I Databases and Big Data Today

CS634
Class 22



Current types of Databases

» SQL using relational tables: still very important!

» NoSQL, i.e., not using relational tables: term “NoSQL” popular
since about 2007. May have SQL layered on top.

Key-Value Stores

Dictionary or “Hash”: key selects “value”, which can have multiple fields,
but data not typed, or homogeneous, and contains no links to other data.

Document Stores

Document here means semi-structured data, in XML, JSON, BSON

(binary JSON), or YAML. Each document has a unique id and is self-
contained, so no links to parts.

Graph Databases

Have nodes and edges, and both can have properties, so supports linkage.
Wide Column Stores

Have tables, but not full relational setup



Important NoSQL Systems

Key-Value Stores

Redis: in-memory data with journal (log), can do transactions with careful
programming

Memcached: cache in that it drops data to stay within memory bound
Document Stores

Mongodb: stores BSON, supports types, provides atomic writes, very difficult
multi-document transactions now, but better system promised for summer

Couchdb, others, less popular but in wide use
Graph Databases

Neo4] the predominant system, supports 9 datatypes, transactions
Wide Column Stores

Apache HBase: Part of Hadoop project, uses Hadoop’s distributed filesystem
(HDFS) for data (typically in a datalake)

Apache Cassandra: also big data related. Not part of Hadoop project but
supports Hadoop jobs

Note: Hadoop is not a database, but rather is “a framework that allows for the
distributed processing of large data sets across clusters of computers”, i.e., the
user has to program the processing rather than use a query language



Hbase queries: from

# Scan all rows of table 'tl'
hbase> scan 'tl'

# Specify a startrow, limit the result to 10 rows, and only return
selected columns

hbase> scan 'tl’, {COLUMNS => ['cl’,'c2'], LIMIT => 10, STARTROW
=> xyz'}

# Specify a timerange
hbase> scan 'tl', {TIMERANGE => [1303668804, 1303668904]}

# Specify a custom filter

hbase> scan 'tl’, {FILTER =>
org.apache.hadoop.hbase filter.ColumnPaginationFilter.new(1, 0)}


https://www.cloudera.com/documentation/enterprise/5-4-x/topics/admin_hbase_scanning.html

Apache Hadoop

» Scalable fault-tolerant distributed system for Big Data:
Data Storage
Data Processing
Borrowed concepts/ldeas from Google; Open source under the Apache license

» Core Hadoop has two main systems:

Hadoop/MapReduce: distributed big data processing infrastructure
(abstract/paradigm, fault-tolerant, schedule, execution)

HDFS (Hadoop Distributed File System): fault-tolerant, high-bandwidth,
high availability distributed storage

» More recently (since 2014): Apache Spark on Hadoop/HDFS and
directly on HDFS (“standalone”)

Allows more flexibility in programming than MapReduce
Can use memory more effectively, so can be much faster on some tasks

Originally developed (201 1+) at the University of California,
Berkeley's , the Spark codebase was at this point donated to
Apache (open source).

Spark supports Scala, Java, Python, and R.


https://en.wikipedia.org/w/index.php?title=AMPLab&action=edit&redlink=1

Example: word counts

Millions of documents in
Word counts out:

brown, 2
fox,
how,
now,
the,

w kL DN

In practice, before MapReduce/Spark and related
technologies:

The first 10 computers are easy;,

The first 100 computers are hard;

The first 1000 computers are impossible;

But now with MapReduce and Spark, data scientists often
use 10000 computers!



What’s wrong with 1000 computers?

Some will crash while you're working...

If probability of crash = .001
Then probability of all up = (1-.001)19%° = 0.37

MapReduce and Spark systems expect crashes, tracks
partial work, keep going



Typical Large-Data Problem

» lterate over a large number of records
A/‘[ﬁlExtract something of interest from each

» Shuffle and sort intermediate results

» Aggregate intermediate resultesd\lce

» Generate final output

Key idea: provide a functional abstraction for these two
operations



MapReduce and Spark

» MapReduce programmers specify two functions:
map (k,v) — [(KK,V)]
reduce (I, [V’]) — [(K,v”)] or simpler
All values with the same key (k’) are sent to the same reducer, in k’
order for each reducer
Here [] means a sequence

» The execution framework handles everything else...
» Spark: has map, reduce as operations, plus others.

> %ark program (words.scala in Scala) for wordcount, from
ikipedia’s (assuming vars conf and sc are already set

up)
val data = sc.textFile("gs://..some file")
val tokens = data.flatMap( .split(" "))

val wordFreq = tokens.map(( , 1)) .reduceByKey( + )
wordFreq.sortBy (s => -s. Z) .map(x => (x. 2, X. 1)) .top(10)

» See “map” and “reduceByKey” here, so this Spark program is just
using map/reduce programming.


https://en.wikipedia.org/wiki/Apache_Spark

Word Count Execution

Input

A

the quick
brown fox

the fox ate
the mouse

how now
brown cow

Map

Shuffle & Sort Reduce

the, 1
brown, 1

brown: 1,1
fox: 1,1
how:1
now:1
the:1,1,1

ate: 1
cow: 1
mouse: 1

Output

[ 4

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1




Google Cloud has ProcData (under BigData)

» Spin up a Hadoop cluster in 2 minutes!

» Just as easy as creating a VM (easier, because you already have the
billing account set up)

» Look in Home>BigData>Procdata
» Can try out Spark on Hadoop.
» See


https://cloud.google.com/dataproc/docs/quickstarts/quickstart-console

Running words.scala on Google Procdata

Running words.scala, the Spark word-count program just seen, using a Python hello-
world source as input file:

eoneil@cluster-eon-m:~$ spark-shell -i words.scala
Loading words.scala...

res0: Array[ (Int, String)] = Array((3,=), (1,words),
(1,sorted(rdd.collect())), (1,sc.parallelize(['Hello,',), (1,sc),
(1,rdd), (1,pyspark.SparkContext()), (1,pyspark),
(1,print(words)), (1,import)) <€ the results

The input file: see 3 “=" words, etc.:

#!/usr/bin/python

import pyspark

sc = pyspark.SparkContext ()

rdd = sc.parallelize(['Hello,', 'world!'])
words = sorted(rdd.collect())

print (words)

Running this python file: Use “submit-spark hello-world.py” or paste into an interactive session
started with “pyspark”.



Spark can access RDBs too

Sqltest.scala, using JDBC to access table in my VM’s mysq|:
import org.apache.spark.sql.SQLContext

val url = "jdbc:mysql://10.142.0.2:3306/firstdb" // JDBC URL sqglContext =
new org.apache.spark.sql.SQLContext (sc)

val df = sqglContext.read.format("jdbc"). // DataFrame object
option("url", url) .option("user", "user").
option ("password", "passl23") .option("dbtable", "Persons").
load()

val countsByCity = df.groupBy ("City") .count()
countsByCity.show

- +-—-—-- +
| City|count|
- +--—-- +
| Johannesburg| 1|
Fomm - +--——- +

» Spark’s ability to access both unstructured data from the data lake
and structured data from the RDBs make it a powerful tool

>

» It can access its data ,a more complete SQL than
mysql has.


https://www.tutorialspoint.com/spark_sql/spark_sql_quick_guide.htm
https://spark.apache.org/releases/spark-release-2-0-0.html

From Infoworld Article (Oct., 2017)

Apacke Sfmrk‘

Iw—memory Processing
SQbl compliav\ce
Immutable data
Laz.'j execution

\ Skreaming

b Data science Li.bro\rv
P o

/ \ \'rask visualization

Initially open-sourced in 2012 and followed by its first stable release two
years later, Apache Spark quickly became a prominent player in the big
data space. Since then, its adoption by big data companies has been on

the rise at an eye-catching rate.



https://www.infoworld.com/article/3216144/spark/the-rise-and-predominance-of-apache-spark.html

