
CS444	User‐Kernel	Transitions,	showing	stacks	(uniprocessor	case)	

System	call	from	user	code	(single‐threaded	process)	
User space Kernel space

User execution: IF=1, CPU mode = user Kernel execution: IF=1 (mostly), CPU mode = kernel

____________________________ IDT syscall code process/thread stacks

 User code user stack (in kernel code) (in kernel data)

 C code C lib read
 with call in assembler
 to read

• While the syscall executes in the kernel, it uses (“legitimately”) the current
process’s kernel stack.

• A single-threaded process has one kernel stack, for its one thread, so we can say it’s
the process’s kernel stack. A multi-threaded process has multiple user thread stacks
and multiple kernel stacks.

Interrupt	in	user	code	(single‐threaded	process,	no	interrupt	stack	in	use	by	kernel)	
User space Kernel space

User execution: IF=1, CPU mode = user Kernel execution: IF=0 to start, CPU mode = kernel

____________________________ IDT interrupt handler process/thread stacks

 User code user stack (in kernel code) (in kernel data)

 An interrupt can happen between any two instructions

• While the interrupt handler executes, it uses (“borrows”) the current process’s kernel
stack. I’ve drawn it smaller to indicate that it has just started growing from being
empty during user execution.

This process’s
kernel stack

This process’s
kernel stack

System	call	from	user	code	(multi‐threaded	process)	
User space Kernel space

User execution: IF=1, CPU mode = user Kernel execution: IF=1, mode = kernel after trap
cycle

____________________________ IDT syscall code thread stacks

C code C lib read user stacks
with call in as for threads A, B
to read

• While the syscall executes in the kernel, it uses (“legitimately”) the current
thread’s kernel stack.

• The other thread is preempted or blocked, so also has a sizable kernel stack

Interrupt	in	user	code	(multi‐threaded	process,	2	threads,	one	interrupted)	
User space Kernel space

User execution: IF=1, CPU mode = user Kernel execution: IF=0, CPU mode = kernel

____________________________ IDT interrupt handler thread stacks

 User code user stacks (in kernel code) (in kernel data)

• While the interrupt handler executes, it uses (“borrows”) the current thread’s kernel
stack.

• Here thread A is interrupted from user execution, so has a small kernel stack

• Thread B has been preempted or blocked, so has a bigger kernel stack

Figure 2-9, pg. 99 Web server code (a)Dispatcher (b) Worker

Thread A’s
kernel stack

Thread B’s
kernel stack

Thread A’s
kernel stack

Thread B’s
kernel stack

