
Query Optimization: Chap. 15

CS634
Lecture 12

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Query Evaluation Overview

 SQL query first translated to relational algebra (RA)

 Actually, some additional operators needed for SQL

 Tree of RA operators, with choice of algorithm among

available implementations for each operator

 Main issues in query optimization

 For a given query, what plans are considered?

 Algorithm to search plan space for cheapest (estimated) plan

 How is the cost of a plan estimated?

 Objective

 Ideally: Find best plan

 Practically:Avoid worst plans!

Evaluation Example

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested

Loops)

(On-the-fly)

(On-the-fly)

Annotated Tree

Cost Estimation

For each plan considered, must estimate:

 Cost of each operator in plan tree

 Depends on input cardinalities

 Operation and access type: sequential scan, index scan, joins

 Size of result for each operation in tree

 Use information about the input relations

 For selections and joins, assume independence of predicates

Query Blocks

 SQL query parsed into a collection of query blocks

 Blocks are optimized one at a time

 Nested blocks can be treated as calls to a subroutine

 One call made once per outer tuple

 In some cases cross-block optimization is possible

 A good query optimizer can unnest queries

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
FROM Sailors S2)

Nested block

Outer block

Query Blocks

 In fact this is an uncorrelated subquery: The inner block can

be evaluated once!

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
FROM Sailors S2)

Query Blocks

 Looking for sailors who are of max age in their own rating

group.

 Correlated subquery: each row in S needs its own execution

of the inner block

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
FROM Sailors S2

WHERE S2.rating = S.rating)

Block Optimization

 Block = Unit of optimization

 For each block, consider:
1. All available access methods, for each relation in FROM clause

2. All left-deep join trees

 Left-deep defined pg. 415: right child of each join is a base table

 Start with all ways to join the relations one-at-a-time

 Consider all relation permutations and join methods

 Recall:

 Left table = outer table of a nested loop join

 Left table of NLJ can be pipelined: rows used one at a time in order

 But need to consider other join methods too, giving up pipelining in
many cases

Expressions

 Query is simplified to a selection-projection-cross

product expression

 Aggregation and grouping can be done afterwards

 Optimization with respect to such expressions

 Cross-product includes conceptually joins

 Will talk about equivalences in a bit

Statistics and Catalogs

 To choose an efficient plan, we need information about the

relations and indexes involved

 Catalogs contain information such as:

 Tuple count (NTuples) and page count (NPages) for each relation

 Distinct key value count (NKeys) for each index, INPages

 Index height, low/high key values (Low/High) for each tree index

 Histograms of the values in some fields (optional)

 Catalogs updated periodically

 Approximate information used, slight inconsistency is ok

 Databases provide tools for updating stats on demand

Size Estimation and Reduction Factors

 Maximum number of tuples is cardinality of cross product

 Reduction factor (RF) associated with each term reflects its

impact in reducing result size

 Implicit assumption that terms are independent!

 col = value has RF =1/NKeys(I), given index I on col

 col1 = col2 has RF = 1/max(NKeys(I1), NKeys(I2))

 col > value has RF = (High(I)-value)/(High(I)-Low(I))

 Example: rating > 6 has RF = 4/10 = 0.4

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Histograms

 Most often, data values are not uniformly distributed within

domain

 Skewed distributions result in inaccurate cost estimations

 Histograms

 More accurate statistics

 Break up the domain into buckets

 Store the count of records that fall in each bucket

 Tradeoff

 Histograms are accurate, but take some space

 The more fine-grained the partition, the better accuracy

 But more space required

Histogram Classification

 Equiwidth

 Domain split into equal-length partitions

 Large difference between counts in different buckets

 Dense areas not sufficiently characterized

 Equidepth

 Histograms “adapts” to data distribution

 Fewer buckets in sparse areas, more buckets in dense areas

 Used by Oracle (pg. 485)

Relational Algebra Equivalences

 Why are they important?

 They allow us to:

 Convert cross-products to joins

 Cross products should always be avoided (when possible)

 Choose different join orders

 Recall that choice of outer/inner influences cost

 “Push-down” selections and projections ahead of joins

 When doing so decreases cost

Relational Algebra Equivalences

Selections:

 c cn c cnR R1 1

 c c c cR R1 2 2 1 Commute

Cascade

 Cascade property:

 Allows us to check multiple conditions in same pass

 Allows us to “push down” only partial conditions (when not

possible/advantageous to push entire condition)

Relational Algebra Equivalences

Projections:

 a a anR R1 1 . . . Cascade

If every ai set is included in ai+1,

Example:
a1 = {a,b}, a2 = {a,b,c}
a2(T) has (a, b, c) columns

a1(a2(T)) has (a,b) columns, same as a1(T)

R (S T) (R S) T

Relational Algebra Equivalences

Joins:

 Associative

(R S) (S R) Commute

Sketch of proof:

 Show for cross product

 Add join conditions as selection operators

 Use cascading selections in associative case

Relational Algebra Equivalences

Joins:

Associative

Commute

 Commutative property:

 Allows us to choose which relation is inner/outer

 Associative property:

 Allows us to restrict plans to left-deep only, i.e., any query tree can
be turned into a left-deep tree.

R (S T) (R S) T

(R S) (S R)

Relational Algebra Equivalences

Commuting selections with projections

 Projection can be done before selection if all attributes in the

condition evaluation are retained by the projection

)()(RR acca

Relational Algebra Equivalences

Commute selection with join

 Only if all attributes in condition appear in one relation and not in

the other: c includes only attributes from R

 Condition can be decomposed and “pushed” down before joins

 Here, c1 includes only attributes from R and c2 only attributes

from S

 SRSR cc

 SRSR cccc 2121

Relational Algebra Equivalences

Commute projection with join

 Only if attributes in join condition appear in the corresponding

projection lists (so they aren’t “projected out”)

)(2c1c SRSR aaa

System R Optimizer

 Developed at IBM starting in the 1970’s

 Most widely used currently; works well for up to 10 joins

 Cost estimation

 Statistics maintained in system catalogs

 Used to estimate cost of operations and result sizes

 Query Plan Space

 Only the space of left-deep plans is considered

 Left-deep plans allow output of each operator to be pipelined into

the next operator without storing it in a temporary relation

 Cartesian products avoided

System R Optimizer

 Developed at IBM starting in the 1970’s

 Most widely used currently; works well for up to 10 joins

 Cost estimation

 Statistics maintained in system catalogs

 Used to estimate cost of operations and result sizes

 Query Plan Space

 Only the space of left-deep plans is considered

 Left-deep plans allow output of each operator to be pipelined into

the next operator without storing it in a temporary relation

 Cartesian products avoided

SQL Query Semantics (pg. 136, 156)

1. compute the cross product of tables in FROM

2. delete rows that fail the WHERE clause

3. project out columns not mentioned in select list or
group by or having clauses

4. group rows by GROUP BY

5. apply HAVING to the groups, dropping some out

6. if necessary, apply DISTINCT

7. if necessary, apply ORDER BY

Note this all follows the order of the SELECT clauses,
except for projection and DISTINCT, so it’s not hard to
remember.

Single-Relation Plans

Single-Relation Plans

 FROM clause contains single relation

 Query is combination of selection, projection, and aggregates

(possibly GROUP BY and HAVING, but these come late in

the logical progression, so usually less crucial to planning)

 Main issue is to select best from all available access paths

(either file scan or index)

 Access path involves the table and the WHERE clause

 Another factor is whether the output must be sorted

 E.g., GROUP BY requires sorting (or hashing)

 Sorting may be done as separate step, or using an index if an

indexed access path is available

Plans Without Indexes

 Only access path is file scan

 Apply selection and projection to each retrieved tuple

 Projection may or may not use duplicate elimination, depending on
whether there is a DISTINCT keyword present

 GROUP BY:

 Write out intermediate relation after selection/projection

 (or pipeline into sort)

 Sort intermediate relation to create groups

 Apply aggregates on-the-fly per each group

 HAVING also performed on-the-fly, no additional I/O needed

Plans With Indexes

 There are four cases:

1. Single-index access path

 Each index offers an alternative access path

 Choose one with lowest I/O cost

 Non-primary conjuncts, projection, aggregates/grouping applied next

2. Multiple-index access path

 Each index used to retrieve set of rids

 Rid sets intersected, result sorted by page id

 (Alternatively, join indexes as tables)

 Retrieve each page only once

 Non-primary conjuncts, projection, aggregates/grouping applied next

Plans With Indexes (contd.)

3. Tree-index access path: extra possible use…

 If GROUP BY attributes prefix of tree index, retrieve tuples in

order required by GROUP BY

 Apply selection, projection for each retrieved tuple, then aggregate

 Works well for clustered indexes

Example: With tree index on rating

SELECT count(*), max(age)
FROM Sailors S
GROUP BY rating

Plans With Indexes (contd.)

3. Index-only access path

 If all attributes in query included in index, then there is no need to

access data records: index-only scan

 If index matches selection, even better: only part of index examined

 Does not matter if index is clustered or not!

 If GROUP BY attributes prefix of a tree index, no need to sort!

 Example: With tree index on rating

 Note count(*) doesn’t require access to row, just RID.

SELECT max(rating),count(*)
FROM Sailors S

Example Schema

 Similar to old schema; rname added

 Reserves:

 40 bytes long tuple, 100K records, 100 tuples per page, 1000 pages

 Sailors:

 50 bytes long tuple, 40K tuples, 80 tuples per page, 500 pages

 Assume index entry size 10% of data record size

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Cost Estimates for Single-Relation Plans

 Sequential scan of file:

 NPages(R)

 Index I on primary key matches selection

 Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index

 Clustered index I matching one or more conjuncts:

 NPages(CI) * product of RF’s of matching conjuncts

Quick estimate: Npages(CI) = 1.1*NPages(TableData)

i.e. 10% more for needed keys

 Non-clustered index I matching one or more conjuncts:

 (NPages(I)+NTuples(R)) * product of RF’s of matching conjuncts

Quick estimate: Npages(I) = .1*Npages(R) (10% of data size)

 Note: these formulas are not in the text, but are consistent with the
discussions and examples there.

Example

 File scan: retrieve all 500 pages

 Clustered Index I on rating

(1/NKeys(I)) * (NPages(CI)) = (1/10) * (50+500) pages

 Unclustered Index I on rating

(1/NKeys(I)) * (NPages(I)+NTuples(S)) = (1/10) * (50+40000) pages

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Note: One rating value owns a fraction

(1/10) of the index at all levels, so

#pages accessed = (1/10) Npages(CI)

Or (1/10) Npages(I)

Multiple-Relation Plans

Queries Over Multiple Relations

 In System R only left-deep join trees are considered

 In order to restrict the search space

 Left-deep trees allow us to generate all fully pipelined plans

 Intermediate results not written to temporary files.

 Not all left-deep trees are fully pipelined (e.g., sort-merge join)

BA

C

D

BA

C

D

C DBA

Left-deep

Enumeration of Left-Deep Plans

 Among all left-deep plans, we need to determine:

 the order of joining relations

 the access method for each relation

 the join method for each join

 Enumeration done in N passes (if N relations are joined):

 Pass 1: Find best 1-relation plan for each relation

 Pass 2: Find best way to join result of each 1-relation plan (as
outer) to another relation - result is the set of all 2-relation plans

 Pass N: Find best way to join result of a (N-1)-relation plan (as
outer) to the N’th relation - result is the set of all N-relation plans

 Speed-up computation using dynamic programming
(remember details of good plans to avoid recalc)

 For each subset of relations, retain only:

 Cheapest plan overall, plus

 Cheapest plan for each interesting order of the tuples

 Interesting order: order that allows execution of GROUP BY

without requiring an additional step of sorting, aggregates

 Avoid Cartesian products if possible

 An N-1 way plan is not combined with an additional relation

unless there is a join condition between them

 Exception is case when all predicates in WHERE have been used

up (i.e., query itself requires a cross-product)

 Ex: select … from T1, T2, T3 where T1.x = T2.x

 Only one join condition, 3 tables, so end up with cross product

Enumeration of Left-Deep Plans (contd.)

Cost Estimation for Multi-Relation Plans

 Two components:

1. Size of intermediate relations
 Maximum tuple count is the product of the cardinalities of relations in

the FROM clause

 Reduction factor (RF) associated with each condition term

 Result cardinality estimate = Max # tuples * product of all RF’s

 Example query on next slide:
 Result cardinality estimate = (40K*100K) * ((1/100)*(5/10)*(1/40K)) = 500

 This means we estimate the query returns 500 rows as its result

 It is not a “cost” calculation

 Here 1/40K = RF of join condition, 1/100 assumes 100 boats.

2. Cost of each join operator
 Depends on join method

Example

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND S.rating>5 AND R.bid=100

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

But this is not left-deep!

Pass 1 Single-relation plans

 Sailors

 B+ tree matches rating>5

 Most selective access path

 But index unclustered!

 Sometimes may prefer scan

 Reserves

 B+ tree on bid matches selection bid=100

 Cheapest plan for this table

Note: Here we are evaluating plans as candidates for the leftmost spot in the
final plan

Result of Pass 1: One plan for each table.

Sailors:
Unclustered B+ tree on rating
Unclustered Hash on sid

Reserves:
Unclustered B+ tree on bid

Example

Example

Pass 2

 Consider each plan retained from Pass 1 as the outer, and how

to join it with the (only) other relation

 Sailors outer, Reserves inner

 No index matches join condition, this could be done as block

nested loop

 Reserves outer, Sailors inner

 Since we have hash index on sid for Sailors, this could be a

cheap plan using an indexed nested loop

 This would mean S.rating>5 is done after join.

 Also see discussion of this on pg. 412, point 3

 End up with left-deep plan.

Example, cont. (pipelining not in book)

 Also need to check sort-merge join

 But that requires materialization of input tables, an extra

expense (or use pipelining into sort)

 Need to cost all three competing plans, choose least

expensive

 Note that left-deep plans assume nested-loop joins are in

use, so may miss good hash join plans

 Note on pg. 500: Oracle considers non-left-deep plans to

better utilize hash joins.

Nested Queries

 Nested block is optimized independently, with the outer tuple

considered as providing a selection condition

 Outer block is optimized with the cost of “calling” nested

block computation taken into account

 Implicit ordering of these blocks means that some good

strategies are not considered

 The non-nested version of the query is typically optimized better

Nested Queries

SELECT S.sname
FROM Sailors S
WHERE EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

Equivalent non-nested query:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

AND R.bid=103

