
5/2/2018

1

Bitmaps for the
Data Warehouse

Indexes related to data warehousing

 New indexing techniques: Bitmap indexes, Join indexes, array
representations, compression, precomputation of aggregations, etc.

 E.g., Bitmap index:

sex custid name sex rating ratingBit-vector:

1 bit for each

possible value.

Many queries can

be answered using

bit-vector ops!

M
F

Bitmap Indexes
• A bitmap index uses one bit vector (BV) for each distinct keyval

• The number of bits = #rows

• Example of last slide, 4 rows, 2 columns with bitmap indexes
• Sex = ‘M’: BV = 1101
• Sex = ‘F’: BV = 0010
• Rating = 3, BV = 1000
• Rating = 4, BV = 0001
• Rating = 5, BV = 0110

• Underlying idea: it’s not hard to convert between a table’s row numbers
and the row RIDs

• RIDs have file#, page#, row# within page, where file# is fixed for one
heap table, and page# ranges from 0 up to some limit.

• For the kind of read-mostly data that bitmap indexes are used, the pages
are full, so the RIDs (page#, row# in a certain file) look like (0,0), (0,1),
(0,2), (1,0), (1,1), … easily converted to row indexes 0, 1, 2, 3, 4, 5, … and
back again

Bitmap index for sex column

Bitmap index for rating column

Bitmap Indexes

• Implementation: B+-tree of key values, bitmap for each key

• Size = #values*#rows/8 if not compressed

• Bitmaps can be compressed, done by Oracle and others

• Main restriction: slow row insert/delete, so NG for OLTP
• But great for data warehouses:

• Data warehouses are updated only periodically, traditionally

• Low cardinality (#values in column) a clear fit
• Example: rating, with 10 values

• But in fact, cardinality can be fairly high with compression

• Oracle example: bitmap index on unique column!

Bitmap Indexes

• Oracle: create bitmap index sexx on custs(sex);

• Bitmap indexes can be used with AND and OR predicates

• Example

Select name from sailors s

where s.rating = 10 and sex = ‘M’ or sex = ‘F’

BV1 BV2 BV3

ResultBV = BV1 & BV2 | BV3

• Each bit on in ResultBV shows a row that satisfies the predicate

• Loop through on-bits, finding rows and output name

Oracle Bitmap index plan

• EXPLAIN PLAN FOR SELECT * FROM t WHERE c1 = 2 AND c2 <> 6 OR c3 BETWEEN 10 AND 20;

•

• EXPLAIN PLAN FOR

• SELECT * FROM t WHERE c1 = 2 AND c2 <> 6 OR c3 BETWEEN 10 AND 20;

• SELECT STATEMENT

• TABLE ACCESS T BY INDEX ROWID

• BITMAP CONVERSION TO ROWID -- get ROWIDs for each on-bit

• BITMAP OR --top level OR

• BITMAP MINUS --to remove null values of c2

• BITMAP MINUS -- to calc c1 = 2 AND c2 <> 6

• BITMAP INDEX C1_IND SINGLE VALUE --c1= 2 BV

• BITMAP INDEX C2_IND SINGLE VALUE --c2 = 6 BV

• BITMAP INDEX C2_IND SINGLE VALUE --c2 = null BV (no not null on col)

• BITMAP MERGE --merge BV’s over C3 range

• BITMAP INDEX C3_IND RANGE SCAN

http://www.oracle.com/technetwork/articles/sharma-indexes-093638.html

5/2/2018

2

Oracle Bitmap join index

CREATE BITMAP INDEX sales_cust_gender_bjix ON sales(customers.cust_gender) FROM sales, customers

WHERE sales.cust_id = customers.cust_id LOCAL;

The following query shows a case using this bitmap join index:
SELECT sales.time_id, customers.cust_gender, sales.amount

FROM sales, customers

WHERE sales.cust_id = customers.cust_id;

This Join index has two bitmaps, themselves in the leaves of a little B+-tree:

M: 10110001111... one bit for each row of sales table

F: 01001110000...

Here the join is replaced by f_rid to row# to gender lookup using the join index.
TIME_ID C AMOUNT

--------- - ----------

01-JAN-98 M 2291

01-JAN-98 F 114

01-JAN-98 M 553

...

Oracle bitmap join indexes for star q’s

SELECT store.sales_district, time.fiscal_period, SUM(sales.dollar_sales)

FROM sales, store, time

WHERE sales.store_key = store.store_key AND sales.time_key = time.time_key

AND store.sales_district IN ('San Francisco', 'Los Angeles') AND
time.fiscal_period IN ('3Q95', '4Q95', '1Q96')

GROUP BY store.sales_district,time.fiscal_period;

• Here, could use a bitmap join index on store.sales_district and another on time.fiscal_period.

• Then Oracle could OR the SF and LA bitmaps, and OR the three fiscal_period bitmaps, then
AND the two bit vectors together to obtain a foundset on the fact table.

Bitmaps for star schemas

• Bitmaps can be AND’d and OR’d

• So bitmaps on dimension tables are helpful

• But often not so crucial since dimension tables are often small

• Real problem is dealing with the huge the fact table: that’s where the bitmap join indexes
come to the rescue.

• Or, alternatively, bitmap indexes on the FK columns.

Bitmaps for star schemas

• The dimension tables are not large, maybe 100 rows

• Thus the FK columns in the fact table have only 100 values

• Bitmap indexes can pinpoint rows once determined.

• Bitmaps can be AND’d and OR’d

• Example: calendar_quarter_desc IN('1999-01','1999-02')

• matches say 180 days in time table, so 180 FK values in fact’s time_key column

• OR together the 180 bitmaps, get a bit-vector locating all fact rows that satisfy this predicate

Bitmaps for Star Schemas

• OK, so get one bit-vector for matching times, BVT

• Similarly, get another bit-vector for matching stores, BVS

• Another for matching products, BVP

Result = BVT&BVS&BVP
• If result has 100 bits on or less, it’s a “Needle-in-the-haystack” query, answer in <= 100 i/os, about 1 sec.

• If result has 10,000 bits on, time <= 100 sec, still tolerable

• If result has more, this simple approach isn’t so great

• Note we can quickly determine the number of results, so count(*) doable even when select …
is too costly.

Bitmap steps of star query plan

• | 9 | BITMAP CONVERSION TO ROWIDS|

• | 10 | BITMAP AND |

• | 11 | BITMAP MERGE |

• | 12 | BITMAP KEY ITERATION |

• | 13 | BUFFER SORT |

• |* 14 | TABLE ACCESS FULL | CHANNELS

• |* 15 | BITMAP INDEX RANGE SCAN| SALES_CHANNEL_BIX

• | 16 | BITMAP MERGE |

• | 17 | BITMAP KEY ITERATION |

• | 18 | BUFFER SORT |

• |* 19 | TABLE ACCESS FULL | TIMES

• |* 20 | BITMAP INDEX RANGE SCAN| SALES_TIME_BIX

• | 21 | BITMAP MERGE |

• | 22 | BITMAP KEY ITERATION |

• | 23 | BUFFER SORT |

• |* 24 | TABLE ACCESS FULL | CUSTOMERS

• |* 25 | BITMAP INDEX RANGE SCAN| SALES_CUST_BIX

• | 26 | TABLE ACCESS BY USER ROWID | SALES

http://docs.oracle.com/cd/E16655_01/server.121/e15858/tgsql_transform.htm

