Relational Algebra Queries

CS430/630 Lecture 3

Relational Algebra

- Basic operations:
 - \triangleright Selection σ Selects a subset of rows from relation
 - ightharpoonup Projection π Deletes unwanted columns from relation
 - Cross-product X Allows us to combine several relations

 - Division ÷ A bit more complex, will cover later on
 - ▶ Set-difference Union Union Intersection
 - Renaming P Helper operator, does not derive new result, just renames relations and fields

$$\rho(R(F),E)$$

▶ F contains oldname →newname pairs

Operator Precedence

- In decreasing order of priority:
 - 1. Selection σ Projection π
 - 2. Cross-product χ Join \searrow
 - 3. <u>Set-difference</u> <u>Intersection</u> \cap
 - 4. Union

Example:
$$\sigma_{bid=103}$$
 Reserves \bowtie Sailors

means
$$(\sigma_{bid=103} \text{Reserves}) \bowtie Sailors$$

not
$$\sigma_{bid=103}$$
 (Reserves \bowtie Sailors)

Example Schema

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

bid	name	color
101	interlake	red
103	clipper	green

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Sailors **Boats**

sid rating bid sname age color name

Reserves

sid bid day

Find names of sailors who have ratings at least 8.

Detail of sailor sid Another sailor detail

$$\pi_{sname}((\sigma_{rating}) = 8^{Sailors})$$

$$\pi_{sname}\sigma_{rating} = 8^{Sailors}$$

Join Reserves \bowtie Sailors

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Reserves ⋈ Sailors

sid	bid	day	sname	rating	age
22	101	10/10/9	dustin	7	45.0
		6			
58	103	11/12/9	rusty	10	35.0
		6			

Each sid in Reserves is filled out with Sailor attributes

SailorsBoatssidsnameratingagebidnamecolor

Reserves

sid bid day

bid only, no Boat deta

Find <u>names of sailors</u> who've <u>reserved boat #103</u>

Detail of sailor sid

sid, bid in reserves table

$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$$

$$\pi_{sname}(\sigma_{bid=103}(Reserves \bowtie Sailors))$$

Example Schema

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

bid	name	color
101	interlake	red
103	clipper	green

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Sailors Boats

sid sname rating age bid name color

Reserves

sid bid day

Find names of sailors who've reserved a red boat
Detail of sailor sid sid, bid ... Detail of boat bid

$$\pi_{sname}(\pi_{sid}((\pi_{bid}(\sigma_{color='red'}B))\bowtie R)\bowtie S)$$

$$\pi_{sname}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)$$

- Find names of sailors who've reserved a red boat Detail of sailor sid sid, bid ... Detail of boat bid
- One way that's right:

$$\pi_{sname}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)$$

... but this next is Wrong!: Watch out for precedence!

$$\pi_{sname}\sigma_{color='red'}$$
Boats $\bowtie Reserves \bowtie Sailors$

$$(\pi_{sname}(\sigma_{color='red'}Boats)) \bowtie Reserves \bowtie Sailors$$

empty!

Sailors sid sname rating age

Boats

<u>bid</u>	name	color

Reserves

sid	<u>bid</u>	day
-----	------------	-----

Find names of sailors who've reserved a red or a green boat

$$\rho$$
 (Tempboats, ($\sigma_{color='red' \lor color='green'}$, Boats))

$$\pi_{sname}$$
(Temphoats \bowtie Reserves \bowtie Sailors)

$$\pi_{sname}(\sigma_{color='red \lor color='green'}^{B\bowtie R\bowtie S})$$

Sailors **Boats** sid rating bid sname color age name Reserves

<u>si</u>	<u>d</u>	<u>bid</u>	<u>day</u>
-----------	----------	------------	------------

Find names of sailors who've reserved a red and a green boat

$$\rho$$
 (Tempred, π_{sid} (($\sigma_{color=red}$, Boats) \bowtie Reserves))

$$\rho$$
 (Tempgreen, $\pi_{sid}((\sigma_{color=green}, Boats)) \bowtie Reserves))$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Sailors						Boats	
sid	sname	rating	age		<u>bid</u>	name	color
	•	•	·	_		·	-

Reserves

sid	<u>bid</u>	<u>day</u>
-----	------------	------------

Find names of sailors who've reserved only red boats

$$\rho$$
 (Tempred, π_{sid} (($\sigma_{color=red}$, Boats) \bowtie Reserves))

$$\rho$$
 (Tempothers, π_{sid} (($\sigma_{color <> 'red'}$ Boats) \bowtie Reserves))

$$\pi_{sname}((Tempred-Tempothers) \bowtie Sailors)$$

Time to try it yourself...

- Try the exercises on the handed-out sheet
- You can confer with neighbors—this is not graded
- ▶ Turn in completed paper for the 3 points
- <u>Lab sheet (Solution)</u> (Solution posted later)
- Note: you need to attend class to get credit for this work—it is a form of class participation.

An Example of Self-Joins

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Find sailors with maximum age

- No max operator in RA... (SQL has this)
- Need a trick: self join with "left" age smaller than "right" age
- This will list rows for all ages for left side but the max age row(s)
- ► Then use all-sailors this list

An Example of Self-Join: cross-product with rows eliminated by condition

sid1	sname1	rating1	age1	sid2	sname2		age2
22	dustin	7	45.0	22	dustin	7	45.0
22	dustin	7	45.0	31	lubber	8	55.5
22	dustin	7	45.0	58	rusty	10	35.0
	1 1 1	_		2	1	7	45.0
31	lubber	8	55.5	<u> </u>	dustin	/	45.0
21	1 1 1	0		21	1.16hon	O	555
31	IUUUCI	O	33.3		IUUUCI	O	
31	lubber	8	55.5	58	rusty	10	35.0
58	rusty	10	35.0	22	dustin	7	45.0
58	rusty	10	35.0	31	lubber	8	55.5
58	rusty	10	35.0	58	rusty	10	35.0

Ioin condition: "left" age smaller than "right" age

An Example of Self-Join: Max ages

$$\rho(S1,Sailors) \qquad \rho(S2,Sailors)$$

$$\rho(TempJoin(1 \rightarrow f1,2 \rightarrow f2,3 \rightarrow f3,4 \rightarrow f4),$$

$$S1 \bowtie_{S1.age < S2.age} S2)$$

$$\rho(LeftHalf,\pi_{f1,f2,f3,f4}TempJoin)$$

- Finally, subtract the resulting left hand side from the initial relation, and you get sailors with maximum ages
 - Final result is

More on Natural Joins

Natural Joins match all same-named columns

- Consider two tables T1 and T2:
 T1(<u>id1</u>, attr1, city) T2(<u>id2</u>, id1, attr2, city)
- Probably want to join on id1, a key for T1 showing up in both tables
- ▶ But T1 and T2 have id1 and city in common, so a natural join T1 ⋈ T2 matches both
- If we don't want non-key columns matched like this
 - We can use a theta join with an explicit condition:
 - $TI \bowtie_{t \text{ l.idl}=t2.idl} T2$
 - Or project out city before one of the joins

Consider the Example Schema, modified to have a name attribute for two entities

Sailors

sid	name	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

bid	name	color
101	interlake	red
103	clipper	green

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Sample Query 2 on modified schema

Sailors Boats

sid name rating age bid name color

Reserves

sid bid day

- Find names of sailors who've reserved a red boat Detail of sailor sid sid, bid ... Detail of boat bid
- Old solution:

 $\pi_{sname}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)$

- Returns an empty relation!
- It's looking for matches on name as well as bid, sid

Sample Query 2 on modified schema

SailorsBoatssidnameratingagebidnamecolor

Reserves

	<u>sid</u>	<u>bid</u>	<u>day</u>
--	------------	------------	------------

- Find names of sailors who've reserved a red boat
- Dld solution for unmodified schema: returns empty table here
- $\pi_{sname}((\sigma_{color='red'}, Boats) \bowtie Reserves \bowtie Sailors)$
- Here we can project out boat names before join to Sailors

$$\pi_{name}(((\pi_{bid}\sigma_{color='red'}B)\bowtie R)\bowtie S)$$

Another self join: Close competitors

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Find pairs of sailors (sids) with ratings that differ by no more than one.

$$\rho(S1,Sailors) \quad \rho(S2,Sailors) \qquad \text{sid1 sid2}$$

$$\rho(TempJoin(1 \rightarrow sid1,5 \rightarrow sid2), \qquad 28 \qquad 28$$

$$S1 \bowtie_{S1.rating \leftarrow S2.rating + 1 \land S1.rating \rightarrow S2.rating - 1} S2) \qquad 28 \qquad 31$$

$$\pi_{sid1,sid2} TempJoin \qquad 28 \qquad 58$$

$$31 \qquad 28$$

We don't want a lot of these results...

A . 1	1 0	• •
Another	Selt	10111
	2011	

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Find pairs of different sailors (sids) with ratings that differ by no more than one, listing each unordered pair once.

$$\rho(S1,Sailors) \qquad \rho(S2,Sailors) \\ \rho(TempJoin(1 \longrightarrow sid1,5 \longrightarrow sid2), \\ S1 \bowtie_{S1.rating <= S2.rating + 1^S1.rating >= S2.rating - 1^S1.sid < S2.sid} S2)$$

 $\pi_{sid1,sid2}$ TempJoin

That's better!

sid1	sid2
28	31
28	58

Like Query 0

Sailors Boats

sid sname rating age bid name color

Reserves

sid bid day

▶ Find colors of boats with names starting with C

Detail of Boat

Another Boat detail (assume

lowercase names)

$$\pi_{color}((\sigma_{name})='c'^nname<'d'^Boats)$$

$$\pi_{color}\sigma_{name} = c'^n_{name} = Boats$$

Like Query 3

SailorsBoatssidsnameratingagebidnamecolor

Reserves

sid	<u>bid</u>	<u>day</u>
-----	------------	------------

 Find names of sailors who've reserved a red or a green boat. List names and the boat color (two rows if the sailor rented both color boats)

 $\rho \ (\textit{Tempboats}, (\sigma_{color = 'red' \lor color = 'green'}, \textit{Boats}))$

 $\pi_{sname,color}(Tempboats \bowtie Reserves \bowtie Sailors)$

