
Midterm Review

CS634

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Coverage

 Text, chapters 8 through 15 (hw1 – hw4)

 PKs, FKs, E-R to Relational: Text, Sec. 3.2-3.5, to pg. 77

inclusive, createdb.sql

 Basics of RAID: Sec. 9.2, Slides of Lecture 3

 SQL for creating and dropping tables (standardized), Not

standardized: create indexes, commands for bulk loading

big tables (Oracle and mysql cases).

Architecture of a DBMS

Data

Disk Space Manager

Buffer Manager

A first course in database systems, 3rd ed, Ullman and Widom

Index/File/Record Manager

Execution Engine: join, sort,…

Query Compiler

User
SQL Query

Query Plan (optimized)

Index and Record requests

Page Commands

Read/Write pages

Disk I/O

3

Lock Manager
Recovery

Manager

Storage Manager,

Chap 8-11

Query Processor
Chap 12-14

Chap 15

Chap 16-18

Disks

Accessing a Disk Block

 Time to access (read/write) a disk block:

 seek time (moving arms to position disk head on track)

 rotational delay (waiting for block to rotate under head)

 transfer time (actually moving data to/from disk surface)

 Seek time and rotational delay dominate for up to about

1MB transfers, and DB pages are smaller than that

 Seek time varies from about 1 to 20msec

 Rotational delay varies from 0 to 10msec

 Transfer rate is about 1msec per 4KB page

 Key to lower I/O cost: reduce seek/rotation delays!

5

Arranging Pages on Disk

 `Next’ block concept:
 blocks on same track, followed by

 blocks on same cylinder, followed by

 blocks on adjacent cylinder

 Logical block numbers of current disks follow this sequence

 Blocks that are accessed together frequently should be
sequential on disk (by `next’), to minimize access time

 Use newly-initialized file systems for DB files to avoid OS file
fragmentation

 For a sequential scan, pre-fetching several pages at a time is a
big win!

6

Important RAID Levels
 Level 0: Striping but no redundancy

 Maximum transfer rate = aggregate bandwidth

 Stripe size can be many blocks, example 256KB

 With N data disks, read/write bandwidth improves up to N times

 Level 1: Mirroring strongly recommended for redo log files
 Each data disk has a mirror image (check disk)

 Parallel reads possible, but a write involves both disks

 Level 0+1: Striping and Mirroring (AKA RAID 10)
 Maximum transfer rate = aggregate bandwidth

 With N data disks, read bandwidth improves up to N times

 Level 5: Block-Interleaved Distributed Parity (in wide use)
 Every disk acts as data disk for some blocks, and check disk for other

blocks
 Most popular of the higher RAID levels (over 0+1).

 Dbs3 has RAID 5, even for redo log file (so not best performance
for actions that change the database)

7

Buffer Management

 Size of buffer pool is a huge factor in performance! And under DBA control.

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame
to replace is
dictated by
replacement
policy

8

Disk Space Manager

Data

File Organization

1. Unsorted, or heap file

 Records stored in random order

2. Sorted according to set of attributes

 E.g., file sorted on <age>

 Or on the combination of <age, salary>

 No single organization is best for all operations

 E.g., sorted file is good for range queries

 But it is expensive to insert records

 We need to understand trade-offs of various organizations

9

Unordered Files: Heap

 Heap

 simplest file structure

 contains records in no particular order

 as file grows and shrinks, disk pages are allocated and de-

allocated

 To support record level operations, we must:

 keep track of the pages in a file

 keep track of free space on pages

 keep track of the records on a page

10

Data Organization

 Index/File/Record Manger provides abstraction of file of
records (or short, file)

 File of records is collection of pages containing records

 A File can be a heap table, a heap table accessed via a certain index, a
sorted table, or a certain index

 File operations

 read/delete/modify a record (specified using record id)

 insert record

 scan all records, search with equality selection, search with range
selection

 Record id functions as data locator

 contains information on the address of the record on disk

 e.g., page and record offset in page

 “search-by-address”

11

QP to Storage Engine API

 Storage Engine works on one “File” at a time, that is, in

one call from the QP, which could be in the middle of

doing a join of two tables, or a sort, or …

 Table scan and index scan are just scans of two kinds of

Files

 Cost models are based on the costs of the various calls

into the Storage Engine, since it does all the disk i/o.

 See Figure 8.4 for various costs.

Indexing, starts in Chap. 8, then

continues in 10 and 11

Alternatives for Data Entry k* in Index

(pg. 276 in Chap 8)

1. Data record with key value k

 Leaf node stores actual record

 Only one such index can be used (without replication)

2. <k, rid> rid of data record with search key value k

 Only a pointer (rid) to the page and record are stored

3. <k, list of rids> list of rids of records with search key k

 Similar to previous method, but more compact

 Disadvantage is that data entry is of variable length

 Don’t worry about this case for exams

 Several indexes with alternatives 2 and 3 may exist

14

Clustered vs. Unclustered Index

 Clustered index: order of data records is close to the sort order

 Here: loaded from ordered data, so records fall in order naturally.

 However, the most common kind of clustered index uses Alternative 1, not
Alternative 2 as shown above, see next slide for picture

 Unclustered: must be Alternative 2 (or 3, but we’re not worrying about that
case)

15

Data entries

(Index File)

(Data file)

Data entries

CLUSTERED,
Alternative 2

UNCLUSTERED

Clustered vs. Unclustered Indexes

 Clustered index: order of data records is close to the sort order

 The most common kind of clustered index uses Alternative 1, as shown

above

 If see “clustered index” without Alternative specified, assume

Alternative 1.

16

Data entries
containing

row data
(Index File)

(Data file)

Data entries

CLUSTERED,
Alternative 1

UNCLUSTERED

B+ Tree

 Most Widely Used Index

 Dynamic data structure (as opposed to ISAM)

 Tree is height-balanced

 Height is log F N (F = fanout, N = # leaf pages)

 Minimum 50% occupancy constraint

 Each node (except root) contains d <= m <= 2d entries

 Parameter d is called the order of the tree

 Search just like in ISAM

 But insert/delete more complex due to occupancy constraint

 Insert/delete may trigger re-structuring at all levels of tree

B+ Tree Example

 Search begins at root, key comparisons direct it to a leaf

Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

B+ Tree Example: Insert 8* (d=2)

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3* 5* 7* 8*

5

Entry to be
inserted in parent

node, “copy-up” 17 24 3013

But root is full!

B+ Tree Example: Insert 8* (d=2)

New root created!

Note that 17 is “pushed
up”; contrast this with

“copy-up” for leaf nodes

17 24 30135

5 24 30

17

13

Example B+ Tree After Inserting 8*

Root was split, leading to increase in height

We can avoid split by re-distributing entries, but his is
usually not done in practice for insertions

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Linear Hashing

 Dynamic hashing scheme

 Handles the problem of long overflow chains

 But does not require a directory!

 Deals well with collisions!

 Main Idea: use a family of hash functions h0, h1, h2, ...

 hi(key) = h(key) mod(2iN)

 N = initial number of buckets

 If N = 2d0, for some d0, hi consists of applying h and looking at the

last di bits, where di = d0 + i

 hi+1 doubles the range of hi (similar to directory doubling)

Overview of Linear Hashing

Levelh

Buckets that existed at the

beginning of this round:

this is the range of

Next

Bucket to be split Levelh (search key value)

(search key value)

Buckets split in this round:

If

is in this range, must use

h Level+1

`split image' bucket.

to decide if entry is in

`split image' buckets:

Linear Hashing Properties

 Directory avoided in LH by using overflow pages

 Buckets are split round-robin

 Splitting proceeds in `rounds’

 Round ends when all NR initial buckets are split (for round R)

 Buckets 0 to Next-1 have been split; Next to NR yet to be split.

 Current round number referred to as Level

 Search for data entry r :

 If hLevel(r) in range `Next to NR’ , search bucket hLevel(r)

 Otherwise, apply hLevel+1(r) to find bucket

Example of Linear Hashing

 On split, hLevel+1 is used to re-distribute entries.

0
hh

1

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents

of the linear hashed

file)

Next=0

PRIMARY

PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

0
hh

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY

PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW

PAGES

43*

00100

After inserting 43*

End of a Round

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=0

PRIMARY
PAGES

OVERFLOW

PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44* 36*

37*29*

30*

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

Level=1

111

11

PRIMARY

PAGES
OVERFLOW

PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

Cost of Operations
 (a) Scan (b) Equality (c) Range (d) Insert (e) Delete

(1) Heap BD 0.5BD BD 2D Search
+D

(2) Sorted BD Dlog 2B D(log 2 B +
pgs with
match recs)

Search
+ BD

Search
+BD

(3)
Clustered

1.5BD Dlog F 1.5B D(log F 1.5B
+ # pgs w.
match recs)

Search
+ D

Search
+D

(4) Unclust.
Tree index

BD(R+0.15) D(1 +
log F 0.15B)

D(log F 0.15B
+ # pgs w.
match recs)

Search
+ 2D

Search
+ 2D

(5) Unclust.
Hash index

BD(R+0.125) 2D BD Search
+ 2D

Search
+ 2D

27

Notes on these costs

 B = # pages of data in file

 D = time for one (random) i/o

 R = # records/page

 Without further info on index size, use 10% table size

 Here, scan of clustered table takes 1.5 BD, where B = #pages
data would take in a heap file, but if B = no of data pages of B-
tree, average of 2/3 full, then should be just BD.

 Similarly, scan of FILE by unclustered tree index = .1(size of
table) + RBD

 Later, we said Size(Clustered index) = 1.1(Size of data), which
really only should be used if the B-tree nodes are full.

 B-tree nodes can be full after bulk load from sorted data.

Sorting

General External Merge Sort

 To sort a file with N pages using B buffer pages:

 Pass 0: use B buffer pages. Produce sorted runs of B pages

each.

 Pass 2, …, etc.: merge B-1 runs.

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

Cost of External Merge Sort

 Number of passes:

 Cost = 2N * (# of passes), assuming we need to read the
input from a FILE and write the output to a FILE.

 Can save some i/o using pipelining in and out.

 Example: with 5 buffer pages, sort 108 page file:

 Pass 0: ceil(108/5) = 22 sorted runs of 5 pages each (last run
is only 3 pages)

 Pass 1: = 6 sorted runs of 20 pages each (last run is
only 8 pages)

 Pass 2: 2 sorted runs, 80 pages and 28 pages

 Pass 3: Sorted file of 108 pages

 1 1 log /B N B

 22 4/

Query Evaluation

Executing Selections

 Find the most selective access path, retrieve tuples using it

 Then, apply any remaining terms that don’t match the index

 Most selective access path: index or file scan estimated to
require the fewest page I/Os

 Consider day<8/9/94 AND bid=5 AND sid=3

 If we have B+ tree index on day, use that access path

 Then, bid=5 and sid=3 must be checked for each retrieved tuple

 day condition is primary conjunct

 Alternatively, use hash index on <bid, sid> first

 Then, day<8/9/94 must then be checked

Example of matching indexes
Pg. 399: fix error Sailors Reserves on line 8

Reserves (sid: integer, bid: integer, day: dates, rname: string)
rname column added here

with indexes:

 Index1: Hash index on (rname, bid, sid)
 Matches: rname=‘Joe’ and bid = 5 and sid=3

 Doesn’t match: rname=‘Joe’ and bid = 5

 Index2: Tree index on (rname, bid, sid)
 Matches: rname=‘Joe’ and bid = 5 and sid=3

 Matches: rname=‘Joe’ and bid = 5, also rname = ‘Joe’

 Doesn’t match: bid = 5

 Index3: Tree index on (rname)

 Index4: Hash index on (rname)
 These two match any conjunct with rname=‘Joe’ in it

Using an Index for Selections

 Cost influenced by:

 Number of qualifying tuples

 Whether the index is clustered or not

 Cost of finding qualifying data entries is typically small

 E.g.,

 Assuming uniform distribution of names, 10% of tuples

qualify, that is 10000 tuples

 With a clustered index, cost is little more 100 I/Os

 If not clustered, up to10K I/Os!

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

Hw4 Problem 2 (15.2, question 1)
NPages(R) = 10000, 8000 usable bytes/page, 20 bytes/data entry

NTuples(R) = 800,000, so 800,000 *20 bytes/secondary index, = 2000 pgs

Reduction Factor (RF) = 0.1

For unclustered indexes, NPages(UI) = 2000

Cost(UI) = (NPages(UI)+NTuples(R)) * product of RF’s of matching predicates

For clustered indexes, the rows lie in the leaf pages, 2000 of them, and the level above
that has 2000 data entries, or 20*2000 bytes = 25 pages. The level above that is the
root.

Alt. 1: NPages(CI) = NLeafPages + NIndexPages = 10,000 + 25 = 10,025.

Alt. 2: NPages(CI) = index size + table size = 2000 + 10,000 = 12,000

Cost(CI) = NPages(CI) * product of RF’s of matching predicates

Index #1: Unclustered hash index on eid

Index #2: Unclustered B+ Tree index on sal

Index #3: Unclustered hash index on age

Index #4: Clustered B+ Tree index on <age, sal>

 See the hw4 solution for further info on this.

Projection with Sorting

 Modify Pass 0 of external sort to eliminate unwanted fields

 Runs of about 2B pages are produced

 Tuples in runs are smaller than input tuples

 Size ratio depends on number and size of fields that are dropped

 Modify merging passes to eliminate duplicates

 Thus, number of result tuples smaller than input

 Difference depends on number of duplicates

 Cost

 In Pass 0, read original relation (size M), write out same number of smaller

tuples

 In merging passes, fewer tuples written out in each pass. Using Reserves

example, 1000 input pages reduced to 250 in Pass 0 if size ratio is 0.25

Projection with Hashing

 Partitioning phase:

 Read R using one input buffer. For each tuple, discard unwanted
fields, apply hash function h1 to choose one of B-1output buffers

 Result is B-1 partitions (of tuples with no unwanted fields), tuples
from different partitions guaranteed to be distinct

 Duplicate elimination phase:

 For each partition, read it and build an in-memory hash table, using
hash h2 on all fields, while discarding duplicates

 If partition does not fit in memory, can apply hash-based projection
algorithm recursively to this partition

 Cost

 Read R, write out each tuple, but fewer fields. Result read in next
phase

Discussion of Projection

 Sort-based approach is the standard

 better handling of skew and result is sorted.

 If index on relation contains all wanted attributes in its

search key, do index-only scan

 Apply projection techniques to data entries (much smaller!)

 If an ordered (i.e., tree) index contains all wanted attributes

as prefix of search key, can do even better:

 Retrieve data entries in order (index-only scan)

 Discard unwanted fields, compare adjacent tuples to check for

duplicates

Simple Nested Loops Join

 For each tuple in the outer relation R, we scan the entire inner

relation S.

 Cost: M + pR * M * N = 1000 + 100*1000*500 I/Os

 Page-oriented Nested Loops join:

 For each page of R, get each page of S, and write out matching pairs

 Cost: M + M*N = 1000 + 1000*500

 If smaller relation (S) is outer, cost = 500 + 500*1000

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result

Block Nested Loops Join

 one page input buffer for scanning the inner S

 one page as the output buffer

 remaining pages to hold ``block’’ of outer R

 For each matching tuple r in R-block, s in S-page, add <r, s> to result.

Then read next R-block, scan S, etc.

. . .

. . .

R & S
Block of R

(B-2 pages)

Input buffer for S Output buffer

. . .

Join Result

Example of NLJ

 Reserves:

 40 bytes long tuple, 100K records, 100 tuples per page, 1000

pages, suppose B+ Tree index on bid, another on sid

 Sailors:

 50 bytes long tuple, 40K tuples, 80 tuples per page, 500 pages,

suppose B+ tree index on sid

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

Examples of Block Nested Loops

 Cost: Scan of outer + #outer blocks * scan of inner
 #outer blocks =

 With Reserves (R) as outer, and 100 pages of R:
 Cost of scanning R is 1000 I/Os; a total of 10 blocks.

 Per block of R, we scan Sailors (S); 10*500 I/Os.

 Total 6000 i/os

 With 100-page block of Sailors as outer:
 Cost of scanning S is 500 I/Os; a total of 5 blocks.

 Per block of S, we scan Reserves; 5*1000 I/Os.
Total 5500 I/Os

 With 50-page block of S as outer (hw4 #1 part 2, S has 200 pages, R has
1000)
 Cost of scanning S is 200 I/Os; a total of 4 blocks.

 Per block of S, we scan Reserves; 4*1000 I/Os.
Total 4,200 I/Os

 # /of pages of outer blocksize

Executing Joins: Index Nested Loops

 Cost = M + (M*pR) * (cost of finding matching S tuples)

 M = number of pages of R, pR = number of R tuples per page

 If relation has index on join attribute, make it inner relation

 For each outer tuple, cost of probing inner index is 1.2 for hash index, 2-4
(say 2 for simplicity) for B+, plus cost to retrieve matching S tuples

 Clustered index:

 Alt 1: typically no more I/Os (data entry has whole row)

 Alt 2: typically single I/O (data entry has RIDs, but target rows are clustered in table)

 Unclustered index 1 I/O per matching S tuple

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Example of Index Nested Loops (1/2)

Case 1: B+tree-index on sid of Sailors

 Choose Sailors as inner relation

 Scan Reserves: 100K tuples, 1000 page I/Os

 For each Reserves tuple

 2 I/Os to get data entry in index (simplifying 2-4 in text)

 No more i/o if clustered Alt 1, 1 I/O to get (the exactly one)

matching Sailors tuple (primary key), clustered Alt 2 or unclustered

 Total: 201,000 or 301,000 I/Os, terrible. 3010 s = 50 min.

Example of Index Nested Loops (2/2)

Case 2: B+ tree-index on sid of Reserves

 Choose Reserves as inner

 Scan Sailors: 40K tuples, 500 page I/Os

 For each Sailors tuple

 2 I/Os to find index page with data entries (simplified from 2-4)

 Assuming uniform distribution, 2.5 matching records per sailor

 Cost of retrieving records is nothing (Alt 1 clustered), single I/O
(Alt. 2 clustered index) or 2.5 I/Os (unclustered index)

 Total: 80,500 I/Os (clustered Alt 1), 120,500 I/Os (clustered
Alt 2) or 180,500 I/Os (unclustered) All bad.

 Better to use block NLJ here, if required to do NLJ.

Sort-Merge Join

 Sort R and S on the join column

 Then scan them to do a merge on join column:

 Advance scan of R until current R-tuple >= current S tuple

 Then, advance scan of S until current S-tuple >= current R tuple

 Repeat until current R tuple = current S tuple

 At this point, all R tuples with same value in Ri (current R group)

and all S tuples with same value in Sj (current S group) match

 Output <r, s> for all pairs of such tuples

 Resume scanning R and S

Sort-Merge Join Cost

 R is scanned once

 Each S group is scanned once per matching R tuple

 Multiple scans per group needed only if S records with same join

attribute value span multiple pages

 Multiple scans of an S group are likely to find needed pages in

buffer

 Cost: (assume B buffers)

 2M (1+log B-1(M/B)) + 2N (1+ log B-1 (N/B)) + (M+N)

 The cost of scanning, M+N, could be M*N worst case (very

unlikely!)

 In many cases, join attribute is primary key in one of the tables!

Sort-Merge Join Cost: hw4 #1, part 3

 R JOIN S on R.a = S.b, where b is the PK of S. B=1500.

 1. Sort R and S on the join column:

 Sort R on a: 100K pages. S on b: 20K pages

 Pass 0: 100K/1500 = 68 runs of 1500 pages; 20K/1500 = 14

 Pass 1: merge 68 runs into one merge 14 into one

 So both are 2-pass sorts, unlike original-problem setup

 Cost = 2*2*M+2*2*N = 4*(100K+20K) = 480K i/os.

 2. Then scan them to do a merge on join column:

 R is scanned once, each row matching one row of S

 Cost = M+N reads (ignore output costs by problem) = 120K i/os

 Total cost = 600K i/os (not 100x old answer!)

 Note: this is not using the optimization which yields 3(M+N) for
2-pass sorts: by that algorithm, cost = 3*120K = 360K i/os.

2-Pass Sort-Merge Join

 With enough buffers, sort can be done in 2 passes

 First pass generates N/B sorted runs of B pages each

 If one page from each run + output buffer fits in memory, then

merge can be done in one pass; denote larger relation by L

 2L/B + 1 <= B, holds if (approx) B >

 One optimization of sort allows runs of 2B on average

 First pass generates N/2B sorted runs of 2B pages each

 Condition above for 2-pass sort becomes B >

 Merge can be combined with filtering of matching tuples

 The cost of sort-merge join becomes 3(M+N)

L2

L

Hash-Join: Partitioning Phase

 Partition both relations using hash function h

 R tuples in partition i will only match S tuples in partition i

B main memory buffers DiskDisk

Original

Relation OUTPUT

2INPUT

1

hash
function

h
B-1

Partitions

1

2

B-1

. . .

Read in a partition of R, hash it using h2 (<> h!)

Scan matching partition of S, search for matches.

Partitions

of R & S

Input buffer
for Si

Hash table for partition

Ri

B main memory buffersDisk

Output

buffer

Disk

Join Result

hash
fn

h2

h2

Hash-Join: Probing Phase

Hash-Join Properties

 #partitions k <= B-1 because one buffer is needed for

scanning input

 Assuming uniformly sized partitions, and maximizing k:

 k= B-1, and M/(B-1) <= B-2, i.e., B >

 M is smaller of the two relations!

 If we build an in-memory hash table to speed up the

matching of tuples, slightly more memory is needed

 If the hash function does not partition uniformly, one or

more R partitions may not fit in memory

 Can apply hash-join technique recursively to do the join of this R-

partition with corresponding S-partition.

M

Cost of Hash-Join

 In partitioning phase, read+write both R and S: 2(M+N)

 In matching phase, read both R and S: M+N

 So Cost with partitioning = 3(M+N)

 With sizes of 1000 and 500 pages, total is 4500 I/Os

 (not counting materialization of result)

 If hash table of one table’s data fits in memory, cost = M+N

 If hash table for a partition doesn’t fit in memory, cost

exceeds above estimate.

Hash-Join vs Sort-Merge Join

 Given sufficient amount of memory both have a cost of

3(M+N) I/Os

 Hash Join superior on this count if relation sizes differ

greatly

 Hash Join shown to be highly parallelizable

 Sort-Merge less sensitive to data skew, and result is sorted

Query Optimization: Chap. 15

CS634
Lecture 12, Mar 9, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Block Optimization

 Block = Unit of optimization

 For each block, consider:
1. All available access methods, for each relation in FROM

clause

2. All left-deep join trees

 all ways to join the relations one-at-a-time

 all relation permutations and join methods

 Recall:

 Left table = outer table of a nested loop join

 Left table of NLJ can be pipelined: rows used one at a time in
order

 But need to consider other join methods too, giving up
pipelining in many cases

Expressions

 Query is simplified to a selection-projection-cross

product expression

 Aggregation and grouping can be done afterwards

 Optimization with respect to such expressions

 Cross-product includes conceptually joins

 Will talk about equivalences in a bit

Size Estimation and Reduction Factors

 Maximum number of tuples is cardinality of cross product

 Reduction factor (RF) associated with each term reflects its

impact in reducing result size

 Implicit assumption that terms are independent!

 col = value has RF =1/NKeys(I), given index I on col

 col1 = col2 has RF = 1/max(NKeys(I1), NKeys(I2))

 col > value has RF = (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Single-Relation Plans

 FROM clause contains single relation

 Query is combination of selection, projection, and aggregates
(possibly GROUP BY and HAVING, but these come late in
the logical progression, so usually less crucial to planning)

 Main issue is to select best from all available access paths
(either file scan or index)

 Access path involves the table and the WHERE clause

 Another factor is whether the output must be sorted

 E.g., GROUP BY requires sorting

 Sorting may be done as separate step, or using an index if an
indexed access path is available

Plans Without Indexes

 Only access path is file scan

 Apply selection and projection to each retrieved tuple

 Projection may or may not use duplicate elimination, depending on
whether there is a DISTINCT keyword present

 GROUP BY:

 Write out intermediate relation after selection/projection

 (or pipeline into sort)

 Sort intermediate relation to create groups

 Apply aggregates on-the-fly per each group

 HAVING also performed on-the-fly, no additional I/O needed

Plans With Indexes

 There are four cases:

1. Single-index access path

 Each index offers an alternative access path

 Choose one with lowest I/O cost

 Non-primary conjuncts, projection, aggregates/grouping applied
next

2. Multiple-index access path

 Each index used to retrieve set of rids

 Rid sets intersected, result sorted by page id

 Retrieve each page only once

 Non-primary conjuncts, projection, aggregates/grouping applied
next

Plans With Indexes (contd.)

3. Index-only access path

 If all attributes in query included in index, then there is no need to

access data records: index-only scan

 If index matches selection, even better: only part of index examined

 Does not matter if index is clustered or not!

 If GROUP BY attributes prefix of a tree index, no need to sort!

 Example: With tree index on rating

 Note count(*) doesn’t require access to row, just RID.

SELECT max(rating),count(*)
FROM Sailors S

Plans With Indexes (contd.)

3. Index-only access path

 If all attributes in query included in index, then there is no need to

access data records: index-only scan

 If index matches selection, even better: only part of index examined

 Does not matter if index is clustered or not!

 If GROUP BY attributes prefix of a tree index, no need to sort!

 Example: With tree index on rating

 Note count(*) doesn’t require access to row, just RID.

SELECT max(rating),count(*)
FROM Sailors S

Queries Over Multiple Relations

 In System R only left-deep join trees are considered

 In order to restrict the search space

 Left-deep trees allow us to generate all fully pipelined plans

 Intermediate results not written to temporary files.

 Not all left-deep trees are fully pipelined (e.g., sort-merge join)

BA

C

D

BA

C

D

C DBA

Left-deep

Enumeration of Left-Deep Plans

 Among all left-deep plans, we need to determine:

 the order of joining relations

 the access method for each relation

 the join method for each join

 Enumeration done in N passes (if N relations are joined):

 Pass 1: Find best 1-relation plan for each relation

 Pass 2: Find best way to join result of each 1-relation plan (as

outer) to another relation - result is the set of all 2-relation plans

 Pass N: Find best way to join result of a (N-1)-relation plan (as

outer) to the N’th relation - result is the set of all N-relation plans

 Speed-up computation using dynamic programming

