
Databases and Big Data Today

CS634
Class 22

Current types of Databases

 SQL using relational tables: still very important!

 NoSQL, i.e., not using relational tables: term “NoSQL” popular
since about 2007. May have SQL layered on top.

 Key-Value Stores

 Dictionary or “Hash”: key selects “value”, which can have multiple fields,
but data not typed, or homogeneous, and contains no links to other data.

 Document Stores

 Document here means semi-structured data, in XML, JSON, BSON
(binary JSON), or YAML. Each document has a unique id and is self-
contained, so no links to parts.

 Graph Databases

 Have nodes and edges, and both can have properties, so supports linkage.

 Wide Column Stores

 Have tables, but not full relational setup

Important NoSQL Systems
Key-Value Stores

 Redis: in-memory data with journal (log), can do transactions with careful
programming

 Memcached: cache in that it drops data to stay within memory bound

Document Stores
 Mongodb: stores BSON, supports types, provides atomic writes, very difficult

multi-document transactions now, but better system promised for summer

 Couchdb, others, less popular but in wide use

Graph Databases
 Neo4J the predominant system, supports 9 datatypes, transactions

Wide Column Stores
 Apache HBase: Part of Hadoop project, uses Hadoop’s distributed filesystem

(HDFS) for data (typically in a datalake)

 Apache Cassandra: also big data related. Not part of Hadoop project but
supports Hadoop jobs

 Note: Hadoop is not a database, but rather is “a framework that allows for the
distributed processing of large data sets across clusters of computers”, i.e., the
user has to program the processing rather than use a query language

Hbase queries: from cloudera docs
Scan all rows of table 't1'

hbase> scan 't1'

Specify a startrow, limit the result to 10 rows, and only return
selected columns

hbase> scan 't1', {COLUMNS => ['c1', 'c2'], LIMIT => 10, STARTROW
=> 'xyz'}

Specify a timerange

hbase> scan 't1', {TIMERANGE => [1303668804, 1303668904]}

Specify a custom filter

hbase> scan 't1', {FILTER =>
org.apache.hadoop.hbase.filter.ColumnPaginationFilter.new(1, 0)}

https://www.cloudera.com/documentation/enterprise/5-4-x/topics/admin_hbase_scanning.html

Apache Hadoop

 Scalable fault-tolerant distributed system for Big Data:
 Data Storage

 Data Processing

 Borrowed concepts/Ideas from Google; Open source under the Apache license

 Core Hadoop has two main systems:
 Hadoop/MapReduce: distributed big data processing infrastructure

(abstract/paradigm, fault-tolerant, schedule, execution)

 HDFS (Hadoop Distributed File System): fault-tolerant, high-bandwidth,
high availability distributed storage

 More recently (since 2014): Apache Spark on Hadoop/HDFS and
directly on HDFS (“standalone”)
 Allows more flexibility in programming than MapReduce

 Can use memory more effectively, so can be much faster on some tasks

 Originally developed (2011+) at the University of California,
Berkeley's AMPLab, the Spark codebase was at this point donated to
Apache (open source).

 Spark supports Scala, Java, Python, and R.

https://en.wikipedia.org/w/index.php?title=AMPLab&action=edit&redlink=1

Example: word counts
Millions of documents in

Word counts out:
brown, 2

fox, 2

how, 1

now, 1

the, 3 …

In practice, before MapReduce/Spark and related

technologies:

The first 10 computers are easy;

The first 100 computers are hard;

The first 1000 computers are impossible;

But now with MapReduce and Spark, data scientists often

use 10000 computers!

What’s wrong with 1000 computers?

Some will crash while you’re working…

If probability of crash = .001

Then probability of all up = (1-.001)1000 = 0.37

MapReduce and Spark systems expect crashes, tracks

partial work, keep going

Typical Large-Data Problem

 Iterate over a large number of records

 Extract something of interest from each

 Shuffle and sort intermediate results

 Aggregate intermediate results

 Generate final output

Key idea: provide a functional abstraction for these two

operations

(Dean and Ghemawat, OSDI 2004)

MapReduce and Spark
 MapReduce programmers specify two functions:

map (k, v) → [(k’, v’)]
reduce (k’, [v’]) → [(k’, v’’)] or simpler
 All values with the same key (k’) are sent to the same reducer, in k’

order for each reducer
 Here [] means a sequence

 The execution framework handles everything else…
 Spark: has map, reduce as operations, plus others.
 Spark program (words.scala in Scala) for wordcount, from

Wikipedia’s Spark page (assuming vars conf and sc are already set
up)

val data = sc.textFile("gs://…some file")

val tokens = data.flatMap(_.split(" "))

val wordFreq = tokens.map((_, 1)).reduceByKey(_ + _)
wordFreq.sortBy(s => -s._2).map(x => (x._2, x._1)).top(10)

 See “map” and “reduceByKey” here, so this Spark program is just
using map/reduce programming.

https://en.wikipedia.org/wiki/Apache_Spark

Word Count Execution

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduc

e

Reduc

e

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

the, 1

fox, 1

the, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

brown: 1,1

fox: 1,1

how:1

now:1

the:1,1,1

ate: 1

cow: 1

mouse: 1

quick: 1

Google Cloud has ProcData (under BigData)

 Spin up a Hadoop cluster in 2 minutes!

 Just as easy as creating a VM (easier, because you already have the

billing account set up)

 Look in Home>BigData>Procdata

 Can try out Spark on Hadoop.

 See https://cloud.google.com/dataproc/docs/quickstarts/quickstart-

console

https://cloud.google.com/dataproc/docs/quickstarts/quickstart-console

Running words.scala on Google Procdata

Running words.scala, the Spark word-count program just seen, using a Python hello-

world source as input file:

eoneil@cluster-eon-m:~$ spark-shell -i words.scala

Loading words.scala...

res0: Array[(Int, String)] = Array((3,=), (1,words),

(1,sorted(rdd.collect())), (1,sc.parallelize(['Hello,',), (1,sc),

(1,rdd), (1,pyspark.SparkContext()), (1,pyspark),

(1,print(words)), (1,import))  the results

The input file: see 3 “=“ words, etc.:

#!/usr/bin/python

import pyspark

sc = pyspark.SparkContext()

rdd = sc.parallelize(['Hello,', 'world!'])

words = sorted(rdd.collect())

print(words)

Running this python file: Use “submit-spark hello-world.py” or paste into an interactive session

started with “pyspark”.

Spark can access RDBs too
Sqltest.scala, using JDBC to access table in my VM’s mysql:
import org.apache.spark.sql.SQLContext

val url = "jdbc:mysql://10.142.0.2:3306/firstdb" // JDBC URL sqlContext =
new org.apache.spark.sql.SQLContext(sc)

val df = sqlContext.read.format("jdbc"). // DataFrame object
option("url", url).option("user", "user").
option("password","pass123").option("dbtable", "Persons").
load()

val countsByCity = df.groupBy("City").count()

countsByCity.show

+------------+-----+
| City|count|
+------------+-----+
|Johannesburg| 1|
+------------+-----+

 Spark’s ability to access both unstructured data from the data lake
and structured data from the RDBs make it a powerful tool

 Tutorial on Spark SQL

 It can access its data using SQL 2003, a more complete SQL than
mysql has.

https://www.tutorialspoint.com/spark_sql/spark_sql_quick_guide.htm
https://spark.apache.org/releases/spark-release-2-0-0.html

From Infoworld Article (Oct., 2017)

Initially open-sourced in 2012 and followed by its first stable release two

years later, Apache Spark quickly became a prominent player in the big

data space. Since then, its adoption by big data companies has been on

the rise at an eye-catching rate.

https://www.infoworld.com/article/3216144/spark/the-rise-and-predominance-of-apache-spark.html

