
Note: Slides are posted on the class website, protected by a password written on the board

Reading: see class home page www.cs.umb.edu/cs630.

Slides based on "Database Management Systems" 3rd ed, Ramakrishnan and Gehrke

Formal Relational Query Languages

- ▶ Two languages form the basis for SQL:
 - ► Relational Algebra:
 - operational
 - ▶ useful for representing execution plans
 - > very relevant as it is used by query optimizers!
 - ► Relational Calculus:
 - Lets users describe the result, NOT how to compute it -
 - We will focus on relational algebra

Relational Algebra

- Basic operations:
 - ightarrow Selects a subset of rows from relation
- ightharpoonup Projection π Deletes unwanted columns from relation
- ► <u>Cross-product</u> X Allows us to combine several relations
- $\,\,{}^{\stackrel{}{}}$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ Division $\,$ $\stackrel{{}_{}^{}}{\cdot}$ A bit more complex, will cover later on
- ▶ <u>Set Operations</u> <u>Union</u> <u>Untersection</u> ∩ Difference -
- Renaming P Helper operator, does not derive new result, just renames relations and fields

 $\rho(R,E)$

here R becomes another name for E

Relational Query Languages

- Query languages:
 - Allow manipulation and retrieval of data from a database
- ▶ Relational model supports simple, powerful QLs:
 - > Strong formal foundation based on logic
 - Allows for aggressive optimization
- Query Languages != programming languages
 - QLs not intended to be used for complex calculations
 - > QLs support easy, efficient access to large data sets

▶

Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance
 - Schemas of input relations for a query are fixed
 - The schema for the result of a given query is determined by operand schemas and operator type
- These relations have no duplicate tuples, i.e., a relation is an (unordered) set of tuples/rows
- ▶ Each operation returns a relation
 - operations can be composed!
 - Well-formed expression: a relation, or the results of a relational algebra operation on one or two relations

•

Example Schema, with table contents

Sailors

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

<u>bid</u>	name	color
101	interlake	red
103	clipper	green

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

.

Schema in abbreviated format

Sailors Boats sname rating age bid name color Reserves sid bid day

- No table contents (not part of schema anyway)
- No domains shown for columns (string, integer, etc.)
- · Just table names, column names, keys of schema
- · Compact, and enough for us to understand the database

Relation Instances Over Time

S1			Sation
sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S2			
sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Reserves

IXI		
sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Projection Examples

	<i>S</i> 2			
si	d	sname	rating	age
2	8	yuppy	9	35.0
3	1	lubber	8	55.5
4	4	guppy	5	35.0
5	8	rusty	10	35.0

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{sname,rating}(S2)$

			_
	age		
	35.0		
	55.5		
π	$\tau_{age}(S)$	2)	

Example Schema: Reserves Relation

Reserves

<u>sid</u>	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

- Multiple entity ids in a key signals a relationship between those entities, here Sailor and Boat
 - Example: (22, 101, 10/10/96): Sailor 22 reserved boat 101 on 10/10/1996 (ancient example!)
- Note that day is part of the key here too
 - > This means (sid, bid) is not a key
 - So multiple rows can have same (sid, bid).
 - > Example: (22, 101, 10/10/2016)
 - > Sailor 22 can reserve the same boat 101 on different days and the database can hold all of these reservations.

Projection

- Unary operator (i.e., has only one argument)
- Deletes (projects out) attributes that are not in projection list

- $\pi_{attr1,attr2,...}relation$ Result Schema contains the attributes in the projection list
- With the same names that they had in the input relation
- Projection operator has to eliminate duplicates!
- Real systems typically do not do so by default
- Duplicate elimination is expensive! (sorting)
- In SQL, user must explicitly asks for duplicate eliminations (DISTINCT), but here in RA, it happens automatically

Selection

- Unary Operator
- Selects rows that satisfy selection condition

 $\sigma_{\text{\tiny condition}}$ relation

- ▶ Condition contains constants and attributes from relation
 - ▶ Evaluated for each individual tuple
 - May use logical connectors AND (^), OR (V), NOT (¬)
- No duplicates in result! Why?
- Result Schema is identical to schema of the input relation

Selection Example

52			
<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

$$\sigma_{rating>8}^{(S2)}$$

sname	rating
yuppy	9
rusty	10

Selection and Projection $\pi_{sname,rating}(\sigma_{rating} > 8^{(S2)})$

Cross-Product Example

S1 [

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

bid day 22 101 10/10/96 11/12/96

C=S1 X R1

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

Conflict: Both R and S have a field called sid

Condition Join (Theta-join)

$$R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$$

Result Schema same as that of cross-product

Cross-Product

Binary Operator

$$R \times S$$

- ▶ Each row of relation R is paired with each row of S
- Result Schema has one field per field of R and S
- Field names 'inherited' when possible

Cross-Product + Renaming Example

sid1	sname	rating	age	sid2	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

<u>Renaming operator</u> $\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$

Condition Join (Theta-join) Example

S1 X R

1	sid1	sname	rating	age	sid2	bid	day	
	22	1	7	45.0	22	101	10/10/06	_
	22	dustin	,	45.0	22	101	10/10/90	
	22	dustin	7	45.0	58	103	11/12/96	
	21				122	101	10/10/06	
	51	lubbei	0	33.3	22	101	10/10/50	П
	31	lubber	8	55.5	58	103	11/12/96	
	50		10	25.0	22	101	10/10/06	
	50	rusty	10	55.0	22	101	10/10/20	Г
	58	rusty	10	35.0	58	103	11/12/96	۰

 $S1 \bowtie_{S1 \text{ sid} < R1 \text{ sid}} R1$

Dista \Mista							
sid1	sname	rating	age	sid2	bid	day	
22	dustin	7	45.0	58	103	11/12/96	
31	lubber	8	55.5	58	103	11/12/96	

Equi-Join

A special case of condition join where the condition contains only equalities

$$R \bowtie_{Rattr1 = S.attr2} S$$

Result Schema similar to cross-product, but only one copy of fields for which equality is specified.

Natural Join

▶ Equijoin on *all* common fields

 $R \bowtie S$

Common fields are NOT duplicated in the result

 $S1 \bowtie R1$

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Note how it extends each R row to add sailor details

Union Example: common case of same field names

S1

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

_S2	_		
sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rustv	10	35.0

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

Equi-Join Example

S1 X R

22 dustin 7 45.0 22 101 10/10/96 22 dustin 7 45.0 58 103 11/12/96 31 lubber 8 55.5 22 101 10/10/96 31 lubber 8 55.5 58 103 11/12/96 58 rusty 10 35.0 22 101 10/10/96							
22 dustin 7 45.0 58 103 11/12/96 31 lubber 8 55.5 22 101 10/10/96 31 lubber 8 55.5 58 103 11/12/96 58 rusty 10 35.0 22 101 10/10/96	sid1	sname	rating	age	sid2	bid	day
21 lubber 8 55.5 58 103 11/12/96 21 lubber 8 55.5 58 103 11/12/96 58 rusty 10 35.0 22 101 10/10/96	22	dustin	7	45.0	22	101	10/10/96
31 labber 8 55.5 22 101 10/10/96 31 labber 8 55.5 58 103 11/12/96 58 rusty 10 35.0 22 101 10/10/96			_	450	50	100	111111111111111111111111111111111111111
31 lubber 8 55.5 58 103 11/12/96 58 rusty 10 35.0 22 101 10/10/96	22	dustiii	,	45.0	50	103	11/12/90
31 labber 8 55.5 58 103 11/12/96 58 rusty 10 35.0 22 101 10/10/96		1.11	0			1101	
58 rusty 10 35.0 22 101 10/10/96	31	lubbei	0	33.3	22	101	10/10/90
58 rusty 10 35.0 22 101 10/10/96	121	11.1	0	EE E	50	1102	11/12/06
36 rusty 10 35.0 22 101 10/10/96	21	lubbei	0	33.3	50	105	11/12/70
						101	
58 rusty 10 35.0 58 103 11/12/96	130	rusty	10	33.0	22	101	10/10/20
	58	rusty	10	35.0	58	103	11/12/96

 $S1 \bowtie_{S1 \text{ oid}-P1 \text{ oid}} R1$ or simply $S1 \bowtie R1$

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

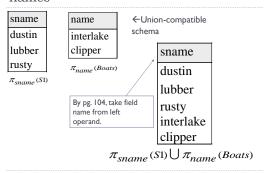
Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be union-compatible
- ▶ Same number of fields.
- ▶ Corresponding fields have the same domain (type): integer, real,
- ▶ (We will see that SQL has "type compatibility", so char(10) and char(20) can be union'd, for example, to char(20), and float vs. integer, to float, but relational algebra has this simpler rule)
- What is the schema of result?

Union Example: case of different field names

sid sname rating age 22 dustin 31 lubber 58 rusty

rating	uge		bid	name	color
7	45.0		<u>biu</u>	Harric	COIOI
8	55.5		101	interlake	red
10	35.0		103	clipper	green
na trough cannot nursetly be displayed.		←	Union-	-compatible	•


sname dustin lubber rusty

schema

 π_{sname} (S1)

 π_{sname} (S1) $\bigcup \pi_{name}$ (Boats) = ?

Union Example: case of different field names

Intersection Example

 sid
 sname
 rating
 age

 22
 dustin
 7
 45.0

 31
 lubber
 8
 55.5

 58
 rusty
 10
 35.0

S2			
sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

<u>sid</u>	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

 $S1 \cap S2$

Set-Difference Example

S1			
<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

<i>S</i> 2			
sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

22 dustin 7 45.0)						
S1-S2							

Example Schema

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

	Boats					
<u>bid</u>	name	color				
101	interlake	red				
103	clipper	green				

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Sample Query 1

	Sa	ilors		_			Boats	
<u>sid</u>	sname	rating	age		<u>bi</u>	d	name	color
Reserves								
			sid b	oid	day			

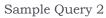
Find names of sailors who've reserved boat #103

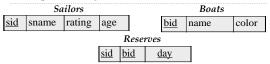
Detail of sailor sid sid, bid in reserves table

 $\pi_{sname}((\sigma_{bid=103}^{} \text{Reserves}) \bowtie Sailors)$

 $\pi_{sname}(\sigma_{bid=103}^{}(\text{Reserves}\bowtie Sailors))$

Example Schema


Sailors


sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats					
<u>bid</u>	name	color			
101	interlake	red			
103	clipper	green			

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Find names of sailors who've reserved a red boat

Detail of sailor sid sid, bid ... Detail of boat bid

$$\pi_{sname}(\pi_{sid}((\pi_{bid}(\sigma_{color='red},B))\bowtie R)\bowtie S)$$

$$\pi_{sname}((\sigma_{color='red}^{}Boats)\bowtie Reserves\bowtie Sailors)$$