
Databases and Big Data Today

CS634
Class 22

Current types of Databases

 SQL using relational tables: still very important!

 NoSQL, i.e., not using relational tables: term “NoSQL” popular
since about 2007. May have SQL layered on top.

 Key-Value Stores

 Dictionary or “Hash”: key selects “value”, which can have multiple fields,
but data not typed, or homogeneous, and contains no links to other data.

 Document Stores

 Document here means semi-structured data, in XML, JSON, BSON
(binary JSON), or YAML. Each document has a unique id and is self-
contained, so no links to parts.

 Graph Databases

 Have nodes and edges, and both can have properties, so supports linkage.

 Wide Column Stores

 Have tables, but not full relational setup

Important NoSQL Systems
Key-Value Stores

 Redis: in-memory data with journal (log), can do transactions with careful
programming

 Memcached: cache in that it drops data to stay within memory bound

Document Stores
 Mongodb: stores BSON, supports types, provides atomic writes, very difficult

multi-document transactions now, but better system promised for summer

 Couchdb, others, less popular but in wide use

Graph Databases
 Neo4J the predominant system, supports 9 datatypes, transactions

Wide Column Stores
 Apache HBase: Part of Hadoop project, uses Hadoop’s distributed filesystem

(HDFS) for data (typically in a datalake)

 Apache Cassandra: also big data related. Not part of Hadoop project but
supports Hadoop jobs

 Note: Hadoop is not a database, but rather is “a framework that allows for the
distributed processing of large data sets across clusters of computers”, i.e., the
user has to program the processing rather than use a query language

Hbase queries: from cloudera docs
Scan all rows of table 't1'

hbase> scan 't1'

Specify a startrow, limit the result to 10 rows, and only return
selected columns

hbase> scan 't1', {COLUMNS => ['c1', 'c2'], LIMIT => 10, STARTROW
=> 'xyz'}

Specify a timerange

hbase> scan 't1', {TIMERANGE => [1303668804, 1303668904]}

Specify a custom filter

hbase> scan 't1', {FILTER =>
org.apache.hadoop.hbase.filter.ColumnPaginationFilter.new(1, 0)}

https://www.cloudera.com/documentation/enterprise/5-4-x/topics/admin_hbase_scanning.html

Apache Hadoop

 Scalable fault-tolerant distributed system for Big Data:
 Data Storage

 Data Processing

 Borrowed concepts/Ideas from Google; Open source under the Apache license

 Core Hadoop has two main systems:
 Hadoop/MapReduce: distributed big data processing infrastructure

(abstract/paradigm, fault-tolerant, schedule, execution)

 HDFS (Hadoop Distributed File System): fault-tolerant, high-bandwidth,
high availability distributed storage

 More recently (since 2014): Apache Spark on Hadoop/HDFS and
directly on HDFS (“standalone”)
 Allows more flexibility in programming than MapReduce

 Can use memory more effectively, so can be much faster on some tasks

 Originally developed (2011+) at the University of California,
Berkeley's AMPLab, the Spark codebase was at this point donated to
Apache (open source).

 Spark supports Scala, Java, Python, and R.

https://en.wikipedia.org/w/index.php?title=AMPLab&action=edit&redlink=1

Example: word counts
Millions of documents in

Word counts out:
brown, 2

fox, 2

how, 1

now, 1

the, 3 …

In practice, before MapReduce/Spark and related

technologies:

The first 10 computers are easy;

The first 100 computers are hard;

The first 1000 computers are impossible;

But now with MapReduce and Spark, data scientists often

use 10000 computers!

What’s wrong with 1000 computers?

Some will crash while you’re working…

If probability of crash = .001

Then probability of all up = (1-.001)1000 = 0.37

MapReduce and Spark systems expect crashes, tracks

partial work, keep going

Typical Large-Data Problem

 Iterate over a large number of records

 Extract something of interest from each

 Shuffle and sort intermediate results

 Aggregate intermediate results

 Generate final output

Key idea: provide a functional abstraction for these two

operations

(Dean and Ghemawat, OSDI 2004)

MapReduce and Spark
 MapReduce programmers specify two functions:

map (k, v) → [(k’, v’)]
reduce (k’, [v’]) → [(k’, v’’)] or simpler
 All values with the same key (k’) are sent to the same reducer, in k’

order for each reducer
 Here [] means a sequence

 The execution framework handles everything else…
 Spark: has map, reduce as operations, plus others.
 Spark program (words.scala in Scala) for wordcount, from

Wikipedia’s Spark page (assuming vars conf and sc are already set
up)

val data = sc.textFile("gs://…some file")

val tokens = data.flatMap(_.split(" "))

val wordFreq = tokens.map((_, 1)).reduceByKey(_ + _)
wordFreq.sortBy(s => -s._2).map(x => (x._2, x._1)).top(10)

 See “map” and “reduceByKey” here, so this Spark program is just
using map/reduce programming.

https://en.wikipedia.org/wiki/Apache_Spark

Word Count Execution

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduc

e

Reduc

e

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

the, 1

fox, 1

the, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

brown: 1,1

fox: 1,1

how:1

now:1

the:1,1,1

ate: 1

cow: 1

mouse: 1

quick: 1

Google Cloud has ProcData (under BigData)

 Spin up a Hadoop cluster in 2 minutes!

 Just as easy as creating a VM (easier, because you already have the

billing account set up)

 Look in Home>BigData>Procdata

 Can try out Spark on Hadoop.

 See https://cloud.google.com/dataproc/docs/quickstarts/quickstart-

console

https://cloud.google.com/dataproc/docs/quickstarts/quickstart-console

Running words.scala on Google Procdata

Running words.scala, the Spark word-count program just seen, using a Python hello-

world source as input file:

eoneil@cluster-eon-m:~$ spark-shell -i words.scala

Loading words.scala...

res0: Array[(Int, String)] = Array((3,=), (1,words),

(1,sorted(rdd.collect())), (1,sc.parallelize(['Hello,',), (1,sc),

(1,rdd), (1,pyspark.SparkContext()), (1,pyspark),

(1,print(words)), (1,import)) the results

The input file: see 3 “=“ words, etc.:

#!/usr/bin/python

import pyspark

sc = pyspark.SparkContext()

rdd = sc.parallelize(['Hello,', 'world!'])

words = sorted(rdd.collect())

print(words)

Running this python file: Use “submit-spark hello-world.py” or paste into an interactive session

started with “pyspark”.

Spark can access RDBs too
Sqltest.scala, using JDBC to access table in my VM’s mysql:
import org.apache.spark.sql.SQLContext

val url = "jdbc:mysql://10.142.0.2:3306/firstdb" // JDBC URL sqlContext =
new org.apache.spark.sql.SQLContext(sc)

val df = sqlContext.read.format("jdbc"). // DataFrame object
option("url", url).option("user", "user").
option("password","pass123").option("dbtable", "Persons").
load()

val countsByCity = df.groupBy("City").count()

countsByCity.show

+------------+-----+
| City|count|
+------------+-----+
|Johannesburg| 1|
+------------+-----+

 Spark’s ability to access both unstructured data from the data lake
and structured data from the RDBs make it a powerful tool

 Tutorial on Spark SQL

 It can access its data using SQL 2003, a more complete SQL than
mysql has.

https://www.tutorialspoint.com/spark_sql/spark_sql_quick_guide.htm
https://spark.apache.org/releases/spark-release-2-0-0.html

From Infoworld Article (Oct., 2017)

Initially open-sourced in 2012 and followed by its first stable release two

years later, Apache Spark quickly became a prominent player in the big

data space. Since then, its adoption by big data companies has been on

the rise at an eye-catching rate.

https://www.infoworld.com/article/3216144/spark/the-rise-and-predominance-of-apache-spark.html

