
Transaction Management:

Crash Recovery (Chap. 18), part 1

CS634
Class 17

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

ACID Properties

Transaction Management must fulfill four requirements:

1. Atomicity: either all actions within a transaction are carried
out, or none is

 Only actions of committed transactions must be visible

2. Consistency: concurrent execution must leave DBMS in
consistent state

3. Isolation: each transaction is protected from effects of other
concurrent transactions

 Net effect is that of some sequential execution

4. Durability: once a transaction commits, DBMS changes will
persist

 Conversely, if a transaction aborts/is aborted, there are no effects

2

Recovery Manager

 Crash recovery

 Ensure that atomicity is preserved if the system crashes while one

or more transactions are still incomplete

 Main idea is to keep a log of operations; every action is logged

before its page updates reach disk (Write-Ahead Log or WAL)

 The Recovery Manager guarantees Atomicity & Durability

 “One of hardest components of a DBMS to design and

implement”, pg. 580

 One reason: need calls to it from all over the storage manager

3

Motivation

 Atomicity:

 Transactions may abort – must rollback their actions

 Durability:

 What if DBMS stops running – e.g., power failure?

crash!Desired Behavior after system
restarts:

– T1, T2 & T3 should be
durable

– T4 & T5 should be
aborted (effects not seen)

T1
T2
T3
T4
T5

Assumptions

 Concurrency control is in effect

 Strict 2PL (using page locks or row locks)

 Updates are happening “in place”

 Data overwritten on (deleted from) the disk

 Centralized system, with one buffer pool for all system disks

 So pages in buffer overlay those pages on disk to define the
database state (see next slide)

 A simple scheme is needed

 A protocol that is too complex is difficult to implement

 Performance is also an important issue

A Crucial player: Buffer Manager

 The buffer pool sits in front of the disks, so determines the current view of the
data for the system

 A page in the pool modified by an uncommitted transaction is a “dirty page”,

6

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of
frame
dictated
by
replacement
policy

Disk Space Manager

Data

Handling the Buffer Pool

 Force every write to disk?

 Poor response time - disk is slow!

 But provides durability

 Want to be lazy about writes to disk, but not too lazy!

 Note that one transaction can use more pages than can fit

in the buffer manager, so DB needs to support spillage of

active pages to disk

 So need to be able to write out a page changed by an

uncommitted transaction

Stealing a page (see text, pg. 541)

 The same capability of writing a page with uncommitted data is used
for “stealing” a page

 Scenario:
 Transaction T1 has a lot of pages in buffer, with uncommitted changes

 Transaction T2 needs a buffer page, steals it from T1 by having T1’s page
written to disk, then using that buffer slot

 If row locking in use, could have T2 stealing a page from multiple other
transactions, though hopefully uncommon.

 With stealing going on, how can we ensure atomicity?

 One controlling mechanism is page pinning

 Only an unpinned buffer page can be stolen…

 Another mechanism involves the log’s LSNs (log sequence numbers),
covered soon

Lifetime of a page: page pinning in action

 Read by T1 and pinned (see pg. 319), S lock on row (or
page if page-locking)

 Read by T2 and pinned/share, S lock on row

 Read access finished by T1, unpinned by T1, still pinned by
T2

 Read access finished by T2, unpinned, now fully unpinned

 Note: no logging for reads

 Write access requested by T3, page is pinned exclusive, T3
gets X lock on row C, changes row, logs action, gets LSN
back, puts in page header, page unpinned

 Page now has 2 rows with S locks, one with X lock, is
unpinned, so could be stolen

Steal and Force

 STEAL

 Not easy to enforce atomicity when steal is possible

 To steal frame F: current (unpinned) page P is written to disk;

some transaction holds lock on row A of P

 What if holder of the lock on A aborts?

 Note the disk page holding A has the new value now, needs undoing.

 Must remember the old value of A at or before steal time (to support

UNDOing the write to row A) (remember it in the log, next slide)

 NO FORCE (lazy page writes)

 What if system crashes before a modified page is written to disk?

 Write as little as possible in a convenient place to support

REDOing modifications (write it in the log)

The Log

 The following actions are recorded in the log:

 Ti writes an object: the old value and the new value.

 Log record must go to disk before the changed page!

 Ti commits/aborts: a log record indicating this action.

 Some other specialized records.

 Log records are chained together by Xact id, so it’s easy to

undo a specific Xact.

 Log is often duplexed and archived on stable storage.

 All log related activities (and in fact, all CC related activities

such as lock/unlock, dealing with deadlocks etc.) are handled

transparently by the DBMS.

Logging

 Essential function for recovery

 Record REDO and UNDO information, for every update

 Example: T1 updates A from 10 to 20

 Undo: know how to change 20 back to 10 if find 20 in disk page and
know T1 aborted

 Redo: know how to change 10 to 20 if see 10 in the disk page and
know T1 committed.

 Updates include row inserts and deletes, but not emphasized
here

 Writes to log must be sequential, should be stored on a
separate (mirrored) disk

 Minimal information (summary of changes) written to log, since
writing the log can be a performance problem

Logging

 What is in the Log

 Ordered list of REDO/UNDO actions

 Update log record contains:

<prevLSN, transID, pageID, offset, length, old data, new data>

 Old data is called the before image

 New data called the after image

 The prevLSN provides the LSN of the transaction’s previous log

record, so it’s easy to scan backwards through log records as

needed in UNDO processing

Write-Ahead Logging (WAL)

 The Write-Ahead Logging Protocol:

1. Must force the log record for an update before the

corresponding data page gets to disk

2. Must write all log records for transaction before commit

returns

 Property 1 guarantees Atomicity

 Property 2 guarantees Durability

 We focus on the ARIES algorithm

 Algorithms for Recovery and Isolation Exploiting Semantics

 See famous ARIES paper, also linked from class web page

https://cs.stanford.edu/people/chrismre/cs345/rl/aries.pdf

How Logging is Done

 Each log record has a unique Log Sequence Number (LSN)

 LSNs always increasing

 Works similar to “record locator”

 Each data page contains a pageLSN

 The LSN of the most recent log record
for an update to that page

 System keeps track of flushedLSN

 The largest LSN flushed so far

 WAL: Before a page is written,

flush its log record such that

 pageLSN flushedLSN

pageLSN

Data
Page

Log records
flushed to disk

“Log tail”
in RAM

flushedLSN

Log growth

Log Records

Possible log entry types:

 Update (incl. insert, delete)

 Commit

 Abort

 End (signifies end of commit

or abort)

 Compensation Log

Records (CLRs)

 for UNDO actions

prevLSN

transID

entryType

length

pageID

offset

before-image

after-image

LogRecord fields:

update
records
only

Other Log-Related State

 Transaction Table: in server memory, so volatile

 One entry per active transaction

 Contains transID, status (running/commited/aborted), and lastLSN (most
recent LSN for transaction)

 A dirty page is one whose disk and buffer images differ

 So a dirty page becomes clean at page write, if it stays in buffer

 Once clean, can be deleted from dirty page table

 And is clean if it gets read back into buffer, even with uncommitted data in it

 Dirty Page Table: in server memory

 One entry per dirty page in buffer pool

 Contains recLSN - the LSN of the log record which first caused the page to
be dirty (spec’s what part of log relates to redos for this page)

 Earliest recLSN in table – important milestone for recovery (spec’s what
part of log relates to redos for whole system)

Normal Execution of Transactions

 Series of reads & writes, followed by commit or abort

 We will assume that write is atomic on disk

 In practice, additional details to deal with non-atomic writes

 Strict 2PL

 STEAL, NO-FORCE buffer management, with Write-Ahead

Logging

Transaction Commit

 Write commit record to log for transaction T

 All log records up to lastLSN of T are flushed.

 Guarantees that flushedLSN lastLSN

 Note that log flushes are sequential, synchronous writes to

disk

 Does NOT mean that page writes are propagated to data disk!

 Commit() returns.

 Write end record to log

Example: A Committing transaction
R1(A, 50) W1(A,20) C1

 R1(A): Transaction started, entered into Transaction table, page read into
buffer, pinned, data used, unpinned (no logging)

 W1(A): page found in buffer, pinned, log record written:
 prevLSN = null, transID = 1, entryType = update, etc.

 Before-image = 50, after-image = 20. Suppose LSN = 222

 Page now dirty, pageLSN=222, entered into dirty page table with recLSN=222,
put lastLSN = 222 in TxTable, page unpinned

 C1: Log record (LSN223) for commit has prevLSN=222, Log is pushed so
LSN 223 record is on disk. Now transaction is committed.
 Transaction status in TxTable is changed to committed

 Log record for End (LSN224) is written, has prevLSN=223.

 Note: dirty page can still hang around in buffer pool: its content defines the
database state for that page

 Sometime later, dirty page written to disk, page considered clean, dropped
from dirty page table.

Checkpointing

 Periodically, the DBMS creates a checkpoint
 minimize time taken to recover in the event of a system crash

 Checkpoint logging:
 begin_checkpoint record: Indicates when checkpoint began

 end_checkpoint record: Contains current transaction table and dirty
page table as of begin_checkpoint time

 So the earliest recLSN (LSN of oldest dirty page) is known at recovery
time, and the set of live transactions, very useful for recovery

 Other transactions continue to run; tables accurate only as of the time
of the begin_checkpoint record – fuzzy checkpoint
 No attempt to force dirty pages to disk at checkpoint time!

 But good to nudge them to disk continuously, to limit recovery time.

 LSN of begin_checkpoint written in special master record on stable
storage

Simple Transaction Abort

 First, consider an explicit abort of a transaction

 No crash involved, have good transaction table

 Need to “play back” the log in reverse order, UNDOing

updates.

 Get lastLSN of transaction from transaction table

 Find that log record, undo one page change

 Can follow chain of log records backward via the prevLSN field

 Before starting UNDO, write an Abort log record

 For recovering from crash during UNDO!

 For each update UNDO, write a CLR record in the log…

The mysterious CLR log records

 In normal operations, a transaction may abort, partially

roll back, then the system crashes.

 To recover, the system needs to know how far the

rollback got, and pick up from there.

 So during the undo processing of an abort (during normal

operations), the system writes CLR records to record its

progress undoing the actions of the aborted transaction.

 They are “compensation” records because the system is

doing actions to compensate for the work previously

done by the aborted transaction.

Example: An aborting transaction
R1(A, 50) W1(A,20) A1

 R1(A): Transaction started, entered into Transaction table, page read into
buffer, pinned, data used, unpinned (no logging for reads)

 W1(A): page found in buffer, pinned, log record written:
 prevLSN = null, transID = 1, entryType = update, etc.

 Before-image = 50, after-image = 20. Suppose LSN = 222

 Page now dirty, pageLSN=222, entered into dirty page table with recLSN=222,
put lastLSN = 222 in TxTable, page unpinned

 A1: Log record (LSN223) for abort has prevLSN=222. Then undo actions
are started.
 Undo W1(A): use lastLSN of TxTable to locate Tx’s last log entry for write

 Write CLR record to log, with LSN 224,

 Find page in buffer, pin, apply before image (50), so A=50 again, unpin

 Transaction status in TxTable is changed to aborted

 Log record for End (LSN224) is written, has prevLSN=224.

 Note: dirty page can still hang around in buffer pool: its content defines the
database state for that page

 Before restoring old value of a page, write a CLR:

 CLR has one extra field: undoNextLSN

 Points to the next LSN to undo (i.e. the prevLSN of the record we’re
currently undoing).

 The undonextLSN value is used only if this CLR ends up as the last one in
the log for this transaction: specs which update log record to start/resume
UNDOing (possibly resuming UNDO work interrupted by a crash)

 CLRs never Undone (but they may be Redone when repeating history).
For recovery UNDO, they just point where to start working.

 At end of transaction UNDO, write an “end” log record.

Simple Transaction Abort

ARIES Overview

DB

Data pages
Each with a

pageLSN

Transaction Table
lastLSN

status

Dirty Page Table
recLSN

flushedLSN

RAM

prevLSN

transID

type

length

pageID

offset

before-image

after-image

LogRecords

LOG

Crash Recovery: Big Picture

Start from a checkpoint (via LSN
found in DB master record)

Three phases:

ANALYSIS: Find which
transactions committed or failed
since checkpoint

REDO all actions (repeat history)

UNDO effects of failed
transactions

Oldest log
rec. of Xact
active at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

