Transaction Management:
Concurrency Control, part 2

CS634
Class 16

Slides based on “Database Systems™ 3 ed, ind Gehrke

Locking vs. Latching

To protect shared data in memory, multithreaded programs use
mutex (semaphores) AKA latches, sometimes “locks” (confusing!)
API: enter_section/leave_section, or lock/unlock

v

Every Java object contains a mutex, for convenience of Java programming:

underlies synchronized methods
Database people call mutexes and related mechanisms “latches”

Need background in multi-threaded programming to understand this
topic fully

The tree structure needs mutex/latch protection

v v

without ruining performance.)

Latches can be provided by the same lock manager as does 2PL
locking, and can have share and exclusive types like locks.

In these slides, will use “lock” in quotes to mean non-2PL lock/latch
to make it look somewhat like the book’s discussion...

v

v

A Simple Tree Locking Algorithm:

(“lock” here is really a latch on tree structure)

» Search
Start at root and descend:“crabbing down the tree”
repeatedly,get S “lock” for child then “unlock” parent,end up with S “lock” on
leaf page
Get 2PL S lock on row, provide row pointer to caller
Later, caller is done with reading row, arranges release of S “lock”
» Insert/Delete
Start at root and descend, crabbing, obtaining X “locks” as needed
Once child is “locked”, check if it is safe
If child is safe, release “lock” on parent, leaving X “lock” on child
Get 2PL X lock on place for new row/old row, insert/delete row, release “lock”
» Safe node:not about to split or coalesce
Inserts: Node is not full
Deletes: Node is not half-empty

» When control gets back to QP, transaction only has 2PL locks on rows.
Only 2PL locks are long-term across multiple DB actions.

Example: split node. No row data is changed, just the details in pages
in the buffer pool. No i/o is needed (can’t hold a latch across disk i/o

»

»

»

Locking for B+ Trees

Naive solution
Ignore tree structure, just lock its pages following 2PL

Very poor performance!
Root node (and many higher level nodes) become bottlenecks
Every tree access begins at the root!

Not needed anyway!
Only row data needs 2PL (contents of tree)
Tree structure also needs protection from concurrent access
But only like other shared data of the server program
Note this modern view is not covered in book
See (2010)
B-tree locking is a huge challenge!

Locking for B+ Trees (contd.)

4

4

v

Searches
Higher levels only direct searches for leaf pages
Insertions

Node on a path from root to modified leaf must be “locked” in
X mode only if a split can propagate up to it
Similar point holds for deletions

There are efficient locking protocols that keep the B-tree
healthy under concurrent access, and support 2PL on
rows

Difference from text

»

v

v

v

The algorithm actions described in the text are valid, for
example, crabbing down the tree, worrying about full
nodes, etc.

What'’s different is that the locks for index nodes are
shorter lived than described in the text: only 2PL locks on
rows are kept until end of transaction, not any locks on
index nodes.

Note that text uses locks and releases them before
commit, a sign that they are not actually Strict 2PL locks.
Note the admission on pg. 564 that the text’s coverage
on this topic is “not state of the art”. Graefe’s paper is.

http://www.hpl.hp.com/techreports/2010/HPL-2010-9.pdf

An Example from pg. 563

. -
Search 38*
Insert 25*
/EI B Delete 38*

Insert 45*
EXI - /Ir
E

e B

A Variation on Algorithms

» Search
As before
» Insert/Delete

Set “locks” as if for search, get to leaf, and set 2PL X lock on
leaf

If leaf is not safe, release all “locks”, and restart using previous
Insert/Delete protocol

» This is what happens if the search down the tree happens on a
page that is not in buffer—don’t want to hold a latch across a
disk i/o (takes too long)

New Lock Modes, Protocol

» Allow transactions to lock at each level, but with a
special protocol using new intention locks

- Before locking an item, must set

intention locks on ancestors

—-|IS|IX| s | X
+ For unlock, go from specific to AVTVIV Ty
general (i.e., bottom-up).
. SIX mode: Like S & IX atthe HS] IV IV Y
same time. IX| VNN
S|V N
x|V

Insert 45 case (corrected 4/12)

Crab down tree getting X “locks” (really latches)
“Xlock” A

“Xlock” B

B is safe, so “unXlock” A

“Xlock” C

C is unsafe,so can’t “unXlock” B now

“Xlock” E (its page of rows is in buffer,)

E is safe, so “unXlock” C,and B too

Xlock E (real 2PL page lock)

“UnXLock” E

Return to QP with 2PL Xlock on page,and pointer to it in pinned buffer.
QP will unpin when done with edits to page

Multiple-Granularity Locks

» Hard to decide what granularity to lock
tuples vs. pages vs. files

» Shouldn’t have to decide!

» Data containers are nested:

Database

. Files
contains

Pages

Tuples

Multiple Granularity Lock Protocol

» Each transaction starts from the root of the hierarchy

» To get S or IS lock on a node, must hold IS or IX on
parent node

» To get X or IX or SIX on a node, must hold IX or SIX on
parent node.

» Must release locks in bottom-up order

Snapshot Isolation (SI)

Multiversion Concurrency Control Mechanism (MVCC)

This means the database holds more than one value for a data item at the
same time

Used in PostgreSQL (open source), Oracle, others

Readers never conflict with writers unlike traditional DBMS (e.g., IBM
DB2)! Read-only transactions run fast.

Does not guarantee “real” serializability

But: ANSI “serializability” fulfilled, i.e., avoids anomalies in the ANSI table
Found in use at Microsoft in 1993, published as example of MVYCC

First Committer Wins Rule of SI

» At the commit time of a transaction its WS is compared
to those of concurrent committed transactions.

v

If there is no conflict (overlapping), then the WS can be
applied to stable storage and is visible to transactions that
begin afterwards.

v

However, if there is a conflict with the WS of a
concurrent, already committed transaction, then the
transaction must be aborted.

That’s the “First Committer Wins Rule*

v v

Actually Oracle uses first updater wins, basically same
idea, but doesn’t require separate WS

Write Skew Anomaly of SI

Ri(Xo) Ry(Xo) Ri(Yo) Ra(Yo) Wi (X)) € W(Y2) €,
» Scenario:
X = husband’s balance, orig 100,
Y = wife’s balance, orig 100.
Bank allows withdrawals up to combined balance
Rule: X +Y >=0
Both withdraw 150, thinking OK, end up with -50 and -50.
» Easy to make this happen in Oracle at “Serializable”
isolation.
» See conflicts, cycle in PG, can’t happen with full 2PL
» Can happen with RC/locking

Snapshot Isolation - Basic Idea:

v

Every transaction reads from its own snapshot (copy) of
the database (will be created when the transaction starts,
or reconstructed from the undo log).

v

Writes are collected into a writeset (WS), not visible to
concurrent transactions.

v

Two transactions are considered to be concurrent if one
starts (takes a snapshot) while the other is in progress.

Write Skew Anomaly of SI

» In MVCC, data items need subscripts to say which version
is being considered
Zero version: original database value
T1 writes new value of X, X,
T2 writes new value of Y, Y,
» Write skew anomaly schedule:

R1(Xo) Ra(Xo) Ri(Yo) Ra(Yo)) Wi (X)) €, Wi(Y2) €,
» Writesets WS(T1) = {X},WS(T2) = {Y}, do not overlap,

so both commit.
» So what’s wrong—where’s the anomaly?

How can an Oracle app handle this?

v

If X+Y >= 0 is needed as a constraint, it can be
“materialized” as sum in another column value.

Old program: R(X)R(X-spouse)W(X)C

New program: R(X)R(X-spouse) W(sum) W(X)C

So schedule will have W(sum) in both transactions,and
sum will be in both Writesets, so second committer
aborts.

v v v

v

Or, after the W(X), run a query for the sum and abort if
it's negative.

Oracle, Postgres: new failure to handle

» Recall deadlock-abort handling: retry the aborted
transaction
» With SI, get "can't serialize access*
ORA-08177: can't serialize access for this transaction
Means another transaction won for a contended write
» App handles this error like deadlock-abort:just retry
transaction, up to a few times
» This only happens when you set serializable isolation level

Fixing the task registry

» Following the idea of the simple write skew, we can materialize
the constraint “workhours <= 8”

» Add a workhours column to worker table

» Old program:

» if sum(hours-for-x)+newhours<=8

» insert new task

» New program:

» if workhours-for-x + newhours <=8

» { update worker set workhours = workhours + newhours...

» insert new task

)

Oracle Read Committed Isolation

READ COMMITTED is the default isolation level for both
Oracle and PostgreSQL.

A new snapshot is taken for every issued SQL statement
(every statement sees the latest committed values).

If a transaction T2 running in READ COMMITTED mode
tries to update a row which was already updated by a
concurrent transaction T |, then T2 gets blocked until T|
has either committed or aborted

v

v

v

v

Nearly same as 2PL/RC, though all reads occur effectively
at the same time for the statement.

Other anomalies under SI

» Oldest sailors example
Both concurrent transactions see original sailor data in
snapshots, plus own updates
Updates are on different rows, so both commit
Neither sees the other’s update
So not serializable: one should see one update, other should
see two updates.
» Task Registry example:
Both concurrent transactions see original state with 6 hours
available for Joe
Both insert new task for Joe
Inserts involve different rows, so both commit

Fixing the Oldest sailor example

» If the oldest sailor is important to the app, materialize it!

Create table oldestsailor (rating int primary key, sid int)

Transaction Management:
Crash Recovery

CS634

Slides based on “Database Systems™ 3 ed, i and Gehrke

ACID Properties

Transaction Management must fulfill four requirements:
I Atomicity: either all actions within a transaction are carried

out, or none is

v

Only actions of committed transactions must be visible

2. Consistency: concurrent execution must leave DBMS in

consistent state

3. Isolation: each transaction is protected from effects of other

concurrent transactions

Net effect is that of some sequential execution

4. Durability: once a transaction commits, DBMS changes will

persist

Conversely, if a transaction aborts/is aborted, there are no effects

26

Motivation

» Atomicity:

Transactions may abort — must rollback their actions

» Durability:

What if DBMS stops running — e.g., power failure?

Desired Behavior after system
restarts:
- T1, T2 & T3 should be
durable
- T4 & T5 should be
aborted (effects not seen)

T1
T2
T3
T4
T5

crash!
1

Recovery Manager

» Crash recovery

Ensure that atomicity is preserved if the system crashes while one
or more transactions are still incomplete

Main idea is to keep a log of operations; every action is logged
before its page updates reach disk (Write-Ahead Log or WAL)

» The Recovery Manager guarantees Atomicity & Durability

Assumptions

» Concurrency control is in effect
Strict 2PL

» Updates are happening “in place”
Data overwritten on (deleted from) the disk

» A simple scheme is needed
A protocol that is too complex is difficult to implement
Performance is also an important issue

