
CS341 Computer Architecture and Organization                       Bob Wilson  

Machine Project 5: Interrupt Driven I/O Driver  

Assigned: Class 23                                    Due: At start of class 28 

-------------------------------------------------------------------------------  

  

Interrupts  

In this assignment you'll enhance a provided tutor program so that it can handle  

COM1 port I/O via a driver that uses the UART transmit and receive interrupts.    

You should carefully study the lecture 23 notes on Introduction to MP5.  See S&S  

Excerpts link and/or the UART data sheet for background technical information  

if you need it.   

Here is the new command in the supplied cmds.c.  The code for the command itself  

is there, but it doesn't work yet because the rest of the functions are only 

stubs.  Your job is to make it work as specified.  None of this needs to be 

implemented for the UNIX version of tutor.  You will only build and test the 

SAPC version.    

 spi <on|off> spi stands for "serial port 

interrupt".    

  

“spi on” enables interrupts on output to COM1.  While the interrupts are  

enabled, the driver alternates between transmitting an application 

prompt  to the user (TRANSMIT MODE) and receiving user entered data and 

passing  it to the application (RECEIVE MODE).  

  

TRANSMIT MODE  

When a TX interrupt is detected, your program outputs the next character  

in the buffer received from the application.  If that character is the  

NULL terminator of the string in the buffer, your program outputs the  

carriage return character (CR) instead of the NULL terminator character  

and executes a call to the callback function.  

  

RECEIVE MODE  

When an RX interrupt is detected, your program should echo each received  

character back to COM1, put the character into the application buffer,  

and check to see if it is the designated character for end of line (CR).   

If it is, you execute the application callback function passing the RX  

data line in the buffer as the argument.  

  

“spi off” disables the interrupts.  

  

The code for the “quit” command has also been enhanced  

 q     Quit: Go back to regular 

Tutor.  

Disable any interrupts that have been left enabled.  If you leave these  

interrupts enabled when you exit your tutor, you or the next student 

using  your SAPC may get caught by unexpected interrupts occurring when 

the new  downloaded code in the SAPC does not have interrupt handler code 

in the  locations where the previously running version of tutor had them.   

There are also a couple of new commands (timeon and timeoff) that you can study  

to see how a callback function works.  The complete code for those commands is  

already in the cmds.c file and in the timepack.c file.  You can use the timeon  

and timeoff commands to show that the timer and comport interrupts operate  

independently from each other and that the interrupt driven drivers for the 

timer   



chip and the UART don’t interfere with the background PC-tutor code. Software 

Architecture  

  

We will put the code for the COM1 port “driver” in its own source .c file so 

that tutor code doesn’t need to know how it works.  The API to the driver is 

provided in the comintspack.h file which is “included” in the tutor cmds.c code.  

See comintspack.h for the API to the COM1 port driver:  

  

  void init_comints (int mode, void (*cb)(char *), char *buffer, int size);    

  

  where mode is either TRANSMIT or RECEIVE  

 cb is the address of a call back function. (You will provide a different 

callback function for transmit or receive mode.)  

 buffer is an array that contains a string to be transmitted or an empty array in 

which a string can be built from received characters depending on the mode 

value.  

 size is the size of the array so that your code won’t overflow it while reading 

and storing data from the COM1 port in receive mode.  There is no need to 

use this value in transmit mode.  The null terminator in the array defines 

the end of the PROMPT string.  

    

  void shutdown_comints (void);  

  

This function turns off both UART transmit and receive interrupts and the 

IRQ4 interrupt enable in the PIC.  

  

Expected behavior  

  

See window1.txt and window2.txt for a run of my tutor.lnx with input on the COM1 

line being passed through to the COM2 port.  You will provide input on the COM1 

port interacting with the SAPC as if it were a host computer and you were a user 

connected to a port (COM1) on that host.    

  

Test your COM1 port driver with the PC-tutor spi command.  Download your 

tutor.lnx file from ulab to the tutor vserver VM. Execute /sbin/ifconfig to 

determine the IP address of your Ethernet 1 port.  Use mtip to download and 

execute your tutor.lnx as usual. 

  

In a separate SSH window, logon to the Ethernet address from your /sbin/ifconfig 

command response.  Use the command “mtip –l /dev/ttyS0”.  This is the same port 

you’ve previously used for remote gdb.  However, because you are using it to 

provide input to your program, you will not be able to use it for remote gdb 

while debugging this program.  With your tutor vserver window using COM2 and 

another SSH window with mtip attached to COM1, you can test your program 

including its interrupt based driver.  

  

When you enter the tutor command “spi on” on COM2, the program should print a 

prompt “Prompt:” to COM1.  If it does not, enter one carriage return on COM1 to 

attract the attention of the driver.  You should then get the prompt.  

  

Each char you type in the second window is sent down the line to COM1 and each 

char sent to COM1 should be echoed back to the second window.   After you hit 

enter, your ISR should call the callback function passing it the address of the 

buffer containing the input data.  The call back function will just print it out 



in the first window.  Don't forget to actually type something into the COM1 

window when you want to test COM1 interrupts.  The command mtip –l only sets up 

a communications channel to COM1.  It doesn’t send any test data for you.    

  

After printing the received data on COM2, the program should output the prompt 

on COM1 again and be waiting for user input.  If you enter the tutor command 

“spi off” on COM2, the program should stop printing prompts or accepting data 

entry on COM1.  

  

You can continue to enter PC-tutor commands on COM2 port.  They’ll be processed 

normally.  The interrupt driven COM1 port driver is multi-tasking its sequence 

of operations with the normal background operation of PC-tutor.  In fact, you 

can also use the timeron command to start a timer interrupt that prints out (n) 

time ticks on the console interleaved with prompts from PC-tutor and data from 

the COM1 port.  See the script files window1.txt and window2.txt or the lecture 

23 slides to see all of this happening at once.  A bit amazing huh?  

  

Note: If you reboot an online PC and first contact it from COM1 rather than the 

usual COM2, tutor will set COM1 up as its console line and accept commands 

fromCOM1.  So be careful to keep track of which window is which!  The way Tutor 

does this trick is to poll both COM lines and answer up to the first one that 

receives a CR character.  The Tutor command "dd" will tell you which line it is 

using as the console line.  You should keep COM2 as the tutor console for 

controlling your program.  

  

discussion.txt  

  

Write a discussion describing how you tested your code and what interesting 

things you discovered while doing so.  Put your discussion in discussion.txt. 

Include small portions of scripts showing output caused by the interrupt 

handlers and the callback functions to support your observations and your 

conclusions.  

  

Turn-in  

  

From your master source directory (or your group’s directory), capture and turn 

in hard copies of typescript files (system building and both COM2 and COM1 test 

windows).  The system building typescript file should show:  

  

  pwd  

  ls –l  

  cat comintspack.c   cat cmds.c  

  make clean   make tutor.lnx  

 cat typescript files showing test runs  

  cat discussion.txt  

  

In the event that you are unable to correctly complete this assignment by the 

due date, submit what you have done and do not remove the work you were able to 

accomplish submit your report on time - partial credit is always better than 

none.  


