4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

With added notes and slides by Betty O’Neil for cs310
4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges
Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
Border graph of 48 contiguous United States
Protein-protein interaction network

Reference: Jeong et al, Nature Review Genetics
Map of science clickstreams

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803
10 million Facebook friends

"Visualizing Friendships" by Paul Butler
The evolution of FCC lobbying coalitions

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010
Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status: yellow denotes an obese person (body-mass index, ≥30) and green denotes a nonobese person. The colors of the ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007
The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet
Graph applications

<table>
<thead>
<tr>
<th>graph</th>
<th>vertex</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>telephone, computer</td>
<td>fiber optic cable</td>
</tr>
<tr>
<td>circuit</td>
<td>gate, register, processor</td>
<td>wire</td>
</tr>
<tr>
<td>mechanical</td>
<td>joint</td>
<td>rod, beam, spring</td>
</tr>
<tr>
<td>financial</td>
<td>stock, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>intersection</td>
<td>street</td>
</tr>
<tr>
<td>internet</td>
<td>class C network</td>
<td>connection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>social relationship</td>
<td>person</td>
<td>friendship</td>
</tr>
<tr>
<td>neural network</td>
<td>neuron</td>
<td>synapse</td>
</tr>
<tr>
<td>protein network</td>
<td>protein</td>
<td>protein-protein interaction</td>
</tr>
<tr>
<td>molecule</td>
<td>atom</td>
<td>bond</td>
</tr>
</tbody>
</table>
Graph terminology

Path. Sequence of vertices connected by edges.

Cycle. Path whose first and last vertices are the same.

Two vertices are *connected* if there is a path between them.
Some graph-processing problems

<table>
<thead>
<tr>
<th>problem</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-t path</td>
<td>Is there a path between s and t?</td>
</tr>
<tr>
<td>shortest s-t path</td>
<td>What is the shortest path between s and t?</td>
</tr>
<tr>
<td>cycle</td>
<td>Is there a cycle in the graph?</td>
</tr>
<tr>
<td>Euler cycle</td>
<td>Is there a cycle that uses each edge exactly once?</td>
</tr>
<tr>
<td>Hamilton cycle</td>
<td>Is there a cycle that uses each vertex exactly once?</td>
</tr>
<tr>
<td>connectivity</td>
<td>Is there a way to connect all of the vertices?</td>
</tr>
<tr>
<td>biconnectivity</td>
<td>Is there a vertex whose removal disconnects the graph?</td>
</tr>
<tr>
<td>planarity</td>
<td>Can the graph be drawn in the plane with no crossing edges?</td>
</tr>
<tr>
<td>graph isomorphism</td>
<td>Do two adjacency lists represent the same graph?</td>
</tr>
</tbody>
</table>

Challenge. Which graph problems are easy? difficult? intractable?
4.1 Undirected Graphs

- Introduction
- Graph API
- Depth-first search
- Breadth-first search
- Connected components
- Challenges
Graph representation

Graph drawing. Provides intuition about the structure of the graph.

```
0 --------- 5
|          |   |
|          |   |
|          |   | 6
|          |   |
|          |   |
1---------2
 |
3---4
```

two drawings of the same graph

Caveat. Intuition can be misleading.
Graph representation

Vertex representation.

- This lecture: use integers between 0 and $V-1$.
- Applications: convert between names and integers with symbol table.

![Graph diagram]

Anomalies.

- self-loop
- parallel edges
Graph API: none available in JDK, so we’ll use this API

```java
public class Graph {

    Graph(int V) { /* create an empty graph with V vertices */ }
    Graph(In in) { /* create a graph from input stream */ }
    void addEdge(int v, int w) { /* add an edge v-w */ }
    Iterable<Integer> adj(int v) { /* vertices adjacent to v */ }
    int V() { /* number of vertices */ }
    int E() { /* number of edges */ }
}
```

CS310 Notes: No `addVertex` method, no `hasEdge(v, w)`, unwelcome involvement with `In`, S&W specific i/o method “In”

```java
In in = new In(args[0]);
Graph G = new Graph(in);
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);
```

read graph from input stream

print out each edge (twice)
Graph API: sample client

Graph input format.

```
% java Test tinyG.txt
0-6
0-2
0-1
0-5
1-0
2-0
3-5
3-4
... 12-11
12-9
```

```
In in = new In(args[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);
```

Read graph from input stream

Print out each edge (twice)
We can create a graph from a file using JDK file i/o:

```java
public static Graph createGraphFromFile(String filePath) {
    Scanner in = null;
    try {
        in = new Scanner(new File(filePath));
    } catch (FileNotFoundException e) {
        System.out.println("File not found: " + filePath);
        return null;
    }
    int nV = Integer.parseInt(in.nextLine());
    int nE = Integer.parseInt(in.nextLine());
    Graph G = new Graph(nV);
    while (in.hasNextLine()) {
        String line1 = in.nextLine();
        String[] tokens = line1.split(" ");
        G.addEdge(Integer.parseInt(tokens[0]),
                   Integer.parseInt(tokens[1]));
    }
    in.close();
    return G;
}
```

Then the little test program looks like this, where use of Graph(In in)
is replaced by createGraphFromFile, specifically:

```java
In in = new In(args[0]);
Graph G = new Graph(in);
is replaced by
createGraphFromFile(args[0]);
```

% java Test tinyG.txt
0-6
0-2
0-1
0-5
1-0
2-0
3-5
3-4

Same edge seen from each end
You can download this code: see TestGraph.zip on our home page under today’s class

After unzip, see directories src and lib
Base directory: has README and tinyG.txt
src: has TestGraph.java, with import edu.Princeton.cs.algs4.*;
lib: has algs4.jar, library of S&W code (a compressed directory tree of .class files)
README says:

To build TestGraph:
in src: javac -cp ..:/lib/algs4.jar TestGraph.java (Windows/Mac/Linux)

To run TestGraph:
in src: java -cp ..:/lib/algs4.jar;. TestGraph ..:/tinyG.txt (Windows)
java -cp ..:/lib/algs4.jar:. TestGraph ..:/tinyG.txt (Mac/Linux)
 ^different: semi-colon vs. colon
Other ways to use the algs4.jar library

- It is possible to put the library on the CLASSPATH environment variable as S&W suggest on their download page, or put the library in some special place known to Java, also specified there.

- But the approach of the last slide shows what’s happening better in my opinion: we are providing Java access to all these classes in this build.

- If you are using eclipse, just use “Open Projects from File System”, then Directory, and specify the TestGraph directory and confirm. Eclipse will take the hint that algs4.jar is a project library because it is in directory “lib”. So it will build the program immediately.
Typical graph-processing code

```java
public class Graph {
    Graph(int V) {
        create an empty graph with V vertices
    }
    Graph(In in) {
        create a graph from input stream
    }
    void addEdge(int v, int w) {
        add an edge v-w
    }
    Iterable<Integer> adj(int v) {
        vertices adjacent to v
    }
    int V() {
        number of vertices
    }
    int E() {
        number of edges
    }
}

// degree of vertex v in graph G
public static int degree(Graph G, int v) {
    int degree = 0;
    for (int w : G.adj(v))
        degree++;
    return degree;
}
```
This graph API and implementation is based on adjacency lists, but that is not the only approach.

Let’s look at three possible approaches to representing graphs:

1. Set of Edges
2. Adjacency Matrix
3. Adjacency Lists
Maintain a list of the edges (linked list or array).

Q. How long to iterate over vertices adjacent to v?
Maintain a two-dimensional V-by-V boolean array; for each edge $v\rightarrow w$ in graph: $adj[v][w] = adj[w][v] = true$.

Q. How long to iterate over vertices adjacent to v?
Adjacency-list graph representation

Maintain vertex-indexed array of lists.

Q. How long to iterate over vertices adjacent to \(v \)?
Graph representations

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse.

Two graphs ($V = 50$)

sparse ($E = 200$) dense ($E = 1000$)

huge number of vertices, small average vertex degree
Graph representations

In practice. Use adjacency-lists representation. Algorithms based on iterating over vertices adjacent to v.

Real-world graphs tend to be *sparse*.

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>add edge</th>
<th>edge between v and w?</th>
<th>iterate over vertices adjacent to v?</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>E</td>
<td>1</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>V^2</td>
<td>1 *</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>$E + V$</td>
<td>1</td>
<td>$\text{degree}(v)$</td>
<td>$\text{degree}(v)$</td>
</tr>
</tbody>
</table>

* disallows parallel edges

huge number of vertices, small average vertex degree
Adjacency-list graph representation: Java implementation

```java
public class Graph {
    private final int V;
    private Bag<Integer>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```
4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges
Maze exploration

Maze graph.
- **Vertex**
 = intersection
- **Edge**
 = passage

Goal. Explore every intersection in the maze.
Trémaux maze exploration

Algorithm.
- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when return to a marked intersection or no unvisited options.
Trémaux maze exploration

Algorithm.
• Unroll a ball of string behind you.
• Mark each visited intersection and each visited passage.
• Retrace steps when return to a marked intersection or no unvisited options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur; Ariadne instructed Theseus to use a ball of string to find his way back out.

The Labyrinth (with Minotaur) Claude Shannon (with Theseus mouse)
Maze exploration: easy
Maze exploration: medium
Depth-first search

 Goal. Systematically traverse a graph.

 Typical applications.
 • Find all vertices connected to a given source vertex.
 • Find a path between two vertices.

 Design challenge. How to implement?

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked vertices w adjacent to v.

depth-first search (DFS)
Depth-first search demo

To visit a vertex \(v \):

- Mark vertex \(v \) as visited.
- Recursively visit all unmarked vertices adjacent to \(v \).

Graph G
Depth-first search demo

To visit a vertex \(v \):
Mark vertex \(v \) as visited.
Recursively visit all unmarked vertices adjacent to \(v \).
Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.
- Create a `Graph` object.
- Pass the `Graph` to a graph-processing routine.
- Query the graph-processing routine for information.

```java
public class Paths {

    Paths(Graph G, int s) {
        // find paths in G from source s
        hasPathTo(int v) {
            // is there a path from s to v?
            pathTo(int v) {
                // path from s to v; null if no such path
            }
        }
    }
}
```

```java
Paths paths = new Paths(G, s);
for (int v = 0; v < G.V(); v++)
    if (paths.hasPathTo(v))
        StdOut.println(v);
```

print all vertices connected to s
Depth-first search: data structures

To visit a vertex \(v \):
- Mark vertex \(v \) as visited.
- Recursively visit all unmarked vertices adjacent to \(v \).

Data structures.
- Boolean array \(\text{marked}[] \) to mark visited vertices.
- Integer array \(\text{edgeTo}[] \) to keep track of paths.
 \(\text{edgeTo}[w] = v \) means that edge \(v-w \) taken to visit \(w \) for first time
- Function-call stack for recursion.
Try this `edgeTo` array out...

`(edgeTo[w] == v)` means that edge v-w taken to visit w for the first time, so here v is the from-vertex and w is the to-vertex.

We see an edge from 0 to 1 taken as first step from 0, so put `edgeTo[1] = 0`

Second step from 0 to 2, so `edgeTo[2] = 0`

Then from 0 to 6, so `edgeTo[6] = 0`

Then 6 to 4, so `edgeTo[4] = 6`, and so on.
public class DepthFirstPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private int s;

 public DepthFirstPaths(Graph G, int s)
 {
 ...
 dfs(G, s);
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w])
 {
 dfs(G, w);
 edgeTo[w] = v;
 }
 }
}
Depth-first search: properties

Proposition. DFS marks all vertices connected to s in time proportional to the sum of their degrees (plus time to initialize the marked[] array).

Pf. [correctness]
- If w marked, then w connected to s (why?)
- If w connected to s, then w marked.
 (If w unmarked, then consider last edge on a path from s to w that goes from a marked vertex to an unmarked one).

Pf. [running time]
Each vertex connected to s is visited once, in the sense of being marked and trying to explore its unmarked neighbors. Once marked, it never again is “visited” because of its marking.
Proposition. After DFS, can check if vertex \(v \) is connected to \(s \) in constant time and can find \(v \rightarrow s \) path (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex \(s \), so we can use it to step from \(s \) to parent to parent’s parent, etc. all the way back to \(v \).

```java
public boolean hasPathTo(int v) {
    return marked[v];
}

public Iterable<Integer> pathTo(int v) {
    if (!hasPathTo(v)) return null;
    Stack<Integer> path = new Stack<Integer>();
    for (int x = v; x != s; x = edgeTo[x])
        path.push(x);
    path.push(s);
    return path;
}
```

```
edgeTo[]
0 1 2
1 2 0
2 0 3
3 2 4
4 3 5
5 3
```
Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).

Assumptions. Picture has millions to billions of pixels.

Solution. Build a grid graph (implicitly).

- **Vertex:** pixel.
- **Edge:** between two adjacent gray pixels.
- **Blob:** all pixels connected to given pixel.
Depth-first search application: preparing for a date

http://xkcd.com/761/