
Transaction Management:

Concurrency Control, part 2

CS634
Class 16

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Locking for B+ Trees

 Naïve solution

 Ignore tree structure, just lock its pages following 2PL

 Very poor performance!

 Root node (and many higher level nodes) become bottlenecks

 Every tree access begins at the root!

 Not needed anyway!

 Only row data needs 2PL (contents of tree)

 Tree structure also needs protection from concurrent access

 But only like other shared data of the server program

 Note this modern view is not covered in book

 See Graefe, A Survey of B-tree locking techniques (2010)

 B-tree locking is a huge challenge!

Locking vs. Latching
 To protect shared data in memory, multithreaded programs use

mutex (semaphores) AKA latches, sometimes “locks” (confusing!)
 API: enter_section/leave_section, or lock/unlock

 Every Java object contains a mutex, for convenience of Java programming:
underlies synchronized methods

 Database people call mutexes and related mechanisms “latches”

 Need background in multi-threaded programming to understand this
topic fully

 The tree structure needs mutex/latch protection

 Example: split node. No row data is changed, just the details in pages
in the buffer pool. No i/o is needed (can’t hold a latch across disk i/o
without ruining performance.)

 Latches can be provided by the same lock manager as does 2PL
locking, and can have share and exclusive types like locks.

 In these slides, will use “lock” in quotes to mean non-2PL lock/latch
to make it look somewhat like the book’s discussion…

Locking for B+ Trees (contd.)

 Searches

 Higher levels only direct searches for leaf pages

 Insertions

 Node on a path from root to modified leaf must be “locked” in

X mode only if a split can propagate up to it

 Similar point holds for deletions

 There are efficient locking protocols that keep the B-tree

healthy under concurrent access, and support 2PL on

rows

A Simple Tree Locking Algorithm:
(“lock” here is really a latch on tree structure)

 Search
 Start at root and descend: “crabbing down the tree”

 repeatedly, get S “lock” for child then “unlock” parent, end up with S “lock” on
leaf page

 Get 2PL S lock on row, provide row pointer to caller

 Later, caller is done with reading row, arranges release of S “lock”

 Insert/Delete
 Start at root and descend, crabbing, obtaining X “locks” as needed

 Once child is “locked”, check if it is safe

 If child is safe, release “lock” on parent, leaving X “lock” on child

 Get 2PL X lock on place for new row/old row, insert/delete row, release “lock”

 Safe node: not about to split or coalesce
 Inserts: Node is not full

 Deletes: Node is not half-empty

 When control gets back to QP, transaction only has 2PL locks on rows.
Only 2PL locks are long-term across multiple DB actions.

Difference from text

 The algorithm actions described in the text are valid, for

example, crabbing down the tree, worrying about full

nodes, etc.

 What’s different is that the locks for index nodes are

shorter lived than described in the text: only 2PL locks on

rows are kept until end of transaction, not any locks on

index nodes.

 Note that text uses locks and releases them before

commit, a sign that they are not actually Strict 2PL locks.

 Note the admission on pg. 564 that the text’s coverage

on this topic is “not state of the art”. Graefe’s paper is.

http://www.hpl.hp.com/techreports/2010/HPL-2010-9.pdf

An Example from pg. 563

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:

Search 38*

Insert 45*

Insert 25*

Delete 38*

23

Insert 45 case (corrected 4/12)

Crab down tree getting X “locks” (really latches)

“Xlock” A

“Xlock” B

B is safe, so “unXlock” A

“Xlock” C

C is unsafe, so can’t “unXlock” B now

“Xlock” E (its page of rows is in buffer,)

E is safe, so “unXlock” C, and B too

Xlock E (real 2PL page lock)

“UnXLock” E

Return to QP with 2PL Xlock on page, and pointer to it in pinned buffer.

QP will unpin when done with edits to page

A Variation on Algorithms

 Search

 As before

 Insert/Delete

 Set “locks” as if for search, get to leaf, and set 2PL X lock on

leaf

 If leaf is not safe, release all “locks”, and restart using previous

Insert/Delete protocol

 This is what happens if the search down the tree happens on a

page that is not in buffer—don’t want to hold a latch across a

disk i/o (takes too long)

Multiple-Granularity Locks

 Hard to decide what granularity to lock

 tuples vs. pages vs. files

 Shouldn’t have to decide!

 Data containers are nested:

Tuples

Files

Pages

Database

contains

New Lock Modes, Protocol

 Allow transactions to lock at each level, but with a

special protocol using new intention locks

• Before locking an item, must set

intention locks on ancestors

• For unlock, go from specific to

general (i.e., bottom-up).

• SIX mode: Like S & IX at the

same time.

-- IS IX

--

IS

IX

S X

S

X

Multiple Granularity Lock Protocol

 Each transaction starts from the root of the hierarchy

 To get S or IS lock on a node, must hold IS or IX on

parent node

 To get X or IX or SIX on a node, must hold IX or SIX on

parent node.

 Must release locks in bottom-up order

Snapshot Isolation (SI)

 Multiversion Concurrency Control Mechanism (MVCC)

 This means the database holds more than one value for a data item at the
same time

 Used in PostgreSQL (open source), Oracle, others

 Readers never conflict with writers unlike traditional DBMS (e.g., IBM
DB2)! Read-only transactions run fast.

 Does not guarantee “real” serializability

 But: ANSI “serializability” fulfilled, i.e., avoids anomalies in the ANSI table

 Found in use at Microsoft in 1993, published as example of MVCC

Snapshot Isolation - Basic Idea:

 Every transaction reads from its own snapshot (copy) of

the database (will be created when the transaction starts,

or reconstructed from the undo log).

 Writes are collected into a writeset (WS), not visible to

concurrent transactions.

 Two transactions are considered to be concurrent if one

starts (takes a snapshot) while the other is in progress.

First Committer Wins Rule of SI

 At the commit time of a transaction its WS is compared

to those of concurrent committed transactions.

 If there is no conflict (overlapping), then the WS can be

applied to stable storage and is visible to transactions that

begin afterwards.

 However, if there is a conflict with the WS of a

concurrent, already committed transaction, then the

transaction must be aborted.

 That’s the “First Committer Wins Rule“

 Actually Oracle uses first updater wins, basically same

idea, but doesn’t require separate WS

Write Skew Anomaly of SI

 In MVCC, data items need subscripts to say which version

is being considered

 Zero version: original database value

 T1 writes new value of X, X1

 T2 writes new value of Y, Y2

 Write skew anomaly schedule:

R1(X0) R2(X0) R1(Y0) R2(Y0,) W1(X1) C1 W2(Y2) C2

 WritesetsWS(T1) = {X}, WS(T2) = {Y}, do not overlap,

so both commit.

 So what’s wrong—where’s the anomaly?

Write Skew Anomaly of SI

R1(X0) R2(X0) R1(Y0) R2(Y0,) W1(X1) C1 W2(Y2) C2

 Scenario:

 X = husband’s balance, orig 100,

 Y = wife’s balance, orig 100.

 Bank allows withdrawals up to combined balance

 Rule: X + Y >= 0

 Both withdraw 150, thinking OK, end up with -50 and -50.

 Easy to make this happen in Oracle at “Serializable”

isolation.

 See conflicts, cycle in PG, can’t happen with full 2PL

 Can happen with RC/locking

How can an Oracle app handle this?

 If X+Y >= 0 is needed as a constraint, it can be

“materialized” as sum in another column value.

 Old program: R(X)R(X-spouse)W(X)C

 New program: R(X)R(X-spouse) W(sum) W(X)C

 So schedule will have W(sum) in both transactions, and

sum will be in both Writesets, so second committer

aborts.

 Or, after the W(X), run a query for the sum and abort if

it’s negative.

Oracle, Postgres: new failure to handle

 Recall deadlock-abort handling: retry the aborted

transaction

 With SI, get "can't serialize access“

 ORA-08177: can't serialize access for this transaction

 Means another transaction won for a contended write

 App handles this error like deadlock-abort: just retry

transaction, up to a few times

 This only happens when you set serializable isolation level

Other anomalies under SI

 Oldest sailors example

 Both concurrent transactions see original sailor data in

snapshots, plus own updates

 Updates are on different rows, so both commit

 Neither sees the other’s update

 So not serializable: one should see one update, other should

see two updates.

 Task Registry example:

 Both concurrent transactions see original state with 6 hours

available for Joe

 Both insert new task for Joe

 Inserts involve different rows, so both commit

Fixing the task registry

 Following the idea of the simple write skew, we can materialize

the constraint “workhours <= 8”

 Add a workhours column to worker table

 Old program:

 if sum(hours-for-x)+newhours<=8

 insert new task

 New program:

 if workhours-for-x + newhours <=8

 { update worker set workhours = workhours + newhours…

 insert new task

 }

Fixing the Oldest sailor example

 If the oldest sailor is important to the app, materialize it!

Create table oldestsailor (rating int primary key, sid int)

Oracle Read Committed Isolation

 READ COMMITTED is the default isolation level for both

Oracle and PostgreSQL.

 A new snapshot is taken for every issued SQL statement

(every statement sees the latest committed values).

 If a transaction T2 running in READ COMMITTED mode

tries to update a row which was already updated by a

concurrent transaction T1, then T2 gets blocked until T1

has either committed or aborted

 Nearly same as 2PL/RC, though all reads occur effectively

at the same time for the statement.

Transaction Management:

Crash Recovery

CS634

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

ACID Properties

Transaction Management must fulfill four requirements:

1. Atomicity: either all actions within a transaction are carried
out, or none is

 Only actions of committed transactions must be visible

2. Consistency: concurrent execution must leave DBMS in
consistent state

3. Isolation: each transaction is protected from effects of other
concurrent transactions

 Net effect is that of some sequential execution

4. Durability: once a transaction commits, DBMS changes will
persist

 Conversely, if a transaction aborts/is aborted, there are no effects

26

Recovery Manager

 Crash recovery

 Ensure that atomicity is preserved if the system crashes while one

or more transactions are still incomplete

 Main idea is to keep a log of operations; every action is logged

before its page updates reach disk (Write-Ahead Log or WAL)

 The Recovery Manager guarantees Atomicity & Durability

27

Motivation

 Atomicity:

 Transactions may abort – must rollback their actions

 Durability:

 What if DBMS stops running – e.g., power failure?

crash!Desired Behavior after system
restarts:

– T1, T2 & T3 should be
durable

– T4 & T5 should be
aborted (effects not seen)

T1
T2
T3
T4
T5

Assumptions

 Concurrency control is in effect

 Strict 2PL

 Updates are happening “in place”

 Data overwritten on (deleted from) the disk

 A simple scheme is needed

 A protocol that is too complex is difficult to implement

 Performance is also an important issue

