CS310 – Advanced Data Structures and Algorithms

Class 12: Interfaces and Subclasses, then Greedy Algorithms and Dynamic Programming
Project 1 Review

- The Xref app: suppose this was a serious app to be implemented by a team of programmers “a crucial tool” for programmers.
- Design phase: Someone says: Hey, we need to pull the ids out of the program text, and that’s a separate job from building the data structure summarizing where each id shows up.
- The team agrees, so two teams are formed, one for tokenization and one for indexing provided ids.
Two teams, two classes: how to communicate between them?

- We now have two teams, one for tokenization in say class Tokenizer and one for indexing given ids, the main code, in class Xref.
- Next design step: Exactly how does Xref call Tokenizer?
- Xref needs to get tokens and their line numbers
- Could have just one method that returns both, but to return a String and an int, need to create a helper object with both, say class IdLocation with fields String id and int lineNumber.
- Someone says: I know an easier way: have two methods...
Two teams, and an interface between them

• Idea of two methods to communicate ids and line numbers, looks like this:
 • String getNextID()
 • int getLineNumber() (to be called after getNextID)

• The teams agree to this idea, though one person says “They should be tied together in one method to ensure that the ID and line number are in fact related”

• They say “Let’s write an interface to codify this API”
An Interface is a contract

• By agreeing to this API, codified in the Java interface, the two teams have a contract between them:
 • The Tokenizer team implements the API
 • The Xref team implements the code that calls the API
• Note that the interface doesn’t capture everything about the interactions: for example, the constructor syntax is missing, and the treatment of end-of-data.
 • But it is an excellent start on the full contract.
The story, continued

- Someone on the Tokenizer team says “I just saw a regex on StackOverflow that does most of our work! Let’s go with it…”
- Another says: “I’ve heard that Java regex processing can crash an app: it builds a huge stack to do its work. Let’s stick with simple parsing…”
- They let the first person build a competing Tokenizer, and then test them against each other using something like TestTokenizer, which takes advantage of the fact that a each Tokenizer ISA JavaTokenizer, so the test code can be written once for either Tokenizer.

4/8/2020
The morals of the story

- Interfaces are crucial to software design, especially for larger programs with multiple source files and multiple teams.

- Interfaces let us treat multiple implementations of a certain API as the same Java type, allowing client code to run using either one.

 - Example: LinkedList and ArrayList are both type List, so code using List can switch off List implementations at will: just change the List creation step.
What’s next in our Java type coverage?

• Answer: inheritance in general (Using an interface is a special case of inheritance.)

• One class can be a subclass of another, not just "implements another".
 • If B is a subclass of A, then B ISA A (A is a class)
 • If B implements A, then B ISA A (A is an interface)
 • And any class A is a subclass of Object, so A ISA Object

• Either way, we can write client code that treats a family of types as a single type.
Inheritance

• For decades considered the bedrock of object oriented software practice, but lately less championed.

• Where can I read about inheritance?
 • Not in S&W: not even in index! But “inherited methods” are, mostly methods of Object. For example, we can use Object.hashCode() for any object, since its class is a subclass of Object.
 • Weiss, Chap. 4 (also has interfaces)
 • Java tutorial at Oracle, other tutorials on Web
Example: A Student ISA Person

- Recall our Student object, with fields id, name, and gpa.
- GPA is specific to students, but id and name could work for any person, so let’s set up a Person class

```java
class Person {
    private int id;
    private String name;
    public Person(String n, int i) {
        name = n; id = i;
    }
    // getters and setters for name and id
    public toString() { return name + " : " + id; }
}
```

4/8/2020
class Student extends Person {
 private double gpa; // additional field
 public Student(String n, int i, double gpa) {
 super(n, i); // set up superclass fields
 this.gpa = gpa;
 }
 double getGpa{ return gpa; };
 String toString() { return getName() + ": " +
 getId() + " " + gpa }
}
Next time

- We’ll examine this example further next time
- Similar to example in Weiss
- Java tutorial has class Bicycle and subclass MountainBike
 - Bicycle has fields cadence, gear, and speed
 - What’s cadence?
 - Turns out it’s the speed of pedaling (cycles/min, say)
Algorithm Techniques

There are patterns in algorithms worth studying

We’ll cover:

• Divide and conquer: we already saw examples
• Greedy algorithm: follow what appears to be best at each step, example coming up
• Dynamic programming: save partial results as you go, then reuse them
Problem – making change

- Task – buy a cup of coffee (say it costs 63 cents).
- You are given an unlimited number of coins of all types (neglect 50 cents and 1 dollar).
- Pay exact change.
- What is the combination of coins you'd use?

1 cent 5 cent 10 cent 25 cent
Greedy algorithms - change making

- Logically, we'd minimize the number of coins.
- Change-making with the fewest number of US coins—have 1, 5, 10, 25 unit coins to work with.
- Clearly we want to mainly use large-value coins to minimize the total number. So for 27 cents, clearly we can’t do better than 25 + 2(1).
- What about 63? Use as many 25s as fit, 63 = 2*(25) + 13, then as many 10s as fit in the remainder: 63 = 2*(25) + 1*(10) + 3, no 5’s fit, so we have 63 = 2*(25) + 1*(10) + 3*(1), 6 coins.
Greedy algorithms

- Not discussed as such in S&W (has index entry). See pg. 287 of Weiss. Whole chapter (Chap. 4) in Kleinberg and Tardos.
- A greedy person grabs everything they can as soon as possible.
- Similarly a greedy algorithm makes decisions that appear to be the best thing to do at each step.
- Example: Change-making greedy algorithm for “change” amount, given many coins of each size:

 Loop until change == 0:
 - Find largest-valued coin less than change, use it.
 - change = change – coin-value;
Change making: when greedy doesn’t work...

- The greedy method gives the optimal solution for US coinage.
- With different coinage, the greedy algorithm doesn’t always find the optimal solution.
- Example of a coinage with an additional 21 cent piece. Then 63 = 3(21), but greedy says use 2 25s, 1 10, and 3 1’s, a total of 6 coins.
- The coin values need to be spread out enough to make greedy work. But even some spread-out cases don’t work. Consider having pennies, dimes and quarters, but no nickels.
- Then 30 by greedy uses 1 quarter and 5 pennies, ignoring the best solution of 3 dimes.
(Very bad) recursive solution

coins = {25, 10, 5, 1, 21}
makeChange(amt)
If amt in coins return 1
minCoins = amt
loop over j from 1 to amt/2
 thisCoins = makeChange(j) + makeChange(amt-j)
 if thisCoins < minCoins
 minCoins = thisCoins
Lots and lots of redundant calls!
(Very bad) recursive solution

\[T(n) = T(n-1) + T(n-2) + T(n-3) + \ldots + T(n/2) + \ldots \]

worse than \[T(n) = T(n-1) + T(n-2) \] the famous Fibonacci sequence discussed previously. Fibonacci is exponential, so this certainly is.
Better idea

- We know we have 1, 5, 10, 21 and 25.
- Therefore, the optimal solution must be the minimum of the following:
 1. 1 (A 1 cent) + optimal solution for 62.
 2. 1 (A 5 cent) + optimal solution for 58.
 3. 1 (A 10 cent) + optimal solution for 53.
 4. 1 (A 21 cent) + optimal solution for 42.
 5. 1 (A 25 cent) + optimal solution for 38.
- This reduces the number of recursive calls drastically.
- Naïve implementation still makes lots of redundant calls.
Dynamic programming implementation

- Idea – instead of performing the same calculation over and over again, save pre-calculated results to an array.
- The answer to a large change depends only on results of smaller calculations, so we can calculate the optimal answer for all the smaller change values and save it to an array.
- Then go over the array and minimize on:
 - $\text{change}(K) = \min\{\text{change}(K-n)+1\}$
 - For all N types of coins of value n
- Runtime - $O(N*K)$.
public static void makeChange(int [] coins, int differentCoins, int maxChange, int [] coinsUsed, int [] lastCoin)
{
 coinsUsed[0] = 0; lastCoin[0] = 1;
 for(int cents = 1; cents <= maxChange; cents++) {
 int minCoins = cents;
 int newCoin = 1;
 for(int j = 0; j < differentCoins; j++) {
 if(coins[j] > cents) continue; // Cannot use coin j
 if(coinsUsed[cents - coins[j]] + 1 < minCoins) {
 minCoins = coinsUsed[cents - coins[j]] + 1;
 newCoin = coins[j];
 }
 }
 coinsUsed[cents] = minCoins;
 lastCoin[cents] = newCoin;
 }
}
Binomial coefficients

Another famous example is the sequence of binomial coefficients Can be generated by Pascal’s triangle:

```
  1
  1 2 1
  1 3 3 1
  1 4 6 4 1
\ / 5
```

Each number is the sum of the two closest above it.
Binomial coefficients

- Start a new row with 1’s on the edges.
- The row number is N, and the entries are k=0, k=1, ..., k=N across a row, so for example

\[C(4,0) = 1, \ C(4,1) = 4, \ C(4,2) = 6, \ C(4,3) = 4, \ C(4,4) = 1. \]

- These are the coefficients of the binomial expansion
- \[(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 \]
Binomial coefficient and n choose k

• Also, \(C(N, k) = \) number of ways to choose a set of \(k \) objects from \(N \)
• Ex. \(C(4, 2) = 6 \) The 2-sets of 4 numbers are the 6 sets:
 \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}
• Recursion: \(C(N, k) = C(N-1, k) + C(N-1, k-1) \)
 This is just the sum rule of Pascal’s triangle.
n choose k - relationships

• Base cases: \(C(N, 0) = 1, \ C(N, N) = 1\)
• To choose \(k\) objects from \(N\), set one object \(x\) aside and find all the ways of choosing \(k\) objects from the remaining \(N-1\).
• These are all the sets we want that don’t include \(x\), \(C(N-1, k)\) in number.
• The sets that do include \(x\) also need \(k-1\) other objects from the other \(N-1\), \(C(N-1, k-1)\) in number.
• So \(C(N, k) = C(N-1, k) + C(N-1, k-1)\)
Binomial coefficient - recursion

If we write a recursive function:

```python
combo(N, k):
    if (k == 0) return 1
    if (k == N) return 1
    return combo(N-1, k) + combo(N-1, k-1)
```

Note the double recursion, without halving the “N” value, so dangerous recursion.
Binomial coefficient - recursion

We get exponential runtime $T(N)$

$$T(N, k) = T(N-1, k) + T(N-1, k-1) \quad \text{-- 2 terms in N-1}$$

$$= T(N-2, k) + \ldots \quad \text{4 terms in N-2}$$

$$= \ldots \text{some of these hit base cases and stop}$$
Efficient calculation of binomial coefficients

- If we save and reuse values, it’s much faster. In other words, use Pascal’s triangle to generate all the coefficients.
- One way: set up a table and use it for each N in turn.

\[
\begin{align*}
C[1][0] &= 1 \\
C[1][1] &= 1 \\
\text{for } n \text{ up to } N \\
\quad \text{for } k \text{ up to } n \\
\quad \quad C[n][k] &= C[n-1][k] + C[n-1][k-1]
\end{align*}
\]

- $O(1)$ to fill each spot in $N \times N$ array, so $O(N^2)$
Map approach to dynamic programming

- Another approach: set up Map from \((N, k)\) to value.
- Case of classic dynamic programming, saving partial results along the way.
- If \(N\) and \(k\) both ints, long key = \(N + (\text{long})k>>32\) (Pack two ints in a long)
- Or OO way: create a Pair class, with \(N\), \(k\) fields, getters and setters.
- Either way, have key\((N,k)\) holding the pair.
Map approach to dynamic programming

combo(N, k):

val = M.get(key(N,k))
if (val != null) return val
if (k == 0 || k == N)
 val = 1
else val = combo(N-1, k) + combo(N-1, k-1)
M.put(key(N, k), val)
return val

once this recursion reaches a cell, fills it in, so work bounded by number of cells below (N, k), which is < N^2.
Maximum Contiguous Subsequence Sum

Problem: Given a sequence of integers \((A_1, A_2, \ldots, A_N)\), possibly negative. Identify the subsequence \((A_i, \ldots, A_j)\) that corresponds to the maximum value of

\[
\sum_{k=i}^{j} A_k
\]

Reference: Weiss Sec. 7.5.1,

- Naïve approach is cubic (examine all \(O(N^2)\) sequences and sum each one).
- Use a divide-and-conquer algorithm.
Divide-and-Conquer Algorithm

Sample input is \(\{4, -3, 5, -2, -1, 2, 6, -2\} \)

3 possible cases:
1. in the first half
2. in the second half
3. begins in the first half and ends in the second half

For case 3: \(\text{sum} = \text{sum }^{1\text{st}} + \text{sum }^{2\text{nd}} \)

<table>
<thead>
<tr>
<th>First Half</th>
<th>Second Half</th>
<th>Values</th>
<th>Running sums</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 -3 5 -2</td>
<td>-1 2 6 -2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4* 0 3 -2</td>
<td>-1 1 7* 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Running sum from the center (*denotes maximum for each half).
Case 3 is solved in linear time.

Apply case 3’s strategy to solve case 1 and 2

Summary:
Recursively compute the max subsequence sum in the first half
Recursively compute the max subsequence sum in the second half
Compute, via 2 consecutive loops, the max subsequence sum that begins in the first half but ends in the second half
Choose the largest of the 3 sums
See Weiss if interested in performance analysis

Result: $O(N \log N)$
private static int maxSumRec(int [] a, int left, int right)
{
 int maxLeftBorderSum = 0, maxRightBorderSum = 0;
 int leftBorderSum = 0, rightBorderSum = 0;
 int center = (left + right) / 2;

 if(left == right) // Base case
 return a[left] > 0 ? a[left] : 0;

 int maxLeftSum = maxSumRec(a, left, center);
 int maxRightSum = maxSumRec(a, center + 1, right);

 for(int i = center; i >= left; i--)
 {
 leftBorderSum += a[i];
 if(leftBorderSum > maxLeftBorderSum)
 maxLeftBorderSum = leftBorderSum;
 }

 for(int i = center + 1; i <= right; i++)
 {
 rightBorderSum += a[i];
 if(rightBorderSum > maxRightBorderSum)
 maxRightBorderSum = rightBorderSum;
 }

 return max3(maxLeftSum, maxRightSum,
 maxLeftBorderSum + maxRightBorderSum);
}