Bitmaps for the
Data Warehouse

Indexes related to data warehousing

= New indexing techniques: Bitmap indexes, Join indexes, array
representations, compression, precomputation of aggregations, etc.

= E.g., Bitmap index:

1 bit for each
possible value.

sex
'ﬁ
M

custid name sex rating rating
10 {112 |Joe |M |3 100100
10 |[115 |Ram |M |5 100001
01 [|119 |Sue [F |5 |/00001
[0 {|112 |Woo |M |4 {00010

Bitmap Indexes

» A bitmap index uses one bit vector (BV) for each distinct keyval
* The number of bits = #rows

* Example of last slide, 4 rows, 2 columns with bitmap indexes
 Sex=‘M": BV =1101
* Sex=F: BV =0010 Bitmap index for sex column
* Rating = 3, BV =1000
* Rating =4, BV =0001
* Rating =5, BV = 0110 Bitmap index for rating column

* Underlying idea: it’s not hard to convert between a table’s row numbers
and the row RIDs

* RIDs have file#, page#, row# within page, where file# is fixed for one
heap table, and page# ranges from 0 up to some limit.

* For the kind of read-mostly data that bitmap indexes are used, the pages
are full, so the RIDs (page#, row# in a certain file) look like (0,0), (0,1),
(0,2), (1,0), (1,1), ... easily converted to row indexes O, 1, 2, 3,4, 5, ... and
back again

Bitmap Indexes

* Implementation: B+-tree of key values, bitmap for each key
* Size = #tvalues*#rows/8 if not compressed
* Bitmaps can be compressed, done by Oracle and others

* Main restriction: slow row insert/delete, so NG for OLTP
e But great for data warehouses:
» Data warehouses are updated only periodically, traditionally

* Low cardinality (#values in column) a clear fit
* Example: rating, with 10 values

* But in fact, cardinality can be fairly high with compression
* Oracle example: bitmap index on unique column!

http://www.oracle.com/technetwork/articles/sharma-indexes-093638.html

Bitmap Indexes

» Oracle: create bitmap index sexx on custs(sex);
* Bitmap indexes can be used with AND and OR predicates
* Example
Select name from sailors s
where s.rating = 10 and sex = ‘M’ or sex = ‘F’
BV1 BV2 BV3

ResultBV = BV1 & BV2 | BV3

* Each bit on in ResultBV shows a row that satisfies the predicate

* Loop through on-bits, finding rows and output name

Oracle Bitmap index plan

EXPLAIN PLAN FOR SELECT * FROM t WHERE c1 =2 AND c2 <> 6 OR c3 BETWEEN 10 AND 20;

EXPLAIN PLAN FOR
SELECT * FROM t WHERE c1 =2 AND c2 <> 6 OR c3 BETWEEN 10 AND 20;
SELECT STATEMENT
TABLE ACCESS T BY INDEX ROWID
BITMAP CONVERSION TO ROWID -- get ROWIDs for each on-bit
BITMAP OR --top level OR
BITMAP MINUS --to remove null values of c2
BITMAP MINUS --tocalccl=2ANDc2<>6
BITMAP INDEX C1_IND SINGLE VALUE --c1=2 BV
BITMAP INDEX C2_IND SINGLE VALUE --c2 =6 BV
BITMAP INDEX C2_IND SINGLE VALUE --c2 = null BV (no not null on col)
BITMAP MERGE --merge BV’s over C3 range
BITMAP INDEX C3_IND RANGE SCAN

Oracle Bitmap join index

CREATE BITMAP INDEX sales cust gender bjix ON sales (customers
WHERE sales.cust id = customers.cust id LOCAL;

The following query shows a case using this bitmap join index:

SELECT sales.time id, customers.cust gender, sales.amount
FROM sales, customers

WHERE sales.cust id = customers.cust id;

This Join index has two bitmaps, themselves in the leaves of a little B+-tree:
M: 10110001111... one bitfor each row of sales table
F: 01001110000...

Here the join is replaced by f _rid to row# to gender lookup using the join index.

TIME_ID C AMOUNT

01-JAN-98 M 2291
01-JAN-98 F 114
01-JAN-98 M 553

.cust gender)

FROM sales,

customers

Oracle bitmap join indexes for star g’s

SELECT store.sales district, time.fiscal period, SUM(sales.dollar sales)
FROM sales, store, time

WHERE sales.store key = store.store key AND sales.time key = time.time key
AND store.sales district IN ('San Francisco', 'Los Angeles') AND
time.fiscal period IN ('3Q95', '4Q95', '1Q96")

GROUP BY store.sales district,time.fiscal period,

* Here, could use a bitmap join index on store.sales_district and another on time.fiscal_period.

* Then Oracle could OR the SF and LA bitmaps, and OR the three fiscal_period bitmaps, then
AND the two bit vectors together to obtain a foundset on the fact table.

Bitmaps for star schemas

* Bitmaps can be AND’d and OR'd
* So bitmaps on dimension tables are helpful
e But often not so crucial since dimension tables are often small

* Real problem is dealing with the huge the fact table: that’s where the bitmap join indexes
come to the rescue.

* Or, alternatively, bitmap indexes on the FK columns.

Bitmaps for star schemas

* The dimension tables are not large, maybe 100 rows

* Thus the FK columns in the fact table have only 100 values

* Bitmap indexes can pinpoint rows once determined.

* Bitmaps can be AND’d and OR’d

* Example: calendar quarter desc IN('1999-01','1999-02")

* matches say 180 days in time table, so 180 FK values in fact’s time_key column

* OR together the 180 bitmaps, get a bit-vector locating all fact rows that satisfy this predicate

Bitmaps for Star Schemas

* OK, so get one bit-vector for matching times, BVT
 Similarly, get another bit-vector for matching stores, BVS

* Another for matching products, BVP

Result = BVT&BVS&BVP
* If result has 100 bits on or less, it’s a “Needle-in-the-haystack” query, answer in <= 100 i/os, about 1 sec.

* |f result has 10,000 bits on, time <= 100 sec, still tolerable
* If result has more, this simple approach isn’t so great

* Note we can quickly determine the number of results, so count(*) doable even when select ...
is too costly.

Bitmap steps of star query plan

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

BITMAP CONVERSION TO ROWIDS |
BITMAP AND
BITMAP MERGE
BITMAP KEY ITERATION
BUFFER SORT
TABLE ACCESS FULL
BITMAP INDEX RANGE SCAN
BITMAP MERGE |
BITMAP KEY ITERATION |
BUFFER SORT |
TABLE ACCESS FULL |
BITMAP INDEX RANGE SCAN |
BITMAP MERGE |
BITMAP KEY ITERATION |
BUFFER SORT |
TABLE ACCESS FULL |
BITMAP INDEX RANGE SCAN |
TABLE ACCESS BY USER ROWID |

CHANNELS
SALES CHANNEL BIX

TIMES
SALES TIME BIX

CUSTOMERS
SALES CUST BIX
SALES

http://docs.oracle.com/cd/E16655_01/server.121/e15858/tgsql_transform.htm

