
Interrupts (for CS444)

• Original is linked to www.cs.umb.edu/ulab

• What is an interrupt?

• What does an interrupt do to the ―flow of control‖

• Interrupts used to overlap computation & I/O

– Examples would be console I/O, printer output, and disk
accesses

• Normally handled by the OS. Thus under UNIX or
Windows, rarely coded by ordinary programmers.

– In embedded systems and real-time systems, part of the
normal programming work.

1

Interrupts (Cont’d)

• Why interrupts over polling (AKA programmed
i/o)? Because polling

– Ties up the CPU in one activity

– Uses cycles that could be used more effectively

– Code can’t be any faster than the tightest polling loop

• Bottom line: an interrupt is an asynchronous
subroutine call (triggered by a hardware event)
that saves both the return address and the system
status

2

When an Interrupt Occurs

• Finish the current instruction

• Save minimal state information on stack

• Transfer to the interrupt handler, also
known as the interrupt service routine (ISR)

But there is more to it than this…How do
we know which device interrupted?

• And what happens if two (or more) devices
request an interrupt at the same time?

3

Interrupts: Overview

• Complex hardware setup

• Needed for any multitasking OS

• Devices use IRQs to signal interrupt controller

• Like Fig. 5-5 of Tanenbaum, but note that the

devices are also connected to the bus.

Device

A

Device

B

Interrupt

Controller
CPUIRQ

IRQ
interrupt

enable bit

Bus

4

Interrupt Controller (P.I.C)

• P.I.C. stands for Programmable Interrupt

Controller

• Programmable means it has multiple possible

behaviors selectable by software (via its own

I/O ports)

• Devices send IRQ signals to interrupt controller

• Interrupt controller prioritizes signals, sending

highest to CPU, saving others for later

5

CPU Interrupt Handling

• Enabling/disabling interrupts in the CPU

• sti and cli instructions set and clear IF in EFLAGS

• CPU checks for interrupts between instructions if interrupts
enabled (IF = 1)

• Must save CPU state

• Gets vector number (call it ―nn‖) of interrupting device from
interrupt controller

• Uses nn to look up address of interrupt handler (by looking in
IDT[nn])

• CPU enters kernel mode with IF=0 in EFLAGS

• x86 instruction set has a special instruction ―iret‖ to restore
previously saved state and resume execution from point of
interrupt (other CPUs have similar instructions).

6

Interrupt Controller Details

• Each device has an IRQ number based on its
wiring to the PIC

– Ex. COM2 uses IRQ3, timer 0 uses IRQ0

• PIC: we only consider the ―master‖ chip

– Supports eight interrupt request (IRQ) lines

– Priority: highest to lowest order is IRQ0-1, IRQ8-15,
IRQ3-7 (based on input wires from devices)

– Supplies the 8-bit interrupt vector number (―nn‖) on the
data bus in a special bus cycle initiated by the CPU
when it is first responding to an interrupt.

– ―Masks‖ interrupt signals as directed…
7

Interrupt Controller

Programming
• PIC is accessible at port addresses 0x20 and 0x21 (for

master), using ―initialization command words‖ (ICWs) and
―operational command words‖ (OCWs)

• ICWs used to set such things as: (CS444: can ignore)

– How much to add to the IRQ# (0-7) to produce nn (8 used for DOS, 0x20 for
Linux/SAPC, 0x50 for Windows)

– We trust the (old Linux) bootup code to handle this setup

• OCWs used for: (CS444: we need these)
– EOI command: Reset interrupt in PIC after handoff to OS (outb of 0x20

to port 0x20, for master) (SAPC library pic_end_int())

– Get/Set Interrupt Mask Register (port 0x21 for master)

• Ex: outb of 111 1 011 1= 0xf7 to port 0x21 enables IRQ 3 and
disables the rest, can be done with SAPC library call
pic_enable_irq(COM2_IRQ) since COM2_IRQ = 3.

8

Interrupt Activity

• Requesting device generates a signal on IRQn

• P.I.C. checks its interrupt mask (specifically bit n) before
putting out a logic high on the INTR line to the CPU.

• Between instructions, and if IF=1 in EFLAGS, the CPU
sees INTR=1 on its pin and initiates its interrupt cycle.

• CPU uses a special bus cycle to get nn from the PIC.

• The interrupt handler for nn executes (kernel code)

• Requesting device is usually accessed in the interrupt
handler and is thus notified of the completion of the event

– Ex: UART receiver detects inb for a received char

9

CPU’s interrupt cycle

• CPU detects INTR between instructions with IF=1

• CPU signals the PIC using a special bus cycle.

• P.I.C. responds by expressing the 8-bit interrupt
code, nn, on data lines

• CPU reads nn and executes int nn instruction:

– Machine state saved on stack (cs:eip and eflags)

– IF set to zero, enter kernel mode (SAPC: already there)

– Access IDT[nn] to obtain interrupt handler address

– Interrupt handler address is loaded in CPU register EIP

• Causing the interrupt handler to execute next

10

Interrupt Handler Details

– An interrupt handler must

• Save all registers used

• Issue EOI command (end-of-interrupt) to P.I.C.

(outb to port 0x21, SAPC library pic_end_int())

• Service the device, i.e., do whatever processing is

needed for the event the device was signaling

– Ex. Read (inb) the received character, for UART receiver

interrupts

• Restore registers

• Finish with iret instruction.

11

UART Interrupts

• The UART is a real I/O device, more
typical of interrupt sources than timer 0

• The UART has four ways to interrupt, we’ll
cover receiver interrupts here.

• No interrupts are enabled in the UART until
we command the UART to enable them, via
the UART’s register 1, the IER (i.e outb to
port 0x3f8+1 or port 0x2f8+1)

12

UART Receiver Interrupts

• The receiver interrupts each time it receives a char, and
remembers the interrupt-in-progress

• The COM1 UART is connected to pin IR4 on the PIC, so
its IRQ is 4 and its vector number nn = 0x24. Similarly
COM2’s is 3, and its nn = 0x23.

• The interrupt handler code must read in (with inb) the
received char to satisfy the UART, even if noone wants the
char. It also must send an EOI command to the PIC (with
outb).

• The UART’s receiver detects the inb for the char, and this
completes the interrupt-in-progress for the UART.

13

UART Interrupts (COM1)
– Initialization in kernel code

• Disallow interrupts in CPU (cli)

– Enable interrupts in the UART (outb to port
0x3f9, IER)

– Allow COM1 interrupts to pass through the PIC by
clearing the IRQ4 bit (inb, then outb to port 0x21)

– Set up interrupt handler address in IDT[0x24]

• Allow interrupts (sti)

– Shutdown in kernel code

• Disallow interrupts (cli)

– Disable interrupts in the UART (outb to port
0x3f9, IER)

– Disallow COM1 interrupts in the PIC by setting the
IRQ4 bit (inb, then outb to port 0x21)

• Allow interrupts (sti)
14

UART (COM1) Interrupts: two parts

of the interrupt handler
– irq4inthand – the outer assembly

language interrupt handler

• Save registers

• Call C function irq4inthandc

• Restore registers
• iret

– irq4inthandc - the C interrupt handler

• Issue the EOI command to the PIC(outb to

port 0x20)

• Input the char, and whatever else is wanted

15

Timer 0 Device

• Simplest device: always is interrupting, every time
it downcounts to zero.

• Can’t disable interrupts in this device! Can mask
them off in the P.I.C.

• We can control how often it interrupts

• Timer doesn’t keep track of interrupts in
progress—just keeps sending them in

• So we don’t need to interact with it in the interrupt
handler (but we do need to send an EOI to the
PIC)

16

Timer Interrupt Software
– Initialization

• Disallow interrupts in CPU (cli)

– Unmask IRQ0 in the PIC by ensuring bit 0 is 0 in the
Interrupt Mask Register accessible via port 0x21. (SAPC
library: pic_enable_int(TIMER0_IRQ)

– Set up interrupt gate descriptor in IDT, using irq0inthand
(SAPC library set_intr_gate(…))

– Set up timer downcount to determine tick interval

• Allow interrupts (sti)

– Shutdown

• Disallow interrupts (cli)

– Disallow timer interrupts by masking IRQ0 in the P.I.C.
by making bit 0 be 1 in the Mask Register (port 0x21)
(SAPC library: pic_disable_int(TIMER0_IRQ))

• Allow interrupts (sti)

17

Timer Interrupts: two parts of the

interrupt handler
– irq0inthand – the outer assembly

language interrupt handler

• Save registers

• Call C function irq0inthandc

• Restore registers

• Iret

– irq0inthandc - the C interrupt handler

• Issue EOI (SAPC lib: pic_end_int())

• Increase the tick count, or whatever is wanted

18

