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Integrity constraints, relationships

CS634 Lecture 2

Foreign Keys
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Defined in Sec. 3.2.2 without mentioning nulls. Nulls covered in Sec. 5.6

First example: nice not-null foreign key column:

create table enrolled(

studid char(20),

cid  char(20),

grade char(10),

primary key(studid,cid),  -- so both these cols are non-null

foreign key(studid) references students

);

This FK ensures that there’s a real student record for the studid listed in this 

row.

Not-null Foreign Key Example
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create table enrolled(

studid char(20),

cid  char(20),

grade char(10),

primary key(studid,cid),  -- so both these cols are non-null

foreign key(studid) references students

);

Notes:

• studid would more normally be an int, not char(20), although it doesn’t 

matter for small tables.

• cid looks like a key for a class being taken by this student. If so, it 

should have a FK constraint too, and more likely int type.

• We need to load the students table before the enrolled table, and drop 

this table before dropping the students table.

• For mysql, we need to put “references students(sid);” 

Nullable Foreign Key columns 
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create table emp(

eid int primary key,

ename varchar(30) not null,

mgrid int references emp(eid),

age int,

salary decimal(10,2) not null

);

• The big boss has no manager, so null mgrid, yet still is an employee, 

so belongs in the table. Just need nullable FK.

• This gives us a natural example of a FK referencing the same table.

• Also an example of a FK defined in the column definition.

• Note the SQL standard type decimal(10,2), good for any salaries 

up to 8 dollar digits, max $99,999,999.99 , enough for most 

companies.

• The null FK value means that the database skips checking this value. 

There can be multiple null values in general.

Null Foreign Keys: two table example

5

create table emp(

eid int primary key,

ename varchar(30) not null,  // company doesn’t control enames, so can’t make not null

did int not null references dept(did),

age int,

salary decimal(10,2)

);

create table dept(

did int primary key,

dname varchar(20) not null unique,  // company does control dnames…

budget decimal(10,2),

managerid int,

foreign key(managerid) references emp(eid)

);

Here a null managerid means that the department has no manager currently.

To insert a new department, first insert a dept row with null managerid, then move 

some employees to that dept, then make one of them the manager by replacing 

the null managerid with that eid.

Null Foreign Keys: two table example
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create table emp(

eid int primary key,

ename varchar(30) not null,  // company doesn’t control enames, so can’t make not null

did int not null references dept(did),

age int,

salary decimal(10,2)

);

create table dept(

did int primary key,

dname varchar(20) not null unique,  // company does control dnames…

budget decimal(10,2),

managerid int,

foreign key(managerid) references emp(eid)

);

Here a null managerid means that the department has no manager currently.

The dname is not null unique, and thus is a key.

To list each ename and coresponding manager id:

select e.ename, d.managerid from emp e join dept d 

on e.eid = d.managerid

Here the join column is emp.did,  not null, so no surprises
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Null Foreign Keys: two table example
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create table emp(

eid int primary key,

ename varchar(30) not null,  // company doesn’t control enames, so can’t make unique

did int not null references dept(did),

… );

create table dept(

did int primary key,

dname varchar(20) not null unique,  // company does control dnames…

budget decimal(10,2),

managerid int,

foreign key(managerid) references emp(eid)

);

To list managers with their names and department names:

select dname, e.name from dept d, emps e

where d.managerid = e. eid;

Join column = d.managerid,  nullable, so be careful in interpretation…

Suppose the HR department has no manager at the moment—what is listed here?

Nothing!  The department has disappeared from this report.

How to get it listed even with null join key??

Null join key: outer join to the rescue!

8

select dname, e.name from dept d, emps e

where d.managerid = e. eid;

Join column = d.managerid,  nullable, so be careful!

This inner join ignores any null join keys and null doesn’t match null. Of course it 

also ignores rows in either table that don’t match up by join key.

The Outer join (pg. 104) is more forgiving, listing all rows somehow in one or both 

tables.

Need to use JOIN form:  Here to preserve rows in dept, the left table:

select dname, e.name from dept d LEFT OUTER JOIN emps e

on d.managerid = e.eid;

Now HR gets listed with dname and null for e.name.

This extra complication of nullable FKs makes a lot of people nervous about them, 

along with worries about proper implementation in databases, but note that 

mysql/Innodb works fine on this. (Of course Oracle does too.)

Constraint Names: example from Wikipedia
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CREATE TABLE Supplier ( 

SupplierNumber INTEGER NOT NULL, 

Name VARCHAR(20) NOT NULL, 

Address VARCHAR(50) NOT NULL, 

Type VARCHAR(10), 

CONSTRAINT supplier_pk PRIMARY KEY(SupplierNumber), 

CONSTRAINT number_value CHECK (SupplierNumber > 0) )

Useful for later deletion of the constraint:

ALTER TABLE table_name

DROP CONSTRAINT constraint_name;

Check constraint: not supported by mysql

Referential Actions
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CREATE TABLE Invoices (

InvoiceNumber INTEGER NOT NULL,

SupplierNumber INTEGER NOT NULL,

Text            VARCHAR(4096),

CONSTRAINT invoice_pk PRIMARY KEY(InvoiceNumber),

CONSTRAINT inumber_value CHECK (InvoiceNumber > 0),

CONSTRAINT supplier_fk FOREIGN KEY(SupplierNumber)

REFERENCES Supplier(SupplierNumber)

ON UPDATE CASCADE ON DELETE RESTRICT )

• On update cascade: if the supplierNumber in supplier is changed, say 

from 100 to 200, then all the rows in invoices with supplierNumber

= 100 will also be changed to 200.

• On delete restrict: If supplierNumber 100 is deleted in supplier, that 

delete will fail.

• Book, pg. 71: Add RESTRICT, nearly same as NO ACTION, exactly 

the same in mysql, but not offered by Oracle. See article on 

differences (deferred check for NO ACTION) in some other DBs.

Book Example, pg. 71
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CREATE TABLE Enrolled ( studid CHAR(20) ,

cid CHAR(20) ,

grade CHAR(10),

PRIMARY KEY (studid, dd),

FOREIGN KEY (studid) REFERENCES Students

ON DELETE CASCADE

ON UPDATE NO ACTION)

On delete cascade: student deleted means all enrolled rows for 

student deleted. Makes sense: enrollment records are details on 

the student.

On update no action: student studid updated (who has enrolled 

courses): update fails

Foreign Keys added to table
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ALTER TABLE <table identifier>

ADD [ CONSTRAINT <constraint identifier> ]

FOREIGN KEY ( <column expression> )

REFERENCES <table identifier> [ ( <column expression> {, <column 

expression>}... ) ]

[ ON UPDATE <referential action> ]

[ ON DELETE <referential action> ]

Useful for loading tables when there is a cycle in FK relationships.

http://www.vertabelo.com/blog/technical-articles/on-delete-restrict-vs-on-delete-no-action
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Book Example, pg. 72: cycle in non-null FKs
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CREATE TABLE Students ( sid CHAR(20) ,

name CHAR(30), login CHAR (20) ,

age INTEGER, honors CHAR(10) NOT NULL, gpa REAL)

PRIMARY KEY (sid),

FOREIGN KEY (honors) REFERENCES Courses (cid))

CREATE TABLE Courses (cid CHAR(10),

cname CHAR ( 10) , credits INTEGER, grader CHAR(20) NOT NULL,

PRIMARY KEY (dd)

FOREIGN KEY (grader) REFERENCES Students (sid))

Loading: create one table without FK, load it first, then other, then alter table 

to add constraint.

Insert a new course and grader in a transaction: can get constraint checking 

deferred until commit—see pg. 72. In Oracle, enable deferred constraint 

processing by putting “deferrable” at the end of the constraint def, or even 

“deferrable initially deferred” to get it to work without the set command 

shown at the bottom of pg. 72. However, causes poorer query optimization.

E-R Translation to Tables (Sec. 3.5)
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Simplest case: PK of one column, just an entity table, example, pg. 75

Relationship tables: PK has multiple columns.

From pg. 76:

To represent a relationship, we must be able to identify each participating

entity and give values to the descriptive attributes of the relationship.

Thus, the attributes of the relation (the relationship table) include:

• The primary key attributes of each participating entity set, as foreign key

fields.

• The descriptive attributes of the relationship set.

E-R Translation to Tables (Sec. 3.5)
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Most important Relationship: Binary, with two columns in PK of 

relationship table, so two related entities.

Binary Relationships:  Entity            Entity

N-1 relationships can be translated to a FK in one of the tables

Example: each employee has a department, so did is in the emps table, and 

as a FK to dept.  (i.e., don’t need a relationship table for this case, though 

can be used)

N-N relationships are translated to a relationship table, with (key1, key2) 

rows, PK (key1, key2), key1 and key2 with FKs to their entity tables.  There 

can be additional columns.

N-N Relationships and their tables
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Consider student and class entities, and their N-N relationship “enrolled”.  

A student is enrolled in multiple classes, and a class has multiple students. 

create table enrolled(

snum int,                  -- key value in student

cname varchar(40),  --key value in class

primary key(snum,cname), -- two keys, and both are not-null

foreign key(snum) references student(snum),

foreign key(cname) references class(name)

);

We can call this a relationship table, or join table.  When you see a table 

that fits this pattern,  it’s implementing an N-N relationship between the 

pointed-to tables.  If it’s close to this, but missing something, consider if it’s 

right or not.

Example of an entity that looks like a 

relationship
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Concept: a sailor reserves a boat for a certain day (pg. 102)

Use of a verb as its name makes it sound like a pure relationship,  but is it?

create table reserves(

sid int not null,  --key value of sailor table

bid int not null, -- key value of boat table

day varchar(10),  -- day of reservation

foreign key (sid) references sailors(sid),

foreign key (bid) references boats(bid)

);

What is missing from this compared to the N-N relationship table?

Example of an entity that looks like a 

relationship, continued
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Concept: a sailor reserves a boat for a certain day

create table reserves(

sid int not null,  --key value of sailor table

bid int not null, -- key value of boat table

day varchar(10),  -- day of reservation

foreign key (sid) references sailors(sid),

foreign key (bid) references boats(bid)

);

What is missing from this compared to the N-N relationship table????

Answer:  Primary key(sid, bid).

What is the PK here?

Answer:  the set of all columns, the PK of last resort.

The above table schema means one sailor can reserve the same boat for 

different days.  OK, that makes sense.  I’d call this table “reservation” or 

“reservations”,  using a noun to go with its being an entity, not a pure 

relationship.
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Pure relationships can have attributes
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Concept:  a certain part supplied by a certain supplier has a certain 

cost.
create table catalog(

sid int, -- key value in suppliers

pid int, -- key value in parts

cost decimal(10,2),

primary key(sid,pid),

foreign key(sid) references suppliers(sid),

foreign key(pid) references parts(pid)

);

Here we see the pure relationship-table pattern, so we can classify this 

as a pure binary relationship table, in spite of its noun name. So what’s 

cost doing in here?  

It’s an attribute of the relationship:  suppliers supply parts, each with its 

particular cost.  Different suppliers can charge different amounts for 

the same generic part. The PK (sid,pid) means that for a certain pid and 

sid,  we have just one cost.

Catalog: Entity or Relationship?
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Do we have to call catalog a relationship?

No, it’s just that we can call it that.  Any N-N relationship with 

attributes can alternatively be considered an entity with two N-1 

relationships outbound from it.

This flexibility is often used in data modeling environments that don’t 

support attributes of relationships.

The down-side of this alternative is that we can’t express the 

constraint of the PK (sid, pid) in the diagram.

We can draw two E-R diagrams for this…on the board anyway.

Weak entities
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Weak entities: entities that are details of another entity, and depend 

on them for their identity.

That means the PK of the weak entity contains the PK of the related 

entity.

Example, pg. 82, dependents and employees

Concept: an employee may have several dependents, not of interest in 

themselves but only as details of the employee. We may not know 

their SSNs or other unique ids, but that’s OK.

Employee has PK ssn

Dependents has PK (pname, ssn)

FK (ssn) references employees on delete cascade

Weak Entity Example from pg. 82
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CREATE TABLE Dep_Policy (pname CHAR(20) ,

age INTEGER,

cost REAL,

ssn CHAR (11) ,

PRIMARY KEY (pname, ssn),

FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE CASCADE )

An employee can have dependent policies, identified 

by their own ssn along with the dependent’s name.

FK in PK along with relative id pname

Translating class hierarchies
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Example on pg. 83: Employees base class, with HourlyEmps and 

ContractEmps subclasses. OO programming languages make this easy.

In DB, Employees may be Hourly_Emps or Contract_Emps, with 

different attributes needed to describe them beyond the Employee fields.

This is a hard case with several solutions, none perfect. Not covered in 

cs630.

Translating class hierarchies
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Example on pg. 83, continued. 

Employees may be Hourly_Emps or Contract_Emps, with different 

attributes needed to describe them beyond the Employee fields.

• In practice, we often just throw all the needed attributes into the 

employees table and use nulls for fields that aren’t relevant to a particular 

employee. This treatment is not covered in the text.

• It’s important to have a classifier column (here clazz) so it’s clear when 

nulls are appropriate for a column and row.  This setup is easy to query.

Employee(ssn, name, lot, clazz, hourly_wages, hours_worked, contract_id)

not null           ----------------all nullable------------------

• Obviously we are giving up the power of “not null” here!
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Translating class hierarchies
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• A more normalized approach models the IS-A relationship shown in 

the diagram.  

• An Hourly_Emp IS-A Employee,  A Contract_Emp IS-A Employee

• These are to-one relationships, so the Hourly_emp table will have a 

FK to Employees (ssn) as well as the “extra” fields for hourly emp’s.  

Employee(ssn, name, lot, clazz)  (or can do without clazz)

Hourly_Emp(ssn, hourly_wages, hours_worked)

Contract_Emp(ssn, contract_id)

• Here ssn is the PK in hourly_emp as well as in employee, so we have a 

case where a single column (ssn) is both a PK and a FK.

• We no longer have columns forced to be nullable here.  We can use 

“not null” as appropriate for contract_id, etc.

Translating class hierarchies
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The more normalized approach, continued

Employee(ssn, name, lot, clazz)         (or can do without clazz)

Hourly_Emp(ssn, hourly_wages, hours_worked)  (ssn FK to employee)

Contract_Emp(ssn, contract_id)     (ssn FK to employee)

• Though this is more normalized, it is not that easy and fast to query.

• To reconstruct the flat easy-to-query table, we need to join all three 

tables together based on the join key ssn.

• But a simple inner join will end up with no rows because each ssn will 

fail to be in one of the tables.

• What kind of join will work?

Translating class hierarchies
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The more normalized approach, continued

Employee(ssn, name, lot, clazz)         (or can do without clazz)

Hourly_Emp(ssn, hourly_wages, hours_worked)  (ssn FK to employee)

Contract_Emp(ssn, contract_id)     (ssn FK to employee)

• A simple inner join will end up with no rows because each ssn will fail 

to be in one of the tables.

• What kind of join will work?

• Answer: Use an outer join, specifically a left join preserving Employee 

rows:

(Employee e left join hourly_emp h on h.ssn=e.ssn) left join 

contract_emp c on c.ssn=e.ssn;

• Since ssn is a PK of each table, the database will have an index on the 

join column, which we will see is very important for performance. But 

any join is somewhat expensive.

Translating class hierarchies
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• The in-between case, with better performance than the fully 

normalized case, but not as fast as the first way:

Hourly_Emp(ssn, name, lot, hourly_wages, hours_worked) 

Contract_Emp(ssn, name, lot, contract_id)

• Note: no FKs here at all!

• We can use “not null” properly here too.

• To reconstruct the flat easy-to-query table, we need to combine these 

tables—how?

• An inner join will end up with no rows because each ssn will fail to be 

in one of the tables.

• What kind of combo will work?

Translating class hierarchies
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• The in-between case,  continued.

Hourly_Emp(ssn, name, lot, hourly_wages, hours_worked) 

Contract_Emp(ssn, name, lot, contract_id)

• To reconstruct the flat easy-to-query table, we need to combine these 

tables—how?

• Answer: Use UNION, carefully:

select h.ssn, h.name, h.lot, h.hourly_wages, h.hours_worked, null from hourly_emp h 

union

select c.ssn, c.name, c.lot, null, null, c.contract_id from Contract_Emp c

• UNION is typically faster than JOIN, so this is a faster approach.

• However, there’s no way to refer to all employees using a FK. This can be 

done by the other two methods.

• Ref: Java Persistence with Hibernate, by Bauer and King,  Sec 5.1


