4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

With added notes and slides by Betty O’Neil for cs310
Breadth-first search algorithm

Create a queue and put the source vertex in it
Repeat until queue is empty:
• Remove vertex \(v \) from queue.
• Add to queue all unmarked vertices adjacent to \(v \) and mark them.

graph G

Queue for bfs from 0:
[0]
[5 2 1] after dequeue 0, enqueue adj(0): 1,2,5 and mark
[5, 2] after dequeue 1, nothing unmarked to enqueue
[4, 3 ,5] after dequeue 2, enqueue 3, 4, all marked now
Breadth-first search algorithm

Repeat until queue is empty:
• Remove vertex v from queue.
• Add to queue all unmarked vertices adjacent to v and mark them.
• Track first visits with edgeTo

\[
\begin{array}{c|c|c}
\text{v} & \text{edgeTo[]} & \text{distTo[]} \\
\hline
0 & - & 0 \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 2 & 2 \\
4 & 2 & 2 \\
5 & 0 & 1 \\
\end{array}
\]

• $\text{distTo}[x] = \# \text{ edges on path from 0 to } x$
• $= \text{distTo[from-node]} + 1$
Breadth-first search

Repeat until queue is empty:
- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:
- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue, and mark them as visited.
Breadth-first search: Java implementation

```java
public class BreadthFirstPaths {
    private boolean[] marked;
    private int[] edgeTo;
    private int[] distTo;
    
    private void bfs(Graph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        q.enqueue(s);
        marked[s] = true;
        distTo[s] = 0;
        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    q.enqueue(w);
                    marked[w] = true;
                    edgeTo[w] = v;
                    distTo[w] = distTo[v] + 1;
                }
            }
        }
    }
}
```

initialize FIFO queue of vertices to explore

found new vertex w via edge v-w
Breadth-first search properties

Q. In which order does BFS examine vertices?
A. Increasing distance (number of edges) from s: v itself, all distance-1 vertices, all distance-2 vertices,

queue always consists of ≥ 0 vertices of distance k from s, followed by ≥ 0 vertices of distance $k+1$

Proposition. In any connected graph G, BFS computes shortest paths from s to all other vertices in time proportional to $E + V$.
Breadth-first search application: routing

Fewest number of hops in a communication network.
Breadth-first search application: Kevin Bacon numbers

http://oracleofbacon.org
Kevin Bacon graph(page 549)

• Include one vertex for each performer and one for each movie.
• Connect a movie to all performers that appear in that movie.
• Compute shortest path from \(s = \text{Kevin Bacon} \).
• Data in movies.txt in \text{algs4-data.zip}
Breadth-first search application: Erdös numbers (mine is 2!)

hand-drawing of part of the Erdös graph by Ron Graham
4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges
Connectivity queries

Def. Vertices \(v \) and \(w \) are **connected** if there is a path between them.

Goal. Preprocess graph to answer queries of the form *is \(v \) connected to \(w \)?* in **constant** time. Provide processed graph info by setting up an API...

API on page 543:

```java
public class CC

    CC(Graph G) find connected components in \( G \)
    boolean connected(int v, int w) are \( v \) and \( w \) connected?
    int count() number of connected components
    int id(int v) component identifier for \( v \)
    (between 0 and count() - 1)
```

Union-Find? Not quite.

Depth-first search. Yes. [next few slides]
The relation "is connected to" is an equivalence relation:

- Reflexive: \(v \) is connected to \(v \).
- Symmetric: if \(v \) is connected to \(w \), then \(w \) is connected to \(v \).
- Transitive: if \(v \) connected to \(w \) and \(w \) connected to \(x \), then \(v \) connected to \(x \).

Def. A connected component is a maximal set of connected vertices.

| \(v \) | \(\text{id}[\] | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 2 | 0 | 3 | 0 | 4 | 0 | 5 | 0 | 6 | 0 |
| 7 | 1 | 8 | 1 | 9 | 2 | 10 | 2 | 11 | 2 | 12 | 2 |

Remark. Given connected components, can answer queries in constant time.
Def. A connected component is a maximal set of connected vertices.
Goal. Partition vertices into connected components.

Connected components

Initialize all vertices \(v \) as unmarked.

For each unmarked vertex \(v \), run DFS to identify all vertices discovered as part of the same component.
Connected components algorithm

To visit a vertex v: do dfs from v:
- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

\begin{table}
\begin{tabular}{|c|c|c|c|c|}
\hline
v & marked[] & id[] \\
\hline
0 & F & - \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & F & - \\
5 & F & - \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & - \\
\hline
\end{tabular}
\end{table}

graph G
Connected components algorithm

To visit a vertex v: do dfs from v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

graph G

```

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
<th>id[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>T</td>
<td>2</td>
</tr>
</tbody>
</table>
```
Finding connected components with DFS

```java
public class CC {
    private boolean[] marked;
    private int[] id;
    private int count;

    public CC(Graph G) {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        for (int v = 0; v < G.V(); v++) {
            if (!marked[v]) {
                dfs(G, v);
                count++;
            }
        }
    }

    public int count() {
        return count;
    }

    public int id(int v) {
        return id[v];
    }

    public boolean connected(int v, int w) {
        return id[v] == id[w];
    }

    private void dfs(Graph G, int v) {
        // DFS logic here
    }
}
```

- `id[v] = id of component containing v`
- Number of components
- Run DFS from one vertex in each component
- See next slide
Finding connected components with DFS (continued)

```java
public int count()
{
    return count;
}

public int id(int v)
{
    return id[v];
}

public boolean connected(int v, int w)
{
    return id[v] == id[w];
}

private void dfs(Graph G, int v)
{
    marked[v] = true;
    id[v] = count;
    for (int w : G.adj(v))
        if (!marked[w])
            dfs(G, w);
}
```
Connected components application: study spread of STDs

Relationship graph at "Jefferson High"

Particle detection. Given grayscale image of particles, identify "blobs."

- **Vertex:** pixel.
- **Edge:** between two adjacent pixels with grayscale value ≥ 70.
- **Blob:** connected component of 20-30 pixels.

Particle tracking. Track moving particles over time.
4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges
Graph-processing challenge 1

Problem. Is a graph bipartite?

Definition, page 521: vertices can be divided into two groups such that all edges connect a vertex in one group with a vertex in the other group, i.e., you can “color the graph” in two colors.

How difficult?
Any programmer could do it.

✓ Typical diligent algorithms student could do it.

Hire an expert.

Intractable.

No one knows.

Impossible.

simple DFS-based solution (see textbook page 547)

\{ 0, 3, 4 \}
Bipartiteness application: is dating graph bipartite?

Image created by Mark Newman.
Graph-processing challenge 2

Problem. Find a cycle.

How difficult?
Any programmer could do it.
✓Typical diligent algorithms student could do it.
Hire an expert.
Intractable.
No one knows.
Impossible.

Idea: if there are no cycles, the graph is tree-like and the dfs just keeps finding new vertices, never revisiting marked vertices other than its own parent. If there’s a cycle, the dfs will revisit some other vertex.

simple DFS-based solution (see textbook page 547)
Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?
- Any programmer could do it.
- Typical diligent algorithms student could do it.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

[Graphs showing isomorphism]

Graph isomorphism is an longstanding open problem.
Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?

- Any programmer could do it.
- Typical diligent algorithms student could do it.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

linear-time DFS-based planarity algorithm discovered by Tarjan in 1970s (too complicated for most practitioners)
Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

<table>
<thead>
<tr>
<th>problem</th>
<th>BFS</th>
<th>DFS</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>path between s and t</td>
<td>✓</td>
<td>✓</td>
<td>$E + V$</td>
</tr>
<tr>
<td>shortest path between s and t</td>
<td>✓</td>
<td></td>
<td>$E + V$</td>
</tr>
<tr>
<td>connected components</td>
<td>✓</td>
<td>✓</td>
<td>$E + V$</td>
</tr>
<tr>
<td>biconnected components</td>
<td></td>
<td>✓</td>
<td>$E + V$</td>
</tr>
<tr>
<td>cycle</td>
<td>✓</td>
<td>✓</td>
<td>$E + V$</td>
</tr>
<tr>
<td>Euler cycle</td>
<td></td>
<td>✓</td>
<td>$E + V$</td>
</tr>
<tr>
<td>Hamilton cycle</td>
<td></td>
<td></td>
<td>$2^{1.657 V}$</td>
</tr>
<tr>
<td>bipartiteness</td>
<td>✓</td>
<td>✓</td>
<td>$E + V$</td>
</tr>
<tr>
<td>planarity</td>
<td></td>
<td>✓</td>
<td>$E + V$</td>
</tr>
<tr>
<td>graph isomorphism</td>
<td></td>
<td></td>
<td>$2^{c \sqrt{V \log V}}$</td>
</tr>
</tbody>
</table>