
1

Homework

• Reading
– Tokheim, Section 13-5 (Three State Buffers only)

• Machine Projects
– Continue on MP5

• Labs
– Continue labs with your assigned section

2

Buses
• Concept is to link together multiple functional

units over a common data highway at a lower
cost than using multiple point to point links

A

B

D

E

C

Bus

A

B

D

E

C

OR

Number of Links = n * (n – 1) / 2

3

Bus - Essential Part of Any
Computer

CPU Primary
Memory

Secondary
Memory

I/O

Data

Address

Control

4

Tri-state Logic Outputs

• Since we can have multiple masters on a bus, we
need Tri-state logic for attachment to a bus so
that each device can choose to drive or not drive
the bus depending on whether it is the bus master
for a given bus cycle

• Tri-state logic prevents a bus conflict where one
device is driving a signal to 1 and another device
is driving it to 0 at the same time - generates high
current through wires (and smoke?)

5

Tri-State Logic
• The problem with connecting multiple “normal”

outputs together on a bus is that each has to be in one
logic state (0) or the other (1) - driving voltage on
each bus signal high or low

• This represents a conflict over the state of the signal
• We resolve this conflict with tri-state logic

+5v

0v

output

Logically

A A

enable

Electrically Truth Table

enable A Output
0 0 (Z)
0 1 (Z)
1 0 1
1 1 0

6

Tri-State Logic and Buses
• The logical element has output enable pin to go from

a floating output to drive the output from the circuit

• Inverters and buffers are used as bus drivers or buffers
– Two such drivers or buffers in opposite directions are used

to make the connection bi-directional

– The gates also provide more “drive” onto the bus so that the
bus signals are stronger and the bus can be longer

enableout

enablein

Device Bus

7

Tri-State Logic and Buses

8

Bus Master – Slave Relationships

• During any specific bus cycle, only one device
attached to the bus is allowed to drive it

• Driving the bus means that a device is forcing
each signal on the bus to a high or low state

• For the data bus, the processor, a memory chip,
or an I/O device may be driving the data bus
during a specific read or write bus cycle

• Specific signals on the address and control bus
select a device to be the master on the data bus

9

Bus Master – Slave Relationships

• Up till now, I have said that the address bus
and the control bus are always driven by the
processor, however that is NOT really true!

• That was only a “lie of simplification”!

• The processor is NOT the only device that may
be driving the address and control busses

• Hopefully you are now well-prepared for me
to un-simplify a bit J

10

Bus Arbitration

• Bus arbitration is used to hand off a bus
between one of several potential bus masters
using signals that are a part of the bus itself

• A bus arbitration protocol implements some
form of bus request and bus grant handshake
to determine which device will be the master
on the bus for the next bus cycle

11

Bus Master – Slave Relationships

• Other devices that potentially can be the
master on the address and control bus are:
– Direct Memory Access (DMA) Controller

– DRAM controller to refresh the stored bits

– Other processors in multiprocessor architectures

• We’ll only discuss the first application above,
but not at the level of programming for it in
detail – too hard to un-simplify that

12

Direct Memory Access

• You thought that handling an I/O device under
interrupt control was pretty good – right?

• Wrong!
• The overhead to process an interrupt for each byte of

data is still relatively costly in terms of processor time
– Process interrupt and stack context of processor
– Fetch and execute instructions of ISR
– Move data from I/O device or memory to processor register
– Move data from processor register to memory or I/O device
– Restore context of processor and resume background code

• It is better if an I/O device like a disk can transfer data
directly to or from the memory without the processor
needing to execute any in or out instructions!

13

Direct Memory Access

• We add a DMA Controller (DMAC) to our system,
e.g. Intel 8237A DMA controller chip

• The DMAC has the capability of becoming the bus
master on the address and control bus for one or more
“channels” transferring data between an I/O device
and memory, e.g. 8237A supports 4 channels

• We connect DMA Request and DMA Acknowledge
signals between the I/O device and the DMAC

• Software in the CPU sets up the DMAC to transfer an
entire sequence of bytes between memory buffer and
the I/O device or vice versa

• During each byte transfer, the DMAC drives address
and control bus signals instead of the processor

14

Direct Memory Access

Processor
Control Bus (M/IO#, W/R#, and D/C# Signals)

Address Bus

MemoryI/O
Device

Data Bus

Tri-state
Control

DMAC
Interface

Hold Req

Hold Ack DMAC

DMA
Req

DMA
Ack

Tri-state
Control

Tri-state
Control

Tri-state
Control

Tri-state
Control

Tri-state
Control

P
I
CInt TC

(Transfer
Complete)

DMA Fetch-and-Deposit
Data Transfer

15

Direct Memory Access

Processor
Control Bus (M/IO#, W/R#, and D/C# Signals)

Address Bus

MemoryI/O
Device

Data Bus

Tri-state
Control

DMAC
Interface

Hold Req

Hold Ack DMAC

DMA
Req

DMA
Ack

Tri-state
Control

Tri-state
Control

Tri-state
Control

Tri-state
Control

Tri-state
Control

P
I
CInt TC

(Transfer
Complete)

DMA “Fly-by” Data Transfer
(More Efficient)

16

DMA Controller Details

DMA Arbitration Logic

DMA Req

DMA Ack

Hold Req

Hold Ack

Base Count

Current Count

DMA Channel 0
DMA Channels 1 - 3

Base Address

Current Address

Address Bus
(Tri-State Drivers)

Control Register(s)

Fetch and Deposit
Data Register(s)

Data Bus
(Tri-State Drivers)

-1

+1

Status Register(s)

Enables

Transfer
Complete

4

4

Current Count = -1

17

DMAC Programming

• Generalized Steps for Programming DMAC
– Allocate a suitably-sized memory buffer

– Disable the DMA channel being programmed
(Note that cli does not stop DMA cycle stealing)

– Set the Base Address Register with buffer address

– Set the Base Count Register with size of transfer

– Set the DMA transfer mode

– Enable the DMA channel to start the transfer

18

DMAC Operation

• When requested, the DMAC arbitrates with the CPU
to be the master on the address and control busses

• It executes a bus cycle to transfer a byte of data from
memory (or I/O device) to I/O device (or memory)

• While DMA controller is bus master, the CPU can
not access memory or I/O devices

• This is called “Cycle Stealing” (the DMA controller
steals bus cycles from the processor)

• It takes less time than executing an ISR for each byte

19

DMAC Bus Arbitration

Time

I/O Device DMAC Busses Processor

DMA Request
Hold Request Asserted

(Processor Controlled)

Hold Acknowledge asserted

(DMAC Controlled)
DMA Acknowledge

Data Transfer to/from Memory via Busses)

(Processor Controlled)

Hold Request De-asserted

Hold Acknowledge de-asserted

20

DMAC Operation

• When the DMAC finishes transferring an entire
block of data between I/O device and memory
– It interrupts the processor (via TC to the PIC)

– ISR software in the processor sets up DMAC again
for transferring the next block of data

• Processor gets interrupted for I/O handling
much less often than once per byte of data

• Hence, much better processor performance

21

Tri-State Bus Summary

• All devices have tri-state logic connections to
the data bus – may be driving or receiving

• Memory and I/O devices don’t need tri-state
logic on address/control bus (never drive them)

• Because the processor may need to yield the
control/address busses, it must have tri-state
logic for driving those bus signals

• DMAC controller must have tri-state logic for
driving the control and address bus signals

	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6
	Page #7
	Page #8
	Page #9
	Page #10
	Page #11
	Page #12
	Page #13
	Page #14
	Page #15
	Page #16
	Page #17
	Page #18
	Page #19
	Page #20
	Page #21

