do an experiment, we are uncertain about its outcome. But we may
be able to list possible outcomes α, and our model may give some probability
estimates for these alternatives. On this basis we can directly calculate what
the Ip yield for each outcome α would be.
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Expectation Potential Information

• The expected information value of an experiment is just the expectation value
of these potential information yields:

E(Ip) =
∑

α
p(α|Ψ)D(α||Ψ) =

∑

α
p(α|Ψ)D

(
α||

∑

α
αp(α|Ψ)

)

• Disambiguation: As the estimated outcome probabilities become accurate,

E(Ip) → I(X;α) = H(α)−H(α|X)

i.e. the mutual information measuring how informative the experimental obser-
vation X is about the hidden state α. For a “perfect” detector, H(α|X) = 0,
so E(Ip) → H(α), our initial uncertainty about the hidden state. Others have
proposed using mutual info for experiment planning (Paninski, Neural Compu-
tat. 2005).
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Information Value of Disambiguation
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Simple Example: What is the Value of a Control?

• Experiment: cross two plants A×B, observe whether progeny grow. Assume
50-50 uncertainty = 1 bit of information.

• If bad weather occurs, nothing can grow. The experiment becomes uninforma-
tive.

• If bad weather occurs with some probability p, we won’t know how to interpret
a no-progeny observation (could be real; could just be bad weather).

• We can include a control cross that we know should grow e.g. A×A.
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Computing the Information Value of a Control
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Analyzing an Experiment’s Information Rate vs. Total Capacity

• Factors that vary independently over different repetitions of the experiment af-
fect the rate of information production but not the total information capacity.

• These rate calculations tell us the efficiency of an experiment design, i.e. its
cost per total information yield.

• Example: If each repetition of our experiment has a known probability of bad
weather (e.g. 50%), we can get a confident result even without a control. E.g.
if we get no progeny in 10 experiments, the chance of this being due to bad
weather is less than 0.1%.

• Of course, the control still improves the rate of information production – which
lowers the cost.
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Effect of Control on Information Rate
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Factors that Degrade Total Information Yield

• Factors that remain fixed over different repetitions of an experiment (e.g. the
experiment design) affect the total yield that the experiment can produce (no
matter how many times we repeat it).

• “detector failure”: in a lot of fields (e.g. molecular biology), there are many
factors that can cause an experiment to fail (give a negative result) even if the
hypothesis is correct.

• For E(Ip), the high probability of the negative outcome means it produces very
little information. A positive outcome could produce a lot of information, but its
low probability makes its E(Ip) contribution small.
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The Information Evolution Cycle

• When Ip > 0, we must extend the model, to “convert” this potential information
to empirical information.

• When Ip → 0 for a given set of obs, the model is “good enough”, i.e. observa-
tionally indistinguishable. More modeling cannot improve it.

• In this case, the only way to get more information, is to seek new observations
that can resolve uncertainties in the current “model mix” (PL).

• We choose the experiment that maximizes the information yield per cost.
(Lather, rinse, repeat).
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Phenotype Sequencing: 
identifying the genetic 
causes of a phenotype 

directly from sequencing of 
independent mutants

Chris Lee 
UCLA-DOE Institute for Genomics & Proteomics



Phenotypes vs. Causes

• If a strain with an interesting phenotype 
contains many mutations, it can be laborious to 
identify which one is the dominant cause, and 
which mutations are irrelevant.

• Easier for naturally evolved strains (10-20 
mutations), much harder for mutagenized 
strains (50 - 100 mutations / genome).

• mutagenesis + screen →multiple independent 
mutants can dissect this powerfully.



Liao	  Lab	  Pathways	  for	  C4,	  C5	  Alcohol	  Synthesis

Atsumi et al. Nature 2008



Liao	  Lab	  High-‐Throughput	  Screen	  For	  Increased	  
Isobutanol	  ProducBon

NTG mutagenesis followed by screening for increased 
tolerance (reduced toxicity) to isobutanol and increased 

isobutanol production



Proposal: 
Phenotype Sequencing

Use the statistics of independent selection events to 
quickly reveal the genes that cause a phenotype, directly 

from sequencing of mutant strains with the same 
phenotype.





Effect of Mutagenesis Density
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Effect of Number of Target Genes
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Information Yield of Phenotype Sequencing
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“Phenotype Sequencing”

• This approach should work well with the number 
of isobutanol-tolerant mutants available (80).

• The smaller the number of targets, the easier they 
are to detect (signal spread over fewer genes).

• Non-uniform target size also makes it easier 
(concentrates signal into a subset of the targets). 

• Lower mutagenesis density is better: requires 
more screening to find each mutant, but fewer 
total mutants for successful gene discovery.



How to Make 
Phenotype Sequencing 

Economical
A library-pooling and tag-pooling strategy for greatly 

reduced experiment costs.



The Sequence is Not the 
Goal

•What we want is to identify the genes that 
cause the phenotype.  The individual mutant 
sequences are just a means to that end.

• The key piece of data is the number of times 
each gene is independently mutated.

•We can design a sequencing experiment to 
measure this much more cheaply than 
individually sequencing each mutant.



Standard vs. Pooled Sequencing



Phenotype Sequencing 
Via Pooling

• Pooling can count mutations but can’t 
reconstruct each individual sequence.  

• Reduces costs by the pooling factor P.

• For small E. coli genome, we can also sequence 
many pools (tagged libraries) in a single lane.

• How low can we go? We need to keep a real 
mutation case (c/P reads expected) strongly 
distinguishable from sequencing error (cε 
reads expected).



Effect of Pooling
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Pooling Is a Win-Win

• Increased coverage (reduced pooling) cannot 
increase the information yield beyond the limit 
set by the total number of strains.

• So moderate pooling loses no information.

• But it reduces costs by about five-fold.



Experimental Results

Deciphering the genetic causes of isobutanol biofuel 
tolerance in E. coli mutant strains from James Liao’s lab



Sequencing 32 isobutanol 
tolerant mutant strains
• Pooled in 10 libraries (3 strains/library)

• Sequenced on three replicate lanes

• 90 million single-end reads from Illumina GA2x

• 4099 SNPs: 3988 average per lane, of which 
3702 replicated in all 3 lanes, 265 replicated in 
2 lanes, 21 (0.5%) only in one lane. Each unique 
to one strain (excluded 23 parental mutations)

• 3596 mapped to 1808 genes; 2739 non-
synonymous SNPs in 1426 genes.



Top 20 Genes by P-value
Table 3: Top 20 hits ranked by Bonferroni corrected p-value computed on non-synonymous SNPs

p-value Genes Description
9.5 × 10−20 acrB multidrug efflux system protein
1.4 × 10−5 marC inner membrane protein, UPF0056 family
1.8 × 10−4 stfP e14 prophage; predicted protein
0.0011 ykgC predicted pyridine nucleotide-disulfide oxidoreductase
0.0035 aes acetyl esterase; GO:0016052 - carbohydrate catabolic process
0.017 ampH penicillin-binding protein yaiH
0.038 paoC PaoABC aldehyde oxidoreductase, Moco-containing subunit
0.039 nfrA bacteriophage N4 receptor, outer membrane subunit
0.044 ydhB putative transcriptional regulator LYSR-type
0.12 yaiP predicted glucosyltransferase
0.17 acrA multidrug efflux system
0.25 xanQ xanthine permease, putative transport; Not classified
0.25 ykgD putative ARAC-type regulatory protein
0.35 yegQ predicted peptidase
0.35 yfjJ CP4-57 prophage; predicted protein
0.37 yagX predicted aromatic compound dioxygenase
0.46 pstA phosphate transporter subunit
0.48 prpE propionate–CoA ligase
0.50 mltF putative periplasmic binding transport protein, membrane-bound lytic transglycosylase F
0.63 purE N5-carboxyaminoimidazole ribonucleotide mutase

Two genes (acrB and ydfJ) were observed to be mutated in most of the strains, and several more were observed
to be mutated in approximately a third of the strains (Table 1). Our p-value analysis (Table 2, 3) revealed a set of
nine genes above the Bonferroni-corrected 95% confidence cutoff based on non-synonymous SNPs, two of them very
strong (acrB, marC). Restricting the analysis to non-synonymous SNPs appeared to improve the p-value’s significance
several-fold. Consistent with the fact that the individual strains were generated in independent mutagenesis experi-
ments, the mutations observed within a given gene were different in each library, except for four mutations in acrB
that were each observed twice (at genomic positions 480611, 480674, 480931, 482319).

Independent of this work, Atsumi et al. analyzed a single mutant strain SA481 with increased isobutanol tolerance,
generated via growth in gradually escalating levels of isobutanol through 45 sequential transfers [3] . Sequencing of
this mutant strain identified 25 IS10 insertions and a large deletion. Repair of each of these regions identified 5 genes
as responsible for nearly all of the increased isobutanol tolerance in this strain: including acrA, marC; their data also
indicated that acrB was inactivated in this strain. Atsumi et al. also validated the five genes’ direct contribution to the
phenotype by constructing individual and combination gene deletion strains.

Thus three of the top 20 genes identified by our phenotype sequencing analysis are experimentally validated as causing
this phenotype. Others of our top scoring genes may also be real targets, but have not yet been tested via individual
gene deletions. It is interesting that three pairs of genes appear to be from the same pathways: acrA/acrB, ykgC/ykgD,
yaiH(ampH)/yaiP.

3.3 Experimental Yield Analysis

Because our experiment was designed to split the 32 strains into 10 different tagged libraries (each containing 3 - 4
strains), it is possible to analyze the average true target gene discovery yield over all possible combinations of these
10 libraries, using the 10 separate tagged library datasets of reads. This constitutes a set of 210 − 1 = 1023 different
possible experiments ranging in size from 3 to 32 sequenced strains. We ran our bioinformatic analysis separately on
each of these 1023 experimental datasets to obtain the list of top 20 genes identified in each, and counted how many
of the three validated true targets (acrB, marC, acrA) were identified. We consider one of these genes to be easy to
discover (acrB, mutated in most strains), one somewhat harder (marC, mutated in a quarter of the strains), and the
third hardest (acrA, mutated in less than a fifth of the strains). We then averaged the yields from different experiments
that contained the same number of total strains. For example, eight different experiments contained just 3 strains; we

Harper et al., PLoS ONE, 2011



Independent Validation

• Liao lab independently generated isobutanol 
tolerant strain SA481 via growth in increasing 
isobutanol over 45 sequential transfers.

• Sequencing SA481 identified 25 IS10 insertions

• Both repair studies and gene deletion studies 
showed that several genes contributed to 
isobutanol tolerance: acrA, gatY, tnaA, yhbJ, marC 
(acrB also inactivated).

Atsumi et al., Mol Sys Biol, Dec. 2010



Top 20 Genes by P-value
Table 3: Top 20 hits ranked by Bonferroni corrected p-value computed on non-synonymous SNPs

p-value Genes Description
9.5 × 10−20 acrB multidrug efflux system protein
1.4 × 10−5 marC inner membrane protein, UPF0056 family
1.8 × 10−4 stfP e14 prophage; predicted protein
0.0011 ykgC predicted pyridine nucleotide-disulfide oxidoreductase
0.0035 aes acetyl esterase; GO:0016052 - carbohydrate catabolic process
0.017 ampH penicillin-binding protein yaiH
0.038 paoC PaoABC aldehyde oxidoreductase, Moco-containing subunit
0.039 nfrA bacteriophage N4 receptor, outer membrane subunit
0.044 ydhB putative transcriptional regulator LYSR-type
0.12 yaiP predicted glucosyltransferase
0.17 acrA multidrug efflux system
0.25 xanQ xanthine permease, putative transport; Not classified
0.25 ykgD putative ARAC-type regulatory protein
0.35 yegQ predicted peptidase
0.35 yfjJ CP4-57 prophage; predicted protein
0.37 yagX predicted aromatic compound dioxygenase
0.46 pstA phosphate transporter subunit
0.48 prpE propionate–CoA ligase
0.50 mltF putative periplasmic binding transport protein, membrane-bound lytic transglycosylase F
0.63 purE N5-carboxyaminoimidazole ribonucleotide mutase

Two genes (acrB and ydfJ) were observed to be mutated in most of the strains, and several more were observed
to be mutated in approximately a third of the strains (Table 1). Our p-value analysis (Table 2, 3) revealed a set of
nine genes above the Bonferroni-corrected 95% confidence cutoff based on non-synonymous SNPs, two of them very
strong (acrB, marC). Restricting the analysis to non-synonymous SNPs appeared to improve the p-value’s significance
several-fold. Consistent with the fact that the individual strains were generated in independent mutagenesis experi-
ments, the mutations observed within a given gene were different in each library, except for four mutations in acrB
that were each observed twice (at genomic positions 480611, 480674, 480931, 482319).

Independent of this work, Atsumi et al. analyzed a single mutant strain SA481 with increased isobutanol tolerance,
generated via growth in gradually escalating levels of isobutanol through 45 sequential transfers [3] . Sequencing of
this mutant strain identified 25 IS10 insertions and a large deletion. Repair of each of these regions identified 5 genes
as responsible for nearly all of the increased isobutanol tolerance in this strain: including acrA, marC; their data also
indicated that acrB was inactivated in this strain. Atsumi et al. also validated the five genes’ direct contribution to the
phenotype by constructing individual and combination gene deletion strains.

Thus three of the top 20 genes identified by our phenotype sequencing analysis are experimentally validated as causing
this phenotype. Others of our top scoring genes may also be real targets, but have not yet been tested via individual
gene deletions. It is interesting that three pairs of genes appear to be from the same pathways: acrA/acrB, ykgC/ykgD,
yaiH(ampH)/yaiP.

3.3 Experimental Yield Analysis

Because our experiment was designed to split the 32 strains into 10 different tagged libraries (each containing 3 - 4
strains), it is possible to analyze the average true target gene discovery yield over all possible combinations of these
10 libraries, using the 10 separate tagged library datasets of reads. This constitutes a set of 210 − 1 = 1023 different
possible experiments ranging in size from 3 to 32 sequenced strains. We ran our bioinformatic analysis separately on
each of these 1023 experimental datasets to obtain the list of top 20 genes identified in each, and counted how many
of the three validated true targets (acrB, marC, acrA) were identified. We consider one of these genes to be easy to
discover (acrB, mutated in most strains), one somewhat harder (marC, mutated in a quarter of the strains), and the
third hardest (acrA, mutated in less than a fifth of the strains). We then averaged the yields from different experiments
that contained the same number of total strains. For example, eight different experiments contained just 3 strains; we

Harper et al., PLoS ONE, 2011



Pooling Dramatically 
Reduced Cost

• Sequencing 3-4 strains ($110-$150) reliably 
detected acrB (detected among top p-values)

• Sequencing 8-14 strains ($340-$525) reliably 
detected acrB and marC.

• Detecting all three targets required sequencing 
the full 32 strains ($1200, vs. $7200 for a 
conventional genome sequencing design).

• One lane of sequencing gave as good results as 
three replicate lanes.



Phenotype Sequencing Conclusions

computation allowed us to simulate many aspects of experiment
design to understand where the sweet spot is.

expectation information metric captures many aspects of design
(e.g. depth of coverage, number of strains, mutagenesis density,
degree of pooling) because it is fully general.

an example where a new kind of genomics experiment was
designed purely computationally.

experiment worked on the first try.

Christopher Lee Computational Experiment Planning and the Future of Big Data



Example: RoboMendel

• Robot scientist shown same initial observation that Gregor Mendel saw: pea
plant with white flowers (instead of the usual purple).

• Selects experiment with highest expected information yield.

• Updates his “genetics model” based on the experimental results.

• Rinse, lather, repeat→ discover all of classical genetics.

• Simplifying assumption: the only experiments RM can do are genetic crosses,
so the set of all possible experiments is easily enumerable.

7



RoboMendel Sees a White Flower...

• Define RM’s scope as heritable variation, i.e. “genetics”.

• Initial model: species as separate peaks in observation space

• Like Father Like Son: each child is drawn from same species (peak) as its
parents.

• Interspecies crosses not observed to produce any progeny.

24
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RoboMendel Initial Uncertainties

• p(LFLS) ≈ 0.999: so far, no observed exceptions to Like-Father-Like-Son
model, but not impossible...

• p(Wh− heritable) = 0.5: Is this even a heritable trait? We don’t know. Wh

looks different from the Pu species, but this might be environmental variation,
not genetic.

• p(same− species) = 0.5: is Wh a member of the same species as Pu? We
don’t know.

• We confine ourselves strictly to the question of whether the metric behaves
sensibly in its ranking of different experiments, i.e. we don’t worry about how
to come up with models etc.

26



Puzzle: What is Wh?
RoboMendel computes the following E(Ip) values for the possible experiments:

Experiment E(Ip)
Wh x Wh 0.5 bits
Wh x Pu 0.09 bits
Mouse x Lion 0.01 bits
Wh x Pu swap 1.2× 10−6 bits
Pu x Pu swap 0 bits
Pu x Pu self-cross 0 bits

• Wh×Wh can reliably test Wh− heritable, and resolve that uncertainty, so it
is picked as the highest information value experiment to perform.

• It conclusively shows Wh×Wh→Wh.

27



Wh is Heritable... ?!?
Experiment E(Ip)
Wh x Pu 0.19 bits
Mouse x Lion 0.01 bits
Pu x Pu swap 0.001 bits
Wh x Wh 0.001 bits
Pu x Pu self-cross 0 bits
Wh x Pu swap 0 bits

• Wh x Pu can reliably test the same-species model, about which we have strong
uncertainty, so it’s chosen as the highest information yield.

• It yields progeny, confirming same-species, and they are all purple-flowered.

28



Asymmetric Inheritance?
Experiment E(Ip)
Wh x Pu swap 1.0 bits
Mouse x Lion 0.01 bits
Pu x Pu swap 0.001 bits
Wh x Wh 0.001 bits
Pu x Pu self-cross 0 bits
Wh x Pu 0 bits

• Wh x Pu swap can reliably test the one-parent model, about which we have
strong uncertainty, so it’s chosen as the highest information yield.

• Again, the progeny are all purple-flowered, rejecting the one-parent model.
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Another Try: A “Signal” Model
Experiment E(Ip)
Hy x Wh 1 bits
Hy x Hy 0.98 bits
Mouse x Lion 0.01 bits
Pu x Pu swap 0.001 bits
Wh x Wh 0.001 bits
Pu x Pu self-cross 0 bits
Wh x Pu 0 bits
Wh x Pu swap 0 bits
Hy x Pu 0 bits

• Hy x Wh and Hy x Hy can reliably test the transmission vs. LFLS models, about
which we have strong uncertainty, so it’s chosen as the highest information
yield.

• The results reject the LFLS model and fit the transmission model.
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Alternative: “Pu undilutable”

• What if RoboMendel does not come up with the transmission model?

• Pu undilutable: Pu always beats Wh. After all, genetic inheritance is the ulti-
mate homeopathy...

• Again, assign a prior p(Pu − undilutable) = 0.5 because fit previous obs
better than other models, but not yet “tested”.

• Most convincing experimental test: dilute Pu in generation after generation of
Wh, e.g. next step Wh×Hy.

• Wh×Hy → half white, half purple progeny. The results reject Pu undilutable
and force RoboMendel to the transmission model.
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Any More Recessive Traits?
Experiment E(Ip)
Pu x Pu self-cross 1.64 bits
Mouse x Lion 0.01 bits
Pu x Pu swap 0.001 bits
Wh x Wh 0.001 bits
Hy x Hy 0.001 bits
Hy x Wh 0.001 bits
Wh x Pu 0 bits
Wh x Pu swap 0 bits
Hy x Pu 0 bits

• The new model predicts that if other recessive traits exist, a self-cross will
quickly reveal them.

• Will discover additional recessive traits such as those found by Mendel: Wrin-
kled seeds; White seed coats; Yellow seeds; Yellow pods; Constricted pods;
Terminal flowers; Short plants; etc.

32



RoboMendel Conclusions
• Even with very simplistic model assumptions, theE(Ip) metric guides RoboMendel

towards productive experiments that would indeed discover the basic principles
of genetics just as Gregor Mendel did.

• Robust: e.g. if RoboMendel doesn’t “think” of the transmission model but in-
stead comes up with other models such as Pu undilutable or inter-species
hybrid, the E(Ip) metric will still drive him towards decisive experiments for
testing these. These experiments in turn reveal the transmission model.

• Note: all we tested here was the experiment planning metric. We did not
automate any aspect of the process of proposing new models, which would be
required if you actually wanted an autonomous robot scientist!

• All the code for our calculations available at https://github.com/cjlee112/darwin.

• Manuscript with full details available at http://potentialinfo.blogspot.com.
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Computational Experiment Planning Conclusions

every possible next step (including computational data mining)
has a cost

therefore, treat every possible step as an experiment

use computational experiment planning to assess information
yields (per cost) for the possible next steps, then allocate effort to
the best return-on-investment.

Christopher Lee Computational Experiment Planning and the Future of Big Data



Three types of generalization

expand the reach of automated data mining:

general metrics: work for all problems, and always work -- even
when our model assumptions are wrong.

extensible model structures: e.g. rather than implicitly assuming
independence, explicitly model possible information graph
structures and add edges as the data demand.

computational experiment planning: don’t just mine a fixed
dataset. Answer the other side of the question: what data would
be most valuable to generate. Close the loop!

Christopher Lee Computational Experiment Planning and the Future of Big Data



An Apology and a Request

Due to an urgent grant deadline I have to jump back on a plane...

But I would really like to follow up with anyone here who has
questions or interest in using these kinds of ideas for their
problems. Email me at LEEC@CHEM.UCLA.EDU (allow a week
for the grant to get submitted so I can answer...)

Slides will be on potentialinfo.blogspot.com

Papers on this topic are on
https://selectedpapers.net/topics/experimentPlanning

Christopher Lee Computational Experiment Planning and the Future of Big Data



Bioinformatics Teaching Materials Consortium

open-source repository for reusing, remixing and sharing
teaching materials, especially active-learning

concept tests for students to answer in-class with smartphone /
laptop

“cloud projects”: packaged as Virtual Machine Images

problems, exercises etc.

over 2000 questions, explanations, exercises, videos already

software tools for in-class question system, remixing materials
etc.

not yet launched online

Described on potentialinfo.blogspot.com, very rough technology
demo online at teachpub.org. Contact me if you’re interested in this
effort or in trying out any of the materials.

Christopher Lee Computational Experiment Planning and the Future of Big Data



Bioinformatics “Flipped” Course Results

Christopher Lee Computational Experiment Planning and the Future of Big Data


