
Transaction Management: 

Introduction (Chap. 16)

CS634
Class 14

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke



What are Transactions?

 So far, we looked at individual queries; in practice, a task 

consists of a sequence of actions

 E.g., “Transfer $1000 from account A to account B”

 Subtract $1000 from account A

 Subtract transfer fee from account A

 Credit $1000 to account B

 A transaction is the DBMS’s view of a user program:

 Must be interpreted as “unit of work”: either entire transaction 

executes, or no part of it executes/has any effect on DBMS

 Two special final actions: COMMIT or ABORT

2



Concurrent Execution

 DBMS receives large numbers of concurrent requests

 Concurrent (or parallel) execution improves performance

 Two transactions are concurrent if they overlap in time.

 Disk accesses are frequent, and relatively slow;  CPU can do a lot of 
work while waiting for the disk, or even SSD

 Goal is to increase/maximize system throughput

 Number of transactions executed per time unit

 Concurrency control

 Protocols that ensure things execute correctly in parallel

 Broad and difficult challenge that goes beyond DBMS realm

 OS, Distributed Programming, hardware scheduling (CPU registers), etc

 Our focus is DBMS, but some principles span beyond DBMS

3



Major Example: the web app

Multi-threaded 
Object layer

Database 

Web layer

Other apps

JDBC

Concurrent web 
requests from 
users

App server(s)

Database server



Web app in execution (CS636)

 To keep transactions executing concurrently, yet isolated 

from each other, each has own objects related to DB data

Transaction 
Thread using 
objects

Database
Cache 
(rows)

Database
On disk

Transaction 
Thread using 
objects

Employee objects

Employee rows



Web app Transactions

 Each application action turns into a database transaction

 A well-designed app has a “service API” describing those 

actions

 A request execution calls the service API one or more times.

 Each service call represents an application action and contains 

a transaction

 Thus transactions are contained in request-response cycles

 This ensures that transactions are short-lived, good for 

performance

 But they still can run concurrently under high-enough load



The web app service API

Multi-threaded 
Object layer

Database 

Web layer

Other apps

JDBC

Concurrent web 
requests from 
users

App server(s)

Database server



ACID Properties

Transaction Management must fulfill four requirements:

1. Atomicity: either all actions within a transaction are carried 
out, or none is

 Only actions of committed transactions must be visible

2. Consistency: concurrent execution must leave DBMS in 
consistent state

3. Isolation: each transaction is protected from effects of other 
concurrent transactions

 Net effect is that of some sequential execution

4. Durability: once a transaction commits, DBMS changes will 
persist

 Conversely, if a transaction aborts/is aborted, there are no effects

8



Roles of Transaction Manager

 Concurrency Control

 Ensuring correct execution in the presence of multiple transactions 

running in parallel

 Crash recovery

 Ensure that atomicity is preserved if the system crashes while one 

or more transactions are still incomplete

 Main idea is to keep a log of operations; every action is logged 

before execution (Write-Ahead Log or WAL)

9



Modeling Transactions

 User programs may carry out many operations …

 Data-related computations

 Prompting user for input, handling web requests

 … but the DBMS is only concerned about what data is 

read/written from/to the database

 A transaction is abstracted by a sequence of time-ordered 

read and write actions

 e.g., R(X), R(Y), W(X), W(Y)

 R=read, W=write, data element in parentheses

 Each individual action is indivisible, or atomic

 SQL UPDATE = R(X) W(X)

10



Important dataflow assumptions

 Transactions interact with one another as they run only via 

database read and write operations.

 No messages exchanged between transactions

 No use of shared memory between transactions

 Oracle, other DBs, enforce this

 Transactions may accept information from the 

environment when they start and return information to 

the environment when they finish by committing. 

 The agent that starts a transaction will come to know whether it 

committed or aborted, and can act on that information.

 Thus it is possible for data to go from one transaction to the 

environment and then to another starting transaction, but note 

that these transactions are not concurrent.



Scheduling Transactions

 Serial schedule: no interleaving of transactions

 Safe, but poor performance!

 Schedule equivalence: two schedules are equivalent if they lead 

to the same state of the DBMS (see footnote on pg. 525 that 

includes values returned to user in relevant ”state”)

 Serializable schedule: schedule that is equivalent to some serial 

execution of transactions

 But still allows interleaving/concurrency!

12



 Same effect as executing T1 completely, then T2

Serializable schedule example

T1: A=A+100,   B=B-100   
T2: A=1.06*A,  B=1.06*B

13



If execution is not serializable…

 Non-serializable concurrent executions can show 

anomalies, i.e., clearly bad behavior

 Let’s look at some examples



 Consider two transactions (in a really bad DB) where A = 100 

 T1 & T2 are concurrent, running same transaction program

 T1& T2 both read old value, 100, add 100, store 200

 One of the updates has been lost!

 Consistency requirement: after execution, A should reflect all 
deposits (Money should not be created or destroyed)

 No guarantee that T1 will execute before T2 or vice-versa…

 … but the net effect must be equivalent to these two transactions 
running one-after-the-other in some order

Concurrency: lost update anomaly

T1: A = A + 100
T2: A = A + 100

15



 Consider two transactions running different programs

 T1 performs an account transfer

 T2 performs credit of (6%) interest amount

 Consistency requirement: after execution, sum of accounts 

must be 106% the initial sum (before execution)

 No guarantee that T1 will execute before T2 or vice-versa…

 … but the net effect must be equivalent to these two 

transactions running one-after-the-other in some order

Concurrency: more complex case (1/3)

T1: A=A+100,   B=B-100
T2: A=1.06*A,   B=1.06*B

16



 After execution,  A=636, B=424,  A+B=1060 

Concurrency: when things go wrong (2/3)

 Assume that initially there are $500 in both accounts

 Consider a possible interleaving or schedule

T1: A=A+100,   B=B-100   
T2: A=1.06*A,  B=1.06*B

CORRECT

17



Concurrency: when things go wrong (3/3)

 Consider another interleaving or schedule:

T1: A=A+100,   B=B-100   
T2: A=1.06*A, B=1.06*B

 After execution,  A=636, B=430,  A+B=1066 

WRONG!!!

T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)

 The DBMS view

18



 What if one of the operations is a WRITE?

Concurrent Execution Anomalies

 Anomalies may occur in concurrent execution

 The notion of conflicts helps understand anomalies

 Is there a conflict when multiple READ operations are 

posted? No

YES!

19

 WR, RW and WW conflicts



WR Conflicts

 Reading Uncommitted Data (Dirty Reads)

 The earlier example where interest is not properly 

credited is due to a WR conflict

 Value of A written by T1 is read by T2 before T1

completed all its changes

20

T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)



RW Conflicts

T1: R(A),  R(A), W(A), Commit
T2: R(A), W(A), Commit

 Unrepeatable Reads

 Scenario: Let A (=1) be the number of copies of an item. 

T1 checks the number available. If the number is greater 

than 0, T1 places an order by decrementing the count

 In the meantime, T2 updated the value of the count (say, 

to zero)

 T1 will set the count to a negative value!

21



WW Conflicts

 Overwriting Uncommitted Data

 Assume two employees must always have same salary

 T1 sets the salaries to $1000, T2 to $2000

 There is a “lost update”, and the final salaries are $1000 

and $2000

 “Lost” update because the transaction that comes last in 

serial order should set both values. One got lost.

T1: W(A),  W(B), Commit
T2: W(A), W(B), Commit

22



Scheduling Transactions: recall terminology

 Serial schedule: no interleaving of transactions

 Safe, but poor performance!

 Schedule equivalence: two schedules are equivalent if they lead 

to the same state of the DBMS (see footnote on pg. 525 that 

includes values returned to user in relevant ”state”)

 Serializable schedule: schedule that is equivalent to some serial 

execution of transactions

 But still allows interleaving/concurrency!

23



Conflict Serializable Schedules

 Two schedules are conflict equivalent if:

 Involve the same actions of the same transactions

 Every pair of conflicting actions is ordered the same way

 Schedule S is conflict serializable if S is conflict equivalent 

to some serial schedule

 A conflict serializable schedule is serializable (to be 

shown in future classes)

 Some other schedules are also serializable



Why is serializability important?

 If each transaction preserves consistency, every serializable
schedule preserves consistency
 For example, transactions that move money around should always 

preserve the total amount of money.

 If running with serializable transactions, we only need to check that each 
transaction program has this property, and we know that the system 
does.

 How to ensure serializable schedules?
 Use locking protocols (ensuring conflict serializability)

 DBMS inserts proper locking actions, user is oblivious to locking (except 
through its effect on performance, and deadlocks)

 There are other ways too, covered later.

25



Strict Two-Phase Locking (Strict 2PL)

 Protocol steps

 Each transaction must obtain a S (shared) lock on object before 
reading, and an X (exclusive) lock on object before writing.

 All locks held are released when the transaction completes

 (Non-strict) 2PL: Release locks anytime, but cannot acquire locks after 
releasing any lock.

 Strict 2PL allows only serializable schedules.

 It simplifies transaction aborts

 (Non-strict) 2PL also allows only serializable schedules, but 
involves more complex abort processing

28



Strict 2PL Example (red op is blocked)

29

T1: S(A) R(A)     
T2: S(A) R(A) X(B)

S(B)

T1: S(A) R(A)     
T2: S(A) R(A) X(B) R(B)

S(B)

T1: S(A) R(A)     
T2: S(A) R(A) X(B) R(B)

S(B)

W(B) C

T1: S(A) R(A)     
T2: S(A) R(A) X(B) R(B)

S(B) R(B) C

W(B) C



Aborting Transactions

 When Ti is aborted, all its actions have to be undone
 if Tj reads an object last written by Ti,  Tj must be aborted as well!

 cascading aborts can be avoided with 2PL by releasing locks only at 
commit (Strict 2PL)

 If Ti writes an object, Tj can read this only after Ti commits

 This also means the schedule is “recoverable”: transactions commit only 
after all transactions whose changes they read commit.

 In general, recoverable and serializable are separate properties of 
concurrency protocols, but Strict 2PL has both.

 Strict 2PL is recoverable, and cascading aborts are prevented
 At the cost of decreased concurrency

 No free lunch!

 Increased parallelism leads to locking protocol complexity

30



Deadlocks

 Cycle of transactions waiting for locks to be released by 

each other

 Two ways of dealing with deadlocks:

 Deadlock prevention

 Deadlock detection

T1: X(A) W(A)     S(B) [R(B) …]
T2: X(B) W(B) S(A) [R(A) …]

31



Locking Performance

 Lock-based schemes rely on two mechanisms

 Blocking

 Aborting

 Both blocking and aborting cause performance overhead

 Transactions may have to wait

 Transactions may need to be re-executed

 How does blocking affect throughput?

 First few transactions do not conflict – no blocking

 Parallel execution, performance increase

 As more transactions execute, blocking occurs

 After a point, adding more transactions decreases throughput!



Locking Performance (2)

Active Transaction Count

Thrashing



Improving Performance

 Locking the smallest-sized objects possible

 e.g., row set instead of table

 Reduce the time a lock is held for

 Release locks faster

 Reducing hot spots

 Careful review of application design

 Reduce contention



Lock Management

 Lock and unlock requests are handled by the lock manager

 Lock table entry:

 Number of transactions currently holding a lock

 Type of lock held (shared or exclusive)

 Pointer to queue of lock requests

 Locking and unlocking have to be atomic operations



Transaction Support in SQL

 A transaction is automatically started when user executes a 
statement or accesses the catalogs

 Transaction is either committed (COMMIT) or aborted 
(ROLLBACK)

 New in SQL-99: SAVEPOINT feature
SAVEPOINT <savepoint name>

Actions …

ROLLBACK TO SAVEPOINT <savepoint name>

 SAVEPOINT advantage vs. sequence of transactions
 Can roll back over multiple savepoints

 Lower overhead: no new transaction initiated (book, pg. 536)

 But transaction initiation is not an expensive action. Locks are still held 
on changes done before savepoint, when rollback to savepoint done. 
Locks would be released if a real commit is done.

 Conceivably of use for “what-if” calculations, but hard to find examples.

36



Setting Transaction Properties in SQL

 Access Mode

 READ ONLY vs READ WRITE

 Isolation Level (decreasing level of concurrency)

 We haven’t yet seen an example of a phantom—next time.

37

Level Dirty Read Unrepeatable 

Read

Phantom

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED No Possible Possible

REPEATABLE READ No No Possible

SERIALIZABLE No No No



Isolation Levels in Practice

 Databases default to RC, read-committed, so many apps 

run that way, can have their read data changed, and 

phantoms

 Web apps (JEE, anyway) have a hard time overriding RC, 

so most are running at RC

 The 2PL locking scheme we studied was for RR, 

repeatable read: transaction takes long term read and 

write locks

 Long term = until commit of that transaction



Read Committed (RC) Isolation

 2PL can be modified for RC: take long-term write locks 
but not long term read locks

 Reads are atomic as operations, but that’s it

 Lost updates can happen in RC: system takes 2PC locks 
only for the write operations:

R1(A)R2(A)W2(B)C2W1(B)C1

R1(A)R2(A)X2(B)W2(B)C2X1(B)W1(B)C1  (RC isolation)

 Update  statements are atomic, so that case of read-then-
write is safe even at RC

 Update T set A = A + 100  (safe at RC isolation)

 Remember to use update when possible!



Syntax for SQL

SET   TRANSACTION  ISOLATION LEVEL 

SERIALIZABLE  READ WRITE

SET   TRANSACTION  ISOLATION LEVEL 

REPEATABLE READ READ ONLY

 Note:

 READ UNCOMITTED cannot be READ WRITE

40


