CS310 – Advanced Algorithms and Data Structures

Class 10 Sorting: Review and JDK Support
One of the most fundamental problems in CS.

Problem definition: Given a sequence of elements with a well-defined order, return a sequence of the elements sorted according to this order.

Simple (insertion) Sort – runs in quadratic time (“bad sort”)
Shellsort – runs in sub-quadratic time (“pretty good sort”)
Mergesort – runs in $O(N \log N)$ time (“good sort”)
Quicksort - runs in average $O(N \log N)$ time (“good sort”)
For each i from 1 to $n-1$, exchange $a[i]$ with entries that are larger than $a[i]$ in $a[0]$ through $a[i-1]$

- First pass: exchange $a[1]$ with $a[0]$ through $a[0]$
- ...
- $n-1$: exchange $a[n-1]$ (last elt) with $a[0]$ through $a[n-2]$

```java
public static void sort(Comparable[] a) {
    int n = a.length;
    for (int i = 1; i < n; i++) {
        for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
            exchange(a, j, j-1);
    }
}

private static void exchange(Object[] a, int i, int j) {
    Object swap = a[i]; a[i] = a[j]; a[j] = swap;
}
```

Clearly $O(n^2)$
Shellsort

- Named for its inventor, Donald Shell, 1959
- Elements separated by a distance of gap in the array are sorted. When gap is 1, the sort is the same as insertion sort.
- How to choose the gaps? One way (Shell’s way):
 - Start gap at N/2
 - Halving it until reaches 1
- Better than bad sorts, but not as good as good sorts for large arrays
Mergesort – quick reminder

• 3 steps
 – Return if the number of items to sort is 0 or 1
 – Recursively Mergesort the first and second halves separately
 – Merge the two sorted halves into a sorted group

• This approach is called “divide and conquer”.

• Mergesort is an O(N*\log N) algorithm, as we showed in class 2 as an example of well-behaved double recursion. This is a good sort.
Performance: \(T(N) = 2^\log(N) + O(N) \)

\[
= 2 \cdot 2^\log(N/4) + O(N/2) + O(N)
= 4 \cdot T(N/4) + O(N) + O(N)
= 4 \cdot 2^\log(N/8) + O(N/4) + O(N) + O(N)
= 8 \cdot T(N/8) + O(N) + O(N) + O(N)
= \ldots = 2^\log(N) \cdot T(1) + O(N) + O(N) + \ldots + O(N) =
= N \cdot O(1) + O(N) + O(N) + \ldots + O(N).
\]

The terms are expanded \(\log(N) \) times, each produces an \(O(N) \).

\(\log N \) terms of \(O(N) = O(N \log N) \)
Quicksort – another divide-and-conquer sort algorithm

- 4 steps to sort S:
 - Return if the number of elements in S is 0 or 1
 - Pick a “pivot” - element v in S
 - Partition S-{v} into 2 disjoint groups:
 \[L = \{ x \in S-\{v\} \mid x \leq v \} \]
 \[R = \{ x \in S-\{v\} \mid x \geq v \} \]
 - Return the result of Quicksort(L) followed by v followed by Quicksort(R)
Quicksort analysis

- \(T(N) = O(N) + T(|L|) + T(|R|) \)

 Partitioning, linear in \(N \)
 Size of \(L \)
 Size of \(R \)

- Similar to mergesort analysis, so should be \(O(N\log N) \)...
or is it?
- The result depends on the size of \(L \) and \(R \). If roughly the same – yes. Otherwise – if one partition is \(O(1) \) and the other \(O(N) \), may be quadratic!
Picking the Pivot

• A wrong way
 – Pick the first element or the larger of the first two elements
 – If the input has been presorted or is reverse order, this is a poor choice

• A safe choice
 – Pick the middle element

• S&W way
 ✓ Randomize the array and then just use the first element

Nothing guarantees asymptotic $O(N \cdot \log N)$, but it can be shown that mostly this is the case, so considered a good sort.
Sorting implementations: JDK methods in class Arrays

static void sort(Object[] a) (elements need compareTo)
static <T> void sort(T[] a, Comparator<? super T> c)

• First form: use “natural order” of elements (using compareTo of element) from small to large. This method can be used with generic-typed elements too, since any object ISA Object.
 ✓ Call this by Arrays.sort(a), where a is an array of elements with compareTo.
• This first form is similar to “static void sort(Comparable[] a)”, but in fact the element class doesn’t need “implements Comparable” to work, just a working compareTo method.
• Second form, with Comparator argument: we can supply a Comparator, similar to what we did earlier with PriorityQueue
• But what is the funny syntax about?
Sorting implementations: JDK methods in class Arrays

static void sort(Object[] a) // (elements need compareTo)
static <T> void sort(T[] a, Comparator<? super T> c)

- Second form, with Comparator argument: example of a static method with a generic type parameter. Need to put the type parameter in angle brackets, here "<T>" , at the start of the method header. Object methods get it from the class Whatever<T> setup.

- Wildcard type: This says we can provide a Comparator<X> where X is T or a supertype of T.
 - The type flexibility allows us to sort a family of objects of related types.
 - Recall Point2D and PointXY both being Point2Dim in class 3. We can build a Comparator<Point2Dim> to sort an array of Point2Dim containing both kinds of point objects.
FYI: Point2Dim Comparator

// For example, sort by distance from origin using this Comparator
class Point2DimComparator implements Comparator<Point2Dim> {
 @Override
 public int compare(Point2Dim lhs, Point2Dim rhs) {
 double dist1 = lhs.x() * lhs.x() +
 lhs.y() * lhs.y();
 double dist2 = rhs.x() * rhs.x() +
 rhs.y() * rhs.y();
 double diff = dist1 - dist2;
 if (diff > 0) return 1;
 else if (diff < 0) return -1;
 else return 0;
 }
}
call: Arrays.sort(a, new Point2DimComparator())

Here the code uses just Point2Dim interface methods to decide which is larger. This is an example of coding a Comparator class ourselves.
Arrays.sort Example

• Recall Student, with id as identifier field, and gpa as another field
• Suppose we have an array of Students students:

```java
Student students = [new Student(100, "Joe", 3.2),
                   new Student(130, "Sue", 3.9), …];
```

Arrays.sort(students) sorts by id

Arrays.sort(students, Comparator.comparing(Student::getGpa))
Sorts by GPA using a Java 8 easy comparator
Arrays.sort Examples

• Arrays.sort can sort primitive types too

```java
int[] arr = {13, 7, 6, 45, 21, 9, 2, 100};
Arrays.sort(arr);
// Sort subarray from index 1 to 4, i.e.,
// only sort subarray {7, 6, 45, 21} and
// keep other elements as it is.
Arrays.sort(arr, 1, 5);
```
Sort a Collection: use JDK class Collections

Collections.sort can sort Collection objects

```java
ArrayList<Student> arraylist = new ArrayList<Student> ();
arraylist.add(new Student(223, "Chaitanya", 2.6));
arraylist.add(new Student(245, "Rahul", 2.4));
arraylist.add(new Student(209, "Ajeet", 3.2));
Collections.sort(arraylist);
Collections.sort(arraylist,
    Comparator.comparing(Student::getGpa));
```
FYI: JDK Sorting: how is it done?

- Sort for int[] Javadoc says: Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers $O(n \log(n))$ performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.

- Sort for T[] Javadoc says: Implementation note: This implementation is a stable, adaptive, iterative mergesort that requires far fewer than $n \log(n)$ comparisons when the input array is partially sorted, while offering the performance of a traditional mergesort when the input array is randomly ordered. If the input array is nearly sorted, the implementation requires approximately n comparisons.
Best Performance of sorting

• How well can we really do?
• Is there a sorting method whose worst case runtime is $O(n)$?
 – obviously we can’t do better than that (why?).
• For the class of algorithms we’ve seen so far the answer is no. The lower bound really is $n \log n$.
• These sorting algorithms are based on comparisons and can be modeled as binary decision trees.
A simple example

An array of 3 elements: \{a_1, a_2, a_3\}
Sort Perf Theorem

• In a sorting algorithm modeled by a binary decision tree, the worst case running time is $n \log n$.
• Proof: The runtime is bound from below by the depth of the decision tree. The number of permutations is $n!$.
• Math result: $n! \sim \exp(n \log n)$ (roughly, and good as an upper bound, note it’s super-exponential).
• The depth of a binary tree with L leaves is $\log(L)$.
• Therefore the depth of the decision tree is:

$$\log(n!) = \log(\exp(n \log n)) = n \log n$$
Still, can we ever do better?

- When our sorting is not based on comparisons, we can do better.
- Simple case: We have an array of integers 1..n in some random order, where n is not huge.
- How do we sort this?
Still, can we ever do better?

• Simple case: We have an array of integers 1..n in some random order, where n is not huge.
• How do we sort this?
• Answer: just fill it with 1..n in order
• OK, stupid question
Still, can we ever do better?

- Simple case, fixed: We have an array of objects with integer ids 1..n (i.e. object.getId() for each) in some random order, where n is not huge.
- How do we sort this?
Still, can we ever do better?

- Simple case, fixed: We have an array of objects with integer ids 1..n in some random order, where n is not huge.
- How do we sort this?
- Create a second array 0..n (n+1 spots), put each object from first in its id-position in the second. $T(n) = O(n) << O(n\log n)$
Binary search

- Definition: Search for an element in a \textit{sorted} array. Implemented, S&W pg. 47 by iteration. Code for recursive implementation is in class 2.
- Idea from the book – start in the middle of the array. If the element is smaller than that, search in the smaller half. Otherwise search in the larger half.
- Class 2 analysis shows $T(n) = \log(n)$: really fast!
- Implemented in JDK as part of the Collections API.
- Return array index where element is found or a negative value if not found.
Binary search in the **JDK Arrays** class

```java
static int binarySearch(Object[] a, Object key)
static <T> int binarySearch(T[] a, T key, Comparator<? super T> c)
```

- The version without the Comparator uses “natural order” of the array elements, i.e., calls `compareTo` of the element type to compare elements. The array needs to be sorted this way.

- As with sort, a Comparator can be supplied instead.

- Collections also has `binarySearch` over a Collection, but it may have lower performance (on a `LinkedList`, for example)
sort and binarySearch Example

- Recall Student, with id as identifier field, and gpa as another field:

 Student students = [new Student(100, "Joe", 3.2),
 new Student(130, "Sue", 3.9), ...];

 Arrays.sort(students); // sorts by id

 // now can use binary search to find individual entries:

 int index = Arrays.binarySearch(students, new Student(130,"",0)); // yields index = 1

 index = Arrays.binarySearch(students, new Student(140,"",0)); // yields index = -1
Binary search App

• S&W page 47 has an implementation of binarySearch, and also a little app in main there:
• Take a list of numbers (in text) tinyW.txt, and another text file of numbers tinyT.txt, and find all the numbers in tinyT.txt that are *not* in tinyW.txt.
• We could do this with Set<Integer>, but here it is done by sorting an array with the W numbers, and looking up each T number by binary search.
• Is this better or worse performing than the Set approach?
Recursive Binary search

- S&W page 47 has an implementation of binarySearch, done iteratively, with divide and conquer. It’s called indexOf there.
- Can we do it recursively?
- Sure: the basic idea is
- To binsearch the whole array, use the middle element to decide which half array to binsearch, the same action on a smaller array
- So we need a method that can search any part of an array…
Recursive Binary search

• To binsearch the whole array, use the middle element to decide which half array to binsearch, the same action on a smaller array
• So we need a method that can search any part of an array…
• This is slightly different than the original binarySearch method header, that takes a whole array
• This is often the case: to use recursion, we have to cook up a method to do the recursion steps
Recursive Binary search

- We need a method that can search any part of an array for the value we’re looking for.. This is essentially the same as the method we studied in class 2 as a recursion example.

```java
private int binarySearch(int[] a, int key, int lo, int hi) {
    if (lo > hi) return -1;
    int mid = lo + (hi - lo)/ 2;
    if (key < a[mid])
        return binarySearch(a, key, lo, mid - 1);
    else if (key > a[mid])
        return binarySearch(a, key, mid + 1, hi);
    else return mid;
}
```
Recursive Binary search

• We now have a method that can search any part of an array for the value we’re looking for..

```java
private static int binarySearch(int[] a, int key, int lo, int hi) { ... }
```

• Finish the job… call binarySearch from the top-level method:

```java
public static int indexOf(int[] a, int key) {
    return binarySearch(a, key, 0, a.length-1);
}
```

• We can call this the recursion helper method

• Note that it’s private because it’s not meant to be called directly, only as part of the implementation of the top-level method indexOf
Binary search: object elements

- The helper

```java
private static <T> int binarySearch(T[] a,
                                     T key,
                                     int lo,
                                     int hi) { ... }
```

- Finish the job... call `binarySearch` from the top-level method:

```java
public static <T> int binarySearch(T[] a, T key) {
    return binarySearch(a, key, 0, a.length-1);
}
```
JDK Binary search: object elements

• In the JDK sort, we don’t see the helper, it’s private
• To use “natural order” (compareTo of elements), use c null here:

```java
public static <T> int binarySearch(T[] a, T key,
    Comparator<? super T> c)
```
Summary on Divide and Conquer

We have seen three examples of the divide-and-conquer algorithm technique:

• Merge sort an array: sort halves by merge sort, merge them
• Quick sort an array: choose pivot, partition into two parts, above and below pivot, quick-sort each part
• Binary Search in an ordered array: Use middle element to determine which half to look in, do binary search in that half