Conceptual Design – ER Model

- **What are the entities and relationships in a typical application?**
 - What information about these entities and relationships should we store in the database?

- **What are the integrity constraints or business rules**
 - Key constraints
 - Participation constraints

- **Representation through ER diagrams**
 - ER diagrams are then mapped into relational schemas
 - Conversion is fairly mechanical in simple cases, but can be tricky

Entities and Entity Sets

- **Entity** represents a real-world object
 - Characterized using set of attributes
 - Each attribute has a domain – similar to variable types

- **Entity Set** represents collection of similar entities
 - E.g., all employees in an organization
 - All entities in an entity set share same set of attributes

Example from Murach Chap 9 we looked at last time:

- **Entities**: Vendor, Invoice, LineItem
- **Entity Sets**: Vendors, Invoices, LineItems
- **design**→ **Tables**: vendors, invoices, invoice_line_items

Keys

- Each entity set has a **key**
 - Set of attributes that uniquely identify an entity (one entity in the entity set)
 - Multiple **candidate keys** may exist
 - **Primary key** selected among them

Entity Set Representation

- Representation Convention:
 - Entity sets: rectangles
 - Attributes: ovals, with key attributes underlined
 - Edges connect entity sets to attributes
 - Note that each attribute represents a single value: use of "lot" here means each employee has only one parking lot assigned.
Relationships and Relationship Sets

- **Relationship**: Association among two (or more) entities
 - "Gabriel works in the CS department"
 - Entities here: Gabriel in Employees, CS in Departments
 - Can have descriptive attributes: e.g., “since 9/1/2011”
 - But relationship must be fully determined by entities!
 - I.e., the descriptive attributes can’t disqualify a relationship, only add info about it
 - Binary, ternary or multi-way (n-way) relationships

- **Relationship Set**: Collection of similar relationships
 - Contains n-tuples \((e_1, …, e_n)\), where \(e_i\) belongs to entity set \(E_i\)
 - **Instance**: “snapshot” of relationship set at some point in time
 - \((e_1, …, e_n)\), where \(e_1 = (\text{Gabriel, CS}), e_2 = (\text{Betty, CS}), …\)

Visualizing Relationships and Rel. Sets

- Edge = Relationship
- Set of Edges = Relationship Set

Relationship Set Representation

- Representation Convention:
 - Relationship sets: diamonds
 - Edges connect relationship sets to entity sets, and relationship sets to relationship set attributes
 - E-R with this notation was published by P. Chen in 1976 (at M.I.T. at the time)
 - Other notations are also in use: Murach uses “crow’s foot” notation

- **From Chen’s 1976 paper**

A Special Case of Relationship

- An entity set can participate in a relationship set with itself
 - Entities in same set play different roles in the relationship
 - **Role indicators** express the role

Key Constraints

- How many other entities can an entity have a relationship with? (case of binary relationships)

- **Representation Convention**
 - Relationship sets: diamonds
 - Edges connect relationship sets to entity sets, and relationship sets to relationship set attributes
 - E-R with this notation was published by P. Chen in 1976 (at M.I.T. at the time)
 - Other notations are also in use: Murach uses “crow’s foot” notation

- **From Chen’s 1976 paper**

A Special Case of Relationship

- An entity set can participate in a relationship set with itself
 - Entities in same set play different roles in the relationship
 - **Role indicators** express the role

Key Constraints

- How many other entities can an entity have a relationship with? (case of binary relationships)

- **Representation Convention**
 - Relationship sets: diamonds
 - Edges connect relationship sets to entity sets, and relationship sets to relationship set attributes
 - E-R with this notation was published by P. Chen in 1976 (at M.I.T. at the time)
 - Other notations are also in use: Murach uses “crow’s foot” notation

- **From Chen’s 1976 paper**

A Special Case of Relationship

- An entity set can participate in a relationship set with itself
 - Entities in same set play different roles in the relationship
 - **Role indicators** express the role

Key Constraints

- How many other entities can an entity have a relationship with? (case of binary relationships)
Example 1

- **Works_In** relationship: an employee can work in many departments; a dept can have many employees.

\[\text{many-to-many} \]

Example 2, like Murach’s, in Chen notation

- **Member_of** relationship: an employee can be in many committees; a committee can have many employee members.

\[\text{many-to-many} \]

Example 3

- **Manages** relationship: each dept has at most one manager
 - one-to-many from Employees to Departments, or
 - many-to-one from Departments to Employees

Participation Constraints

- **Total vs Partial Participation**
 - **Total:** every department must have a manager
 - “Departments” entity set has total participation in relationship
 - Represented as thickened line
 - Here we don’t assume each department has exactly one manager, so there is no arrow for a key constraint from Departments to Manages
 - **Partial:** not every employee is a manager
 - “Employees” entity set has partial participation, thin line

Participation and Key Constraints

- **Key constraint:** each dept has at most one manager
 - **Total participation:** every dept must have a manager
 - “Departments” entity set has total participation in relationship
 - Represented as thickened line
 - The key constraint is represented by the arrow
 - **Partial participation:** not every employee is a manager and no key constraint, since an employee may manage multiple departments here.
 - “Employees” entity set has partial participation, thin line
Design Choices in the ER Model

- Should a concept be modeled as an entity or an attribute?
 - Will look at an example: address as entity, attribute

- Should a concept be modeled as an entity or a relationship?
 - Example of enrolls:
 - A student enrolls in a class (enrolls is a relationship) or
 - change enrolls to enrollment and consider an enrollment as an entity itself, related to students and classes
 - Similarly with catalog, etc.
 - Hard cases: hierarchies and inheritance
 - Outside the scope of this class

Entity vs. Attribute

- Should address be an attribute of Employees or an entity (connected to Employees by a relationship)?

Example

Design a database for a bank, including information about customers and their accounts. Information about customers includes their name, address, phone and SSN. Accounts have numbers, types (e.g., savings/checking) and balances.

1. Draw the E/R diagram for this database.
2. Modify the E/R diagram such that each customer must have at least one account.
3. Modify the E/R diagram further such that an account can have at most one customer.

Mapping ER to Relational Schemas

- For most part, process is mechanical
 - Some special cases arise in the presence of constraints

Translation from ER to SQL requires:

- Mapping entity sets to tables
- Mapping relationship sets to tables
- Capturing key constraints
- Capturing participation constraints (not always possible)
Entity Sets to Tables

CREATE TABLE Employees
(ssn CHAR(11),
 name CHAR(20),
 lot INTEGER,
 PRIMARY KEY (ssn))

Relationship Sets to Tables (Sec. 3.5.2)

- "No-constraints" case follows simple rules
 - This means primary keys for the entities are known, but no rules such as "only one manager for a department"
- Relationship set becomes a relation, attributes include:
 - Keys for each participating entity set (as foreign keys pointing to respective entity table)
 - All descriptive attributes for relationship
 - Primary key of relationship set table is the composite of primary keys for the entity sets

CREATE TABLE Works_In
(ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

What if there are Key Constraints?

- Each department has at most one manager, according to the key constraint on Manages represented by the arrow.

Relationship Sets to Tables: ternary case

CREATE TABLE Works_In2
(ssn CHAR(11),
did INTEGER,
address CHAR(20),
since DATE,
PRIMARY KEY (ssn, did, address),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments,
FOREIGN KEY (address) REFERENCES Locations)

Variant 1 for “Each department has at most one manager” key constraint on Manages

- Variant 1: Map relationship to its own table:
 - Note that did is the key now!
 - That means we can’t have two rows here for one department, pointing to two managers for that department.
 - Note this allows a department without a manager: it would simply be missing from this table.

CREATE TABLE Manages
(ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)
Variant 2 for “Each department has at most one manager” key constraint on Manages

- Since each department has at most one manager, we could instead combine Manages and Departments, i.e., expand Departments a little.
- And use a nullable FK on ssn.
 - A department without a manager would have a null ssn.

```
CREATE TABLE Dept_Mgr(
    did INTEGER,
    dname CHAR(20),
    budget INTEGER,
    ssn CHAR(11), -- note nullable
    since DATE,
    PRIMARY KEY (did),
    FOREIGN KEY (ssn) REFERENCES Employees)
```

Note: this is the more common approach in applications because it’s simpler. Normally we’d call this table simply Departments.

Participation Constraints and Variant 1

- Does every department have a manager?
 - If yes, the participation of Departments in Manages is total
 - Variant 1: has Manages table with all the (did, ssn) links
 - For total participation, every did value in Departments table must appear in a row of the Manages table, but this cannot be controlled in SQL (unless we use complex constraints not available in Oracle)
 - So it turns out that it is NOT possible to capture total participation with Variant 1.
 - The Dept_Mgr variant (Variant 2) is the only way to express total participation, as shown on just-previous slide.
 - With powerful CHECK, could put CHECK (exists (select did from manages)) on Departments—but not available on Oracle

Participation Constraints Summary

- General case (no key constraints)
 - Total participation cannot be enforced unless we use complex constraints not supported in Oracle

- What if there is also a key constraint in place?
 - If the entity set with total participation also has a key constraint, then it is possible to capture total participation
 - But only if “combined” table construction (Variant 2) is used!

Variant 2 for “Each department has exactly one manager” key+participation constraint

- Since each department has at most one manager, we can again combine Manages and Departments.
- i.e., add a column to Departments for the FK to Employees.
- We use a not-null FK on ssn to specify the one manager.

```
CREATE TABLE Dept_Mgr( -- or Departments
    did INTEGER,
    dname CHAR(20),
    budget INTEGER,
    ssn CHAR(11) NOT NULL, -- total participation
    since DATE,
    PRIMARY KEY (did),
    FOREIGN KEY (ssn) REFERENCES Employees)
```

Participation Constraints in SQL: “every department has one manager”: the winning design...

```
CREATE TABLE Dept_Mgr( -- or simply Departments
    did INTEGER,
    dname CHAR(20),
    budget INTEGER,
    ssn CHAR(11) NOT NULL, -- total participation
    since DATE,
    PRIMARY KEY (did),
    FOREIGN KEY (ssn) REFERENCES Employees
) ON DELETE NO ACTION -- the default
```

Weak Entities

- A weak entity can be identified uniquely only by considering the key of another (owner) entity.
 - Owner entity set and weak entity set must participate in a one-to-many relationship set (one owner, many weak entities).
 - Weak entity set must have total participation in this identifying relationship set.
 - The weak entity set and the identifying relationship set are marked with thickened lines.
 - The diamond should have a verb in it: supports? Has? Supports?
 - [Wikipedia article](https://en.wikipedia.org/wiki/Weak_entity) with Orders, OrderItems example

Partial key

```
CREATE TABLE Dependents(
    ssn CHAR(11) NOT NULL
) ON DELETE CASCADE
```

```
CREATE TABLE Policy(
    ssn CHAR(11) NOT NULL
) ON DELETE CASCADE
```

```
CREATE TABLE Employees(
    ssn CHAR(11) PRIMARY KEY
) ON DELETE CASCADE
```
Translating Weak Entity Sets

- Weak entity set and identifying relationship set are translated into a single table.
- When the owner entity is deleted, all owned weak entities must also be deleted.

```sql
CREATE TABLE Dep_Policy (
    pname CHAR(20),
    age INTEGER,
    cost REAL,
    ssn CHAR(11) NOT NULL,
    PRIMARY KEY (pname, ssn),
    FOREIGN KEY (ssn) REFERENCES Employees,
    ON DELETE CASCADE)
```