Note: Slides are posted on the class website, protected by a password written on the board. If you forget it, email me at eoneil@cs.umb.edu for it.

Reading: see class home page www.cs.umb.edu/cs630.

Relational Algebra	
	CS430/630 Lecture 2

Slides based on "Database Management Systems" 3rd ed, Ramakrishnan and Gehrke

Relational Query Languages

Query languages:

- > Allow manipulation and retrieval of data from a database
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic
 - Allows for aggressive optimization

Query Languages != programming languages

- QLs not intended to be used for complex step-by-step calculations
- QLs support easy, efficient access to large data sets
- New QL: GraphQL, released by Facebook in 2015, not tableoriented in its syntax, but can use data from an RDBMS.

Formal Relational Query Languages

Two languages form the basis for SQL:

- <u>Relational Algebra</u>:
 - operational
 - useful for representing execution plans
 - very relevant as it is used by query optimizers!
 - > gets us thinking in tables, understanding joins

<u>Relational Calculus:</u>

- > Lets users describe the result, NOT how to compute it declarative
- > We will focus on relational algebra

Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance
 - Schemas of input relations for a query are fixed
 - The schema for the result of a given query is determined by operand schemas and operator type
- > These relations have no duplicate tuples, i.e., a relation is an (unordered) set of tuples/rows
- Each operation returns a relation
 - > operations can be composed !
 - Well-formed expression: a relation, or the results of a relational algebra operation on one or two relations

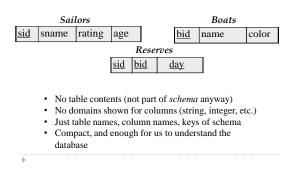
Relational Algebra

Basic operations:

- ightarrow Selects a subset of rows from relation
- <u>Projection</u> π Deletes unwanted columns from relation
- <u>Cross-product</u> X Allows us to combine several relations
- ▶ Join ◯ Combines several relations using conditions
- ▶ <u>Division</u> ÷ A bit more complex, will cover later on
- ▶ <u>Set Operations</u>: <u>Union U</u> <u>Intersection</u> ∩ Difference -
- \triangleright Renaming hoHelper operator, does not derive new result, just renames relations and fields $\rho(R, E)$

here R becomes another name for E

Example Schema, with table contents


Sailors

si	d	sname	rating	age
2	2	dustin	7	45.0
3	1	lubber	8	55.5
5	8	rusty	10	35.0

Boats							
<u>bid</u>	name	color					
101	interlake	red					
103	clipper	green					

Reserves							
<u>sid</u>	<u>bid</u>	<u>day</u>					
22	101	10/10/96					
58	103	11/12/96					

Schema in abbreviated format

Example Schema: Reserves Relation

Reserves							
sid	<u>bid</u>	<u>day</u>					
22	101	10/10/96					
58	103	11/12/96					

- Multiple entity ids in a key signals a relationship between those entities, here Sailor and Boat
 - > Example: (22, 101, 10/10/96): Sailor 22 reserved boat 101 on 10/10/1996 (ancient example!)
- Note that day is part of the key here too
- > This means (sid, bid) is not a key
- > So multiple rows can have same (sid, bid).
- Example: (22, 101, 10/10/2016)
- > Sailor 22 can reserve the same boat 101 on different
- days and the database can hold all of these reservations.

Relation Instances Over Time

S1			Sailo	rs	S2			
sid	sname	rating	age		sid	sname	rating	age
22	dustin	7	45.0		28	yuppy	9	35.0
31	lubber	8	55.5		31	lubber	8	55.5
58	rusty	10	35.0		44	guppy	5	35.0
50	rusty	10	55.0		58	rusty	10	35.0

Reserves

R1		
sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Projection

- Unary operator (i.e., has only one argument)
- > Deletes (projects out) attributes that are not in projection list

- $\begin{array}{l} \pi_{attr1,attr2,...}relation \\ \textbf{$ Result Schema contains the attributes in the projection list} \end{array}$ With the same names that they had in the input relation
- Projection operator has to eliminate duplicates!
 - Real systems typically do not do so by default
 - Duplicate elimination is expensive! (sorting)
 - > In SQL, user must explicitly asks for duplicate eliminations (DISTINCT), but here in RA, it happens automatically

Projection Examples

<i>S</i> 2			
sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sname	rating	
yuppy	9	
lubber	8	
guppy	5	
rusty	10	
age	rating ⁽²	
35.0		
55.5		
$\pi_{age}(S)$	2)	

Selection

- Unary Operator
- Selects rows that satisfy selection condition

$\sigma_{\rm condition}$ relation

- > Condition contains constants and attributes from relation
 - Evaluated for each individual tuple
 - ▶ May use logical connectors AND (^), OR ([∨]), NOT (¬)
- No duplicates in result! Why?
- Result Schema is identical to schema of the input relation

Selection Example

S 2					sid	sname	rating	age
sid	sname	rating	age	1	28	yuppy	9	35.0
<u>siu</u>	shame	rating	age		58	rusty	10	35.0
28	yuppy	9	35.0		50		55.0	
31	lubber	8	55.5			$\sigma_{_{rating}}$	>8(32)	
44	guppy	5	35.0					
58	rusty	10	35.0			sname	rating	1
						yuppy	9	
rusty 10								
						Tusty	10	
S	Selection	and Pro	jection	π_{s}	name	$\sigma_{rating}(\sigma)$] 3 ^(S2))

Cross-Product

Binary Operator

$R \times S$

- Each row of relation R is paired with each row of S
- Result Schema has one field per field of R and S
 Field names `inherited' when possible

Cross-Product Example

S1	sid	sname	ratin	g age		R1			1 1.:	1	J	
				0 0				sic	l <u>bi</u>	a	day	
	22	dustin	7	45.0)			22	10)1	10/10/9	6
	31	lubber	8	55.5	5			58			11/12/9	
	58	rusty	10	35.0)			50	10	,5	11/12/9	0
										_		
	C=S	1 X R1	(sid)	sname	rating	age	(si	d)	bid	d	lay	
	C-51 X KI		22	dustin	7	45.0	22		101	1	0/10/96	
			22	dustin	7	45.0	58		103	1	1/12/96	
			31	lubber	8	55.5	22		101	1	0/10/96	
			31	lubber	8	55.5	58		103	1	1/12/96	
			58	rusty	10	35.0	22		101	1	0/10/96	
			58	rusty	10	35.0	58		103	1	1/12/96	
	Со	nflict: Bo	oth R	and S I	nave a f	ield ca	lled	sic	1			
- F												

Cross-Product + Renaming Example

С	sid1	sname	rating	age	sid2	bid	day
	22	dustin	7	45.0	22	101	10/10/96
	22	dustin	7	45.0	58	103	11/12/96
	31	lubber	8	55.5	22	101	10/10/96
	31	lubber	8	55.5	58	103	11/12/96
	58	rusty	10	35.0	22	101	10/10/96
	58	rusty	10	35.0	58	103	11/12/96

<u>Renaming operator</u> $\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$

Condition Join (Theta-join)

Ň

$$R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$$

• Result Schema same as that of cross-product

Condition Join (Theta-join) Example

S1 X R1	sid1	-			. 10	1	1	
51 X KI		sname	0	age	sid2	bid	day	
	22	dustin	7	45.0	22	101	10/10/96	
	22	dustin	7	45.0	58	103	11/12/96	
	31	lubber	8	55.5	22	101	10/10/96	
	31	lubber	8	55.5	58	103	11/12/96	
	58	rusty	10	35.0	22	101	10/10/96	
	58	rusty	10	35.0	58	103	11/12/96	
	$S1 \bowtie S1.sid < R1.sid R1$							
							day	
	22	dustin	7	45.0	58	103	11/12/96	
l	31	lubber	8	55.5	58	103	11/12/96	

⊾

Equi-Join

 A special case of condition join where the condition contains only equalities

$$R \bowtie Rattr1 = Sattr2^S$$

 Result Schema similar to cross-product, but only one copy of fields for which equality is specified.

Equi-Join Example

S1 X R1	sid1	sname	rating	age	sid2	bid	day
	22	dustin	7	45.0	22	101	10/10/96
	22	dustin	7	45.0	58	103	11/12/96
	21	1.1.1	0	ee e	22	101	10/10/07
	21	lubber	0	55.5	50	101	11/12/06
	31	lubber	8	55.5	58	103	11/12/96
	58	rusty	10	35.0	22	101	10/10/96
	58	rusty	10	35.0	58	103	11/12/96

	$Sl \bowtie_{s}$	1.sid=R1.sid	R1 or	simpl	y S1⊳⊲	<i>R</i> 1
sid	sname	rating	age	bid	day	
22	dustin			101	10/10/96	
58	rusty	10	35.0	103	11/12/96	

Natural Join

• Equijoin on *all* common fields

 $R \bowtie S$

Common fields are NOT duplicated in the result

$S1 \bowtie R1$

ŝ

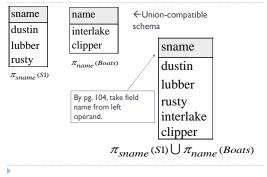
sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Note how it extends each R row to add sailor details

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be <u>union-compatible</u>
- > Same number of fields.
- Corresponding fields have the same domain (type): integer, real, string, date
- (We will see that SQL has "type compatibility", so char(10) and char(20) can be union'd, for example, to char(20), and float vs. integer, to float, but relational algebra has this simpler rule)
- What is the schema of result?

Union Example: common case of same field names


S1								
sid	sname	rating	age					
22	dustin	7	45.0	s	sid	sname	rating	I
31	lubber	8	55.5	2	22	dustin	7	ŀ
58	rusty	10	35.0	3	31	lubber	8	
S2				5	58	rusty	10	
sid	sname	rating	age		14	guppy	5	
	Shame	Ŭ	-	2	28	yuppy	9	1
28	yuppy	9	35.0	_		C1.	. 62	
31	lubber	8	55.5			310	JS2	
44	guppy	5	35.0					
58	rusty	10	35.0					
•		-	-					

Union Example: case of different field names

S1	sid	sname	rating	age		Boats		
	22	dustin	7	45.0		bid	name	color
	22	dustin	/	45.0		101	11	1
	31	lubber	8	55.5		101	interlake	red
	58	rusty	10	35.0		103	clipper	green
	sname		name		J <u> </u>			
	dustin		interlak	e	←Union-compatible			
	lubber		clipper		schema			
	rusty		π_{name} (Boats)					
	π_{snam}	$e^{(S1)}$						
			π_{sname} (S1) $\bigcup \pi_{name}$ (Boats) =					s) = ?

) |}

Union Example: case of different field names

Intersection Example

S1			
<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
S2			
sid	sname	rating	age
<u>sid</u> 28	sname yuppy	rating 9	age 35.0
		0	•
28	yuppy	9	35.0
28 31	yuppy lubber	9 8	35.0 55.5

sid s			
510 5	name	rating	age
31 1	ubber	8	55.5
58 r	usty	10	35.0

 $S1 \cap S2$

Set-Difference Example

S1			
<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
S2			
sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Example Schema

	Sı	ailors		_		Boats	
<u>sid</u>	sname	rating	age		bid	name	color
22 31	dustin lubber	8	45.0 55.5		101 103	interlake clipper	red green
58	rusty	10	35.0		103	cripper	green
			Re	serves			

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Example Schema

	S	ailors			Boats	
sid	sname	rating	age	bid	name	color
22	dustin	7	45.0	101	interlake	
31	lubber	8	55.5	101		red
58	rusty	10	35.0	105	clipper	green

Reserves									
sid	<u>bid</u>	<u>day</u>							
22	101	10/10/96							
58	103	11/12/96							

Sample Query 1 Sailors Boats Said sname rating age bid name color Reserves Sid bid day Find names of sailors who've reserved boat #103 Detail of sailor sid Sid, bid in reserves table $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$ $\pi_{sname}(\sigma_{bid=103}(\text{Reserves}) \bowtie Sailors))$

Sample Query 2											
	Sa	ilors			Boats						
sid	sname	rating	age		bid	name	color				
Reserves											
			sid bi	id o	lay_						
Find names of sailors who've reserved a red boat Detail of sailor sid sid, bid Detail of boat bid $\pi_{sname}(\pi_{sid}(\pi_{bid}(\sigma_{color}='red'^B)) \bowtie R) \bowtie S)$											
$\pi_{sname}((\sigma_{color='red'}^{Boats}) \bowtie \text{Reserves} \bowtie \text{Sailors})$											

•