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Homework

• Reading
– Tokheim, Section 13-5 (Three State Buffers only)

• Machine Projects
– Continue on MP5

• Labs
– Continue labs with your assigned section
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Buses
• Concept is to link together multiple functional 

units over a common data highway at a lower 
cost than using multiple point to point links
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Bus - Essential Part of Any 
Computer
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Tri-state Logic Outputs

• Since we can have multiple masters on a bus, we 
need Tri-state logic for attachment to a bus so 
that each device can choose to drive or not drive 
the bus depending on whether it is the bus master 
for a given bus cycle

• Tri-state logic prevents a bus conflict where one 
device is driving a signal to 1 and another device 
is driving it to 0 at the same time - generates high 
current through wires (and smoke?)
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Tri-State Logic
• The problem with connecting multiple “normal”

outputs together on a bus is that each has to be in one 
logic state (0) or the other (1) - driving voltage on 
each bus signal high or low

• This represents a conflict over the state of the signal
• We resolve this conflict with tri-state logic
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enable    A    Output
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1 0 1
1 1 0
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Tri-State Logic and Buses
• The logical element has output enable pin to go from 

a floating output to drive the output from the circuit

• Inverters and buffers are used as bus drivers or buffers
– Two such drivers or buffers in opposite directions are used 

to make the connection bi-directional

– The gates also provide more “drive” onto the bus so that the 
bus signals are stronger and the bus can be longer 

enableout

enablein

Device Bus
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Tri-State Logic and Buses
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Bus Master – Slave Relationships

• During any specific bus cycle, only one device 
attached to the bus is allowed to drive it

• Driving the bus means that a device is forcing 
each signal on the bus to a high or low state

• For the data bus, the processor, a memory chip, 
or an I/O device may be driving the data bus 
during a specific read or write bus cycle

• Specific signals on the address and control bus 
select a device to be the master on the data bus
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Bus Master – Slave Relationships

• Up till now, I have said that the address bus 
and the control bus are always driven by the 
processor, however that is NOT really true!

• That was only a “lie of simplification”!

• The processor is NOT the only device that may 
be driving the address and control busses 

• Hopefully you are now well-prepared for me 
to un-simplify a bit J



10

Bus Arbitration

• Bus arbitration is used to hand off a bus 
between one of several potential bus masters 
using signals that are a part of the bus itself

• A bus arbitration protocol implements some 
form of bus request and bus grant handshake 
to determine which device will be the master 
on the bus for the next bus cycle
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Bus Master – Slave Relationships

• Other devices that potentially can be the 
master on the address and control bus are:
– Direct Memory Access (DMA) Controller

– DRAM controller to refresh the stored bits

– Other processors in multiprocessor architectures

• We’ll only discuss the first application above, 
but not at the level of programming for it in 
detail – too hard to un-simplify that
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Direct Memory Access

• You thought that handling an I/O device under 
interrupt control was pretty good – right?  

• Wrong! 
• The overhead to process an interrupt for each byte of 

data is still relatively costly in terms of processor time
– Process interrupt and stack context of processor
– Fetch and execute instructions of ISR
– Move data from I/O device or memory to processor register
– Move data from processor register to memory or I/O device
– Restore context of processor and resume background code

• It is better if an I/O device like a disk can transfer data 
directly to or from the memory without the processor 
needing to execute any in or out instructions!
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Direct Memory Access

• We add a DMA Controller (DMAC) to our system, 
e.g. Intel 8237A DMA controller chip 

• The DMAC has the capability of becoming the bus 
master on the address and control bus for one or more 
“channels” transferring data between an I/O device 
and memory, e.g. 8237A supports 4 channels

• We connect DMA Request and DMA Acknowledge 
signals between the I/O device and the DMAC

• Software in the CPU sets up the DMAC to transfer an 
entire sequence of bytes between memory buffer and 
the I/O device or vice versa

• During each byte transfer, the DMAC drives address 
and control bus signals instead of the processor
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Direct Memory Access
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Direct Memory Access
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DMA Controller Details

DMA Arbitration Logic

DMA Req

DMA Ack

Hold Req
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Current Count
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DMAC Programming

• Generalized Steps for Programming DMAC
– Allocate a suitably-sized memory buffer

– Disable the DMA channel being programmed   
(Note that cli does not stop DMA cycle stealing)

– Set the Base Address Register with buffer address

– Set the Base Count Register with size of transfer

– Set the DMA transfer mode

– Enable the DMA channel to start the transfer
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DMAC Operation

• When requested, the DMAC arbitrates with the CPU 
to be the master on the address and control busses

• It executes a bus cycle to transfer a byte of data from 
memory (or I/O device) to I/O device (or memory)

• While DMA controller is bus master, the CPU can 
not access memory or I/O devices

• This is called “Cycle Stealing” (the DMA controller 
steals bus cycles from the processor)

• It takes less time than executing an ISR for each byte
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DMAC Bus Arbitration

Time

I/O Device DMAC Busses Processor

DMA Request
Hold Request Asserted

(Processor Controlled)

Hold Acknowledge asserted 

(DMAC Controlled)
DMA Acknowledge

Data Transfer to/from Memory via Busses)

(Processor Controlled)

Hold Request De-asserted

Hold Acknowledge de-asserted 
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DMAC Operation

• When the DMAC finishes transferring an entire 
block of data between I/O device and memory 
– It interrupts the processor (via TC to the PIC)

– ISR software in the processor sets up DMAC again 
for transferring the next block of data

• Processor gets interrupted for I/O handling 
much less often than once per byte of data

• Hence, much better processor performance
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Tri-State Bus Summary

• All devices have tri-state logic connections to 
the data bus – may be driving or receiving

• Memory and I/O devices don’t need tri-state 
logic on address/control bus (never drive them)

• Because the processor may need to yield the 
control/address busses, it must have tri-state 
logic for driving those bus signals

• DMAC controller must have tri-state logic for 
driving the control and address bus signals


	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6
	Page #7
	Page #8
	Page #9
	Page #10
	Page #11
	Page #12
	Page #13
	Page #14
	Page #15
	Page #16
	Page #17
	Page #18
	Page #19
	Page #20
	Page #21

