
Transaction Management:

Crash Recovery, part 2

CS634
Class 18

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Motivation

 Atomicity:

 Transactions may abort – must rollback their actions

 Durability:

 What if DBMS stops running – e.g., power failure?

crash!Desired Behavior after system
restarts:

– T1, T2 & T3 should be
durable

– T4 & T5 should be
aborted (effects not seen)

T1
T2
T3
T4
T5

Logging

 What is in the Log

 Ordered list of REDO/UNDO actions

 Update log record contains:

<prevLSN, transID, pageID, offset, length, old data, new data>

 Old data is called the before image

 New data called the after image

 The prevLSN provides the LSN of the transaction’s previous log

record, so it’s easy to scan backwards through log records as

needed in UNDO processing

Write-Ahead Logging (WAL)

 The Write-Ahead Logging Protocol:

1. Must force the log record for an update before the

corresponding data page gets to disk

2. Must write all log records for transaction before commit

returns

 Property 1 guarantees Atomicity

 Property 2 guarantees Durability

 We focus on the ARIES algorithm

 Algorithms for Recovery and Isolation Exploiting Semantics

How Logging is Done

 Each log record has a unique Log Sequence Number (LSN)

 LSNs always increasing

 Works similar to “record locator”

 Each data page contains a pageLSN

 The LSN of the most recent log record
for an update to that page

 System keeps track of flushedLSN

 The largest LSN flushed so far

 WAL: Before a page is written,

flush its log record such that

 pageLSN flushedLSN

pageLSN

Data
Page

Log records
flushed to disk

“Log tail”
in RAM

flushedLSN

Log growth

Log Records

Possible log entry types:

 Update (incl. insert, delete)

 Commit

 Abort

 End (signifies end of commit

or abort)

 Compensation Log

Records (CLRs)

 for UNDO actions

prevLSN

transID

entryType

length

pageID

offset

before-image

after-image

LogRecord fields:

update
records
only

 In UNDO processing, before restoring old value of part of a
page (say a row), write a CLR to log:
 CLR has one extra field: undonextLSN

 Points to the next LSN to undo (i.e. the prevLSN of the record we’re
currently undoing).

 The undonextLSN value is used, in recovery from a crash, only if this CLR
ends up as the last one in the log for a “loser” transaction. Then it points to
where in the log to start/resume doing UNDOs of update log records.

 CLRs never Undone (but they will be Redone if recovery repeats this
history).

 At end of transaction UNDO, write an “end” log record.

CLR (compensation log record):
remember intended/done UNDO action from abort
processing

Other Log-Related State

 Transaction Table: in server memory, so volatile

 One entry per active transaction

 Contains transID, status (running/commited/aborted), and lastLSN (most
recent LSN for transaction)

 A dirty page is one whose disk and buffer images differ

 So a dirty page becomes clean at page write, if it stays in buffer

 Once clean, can be deleted from dirty page table

 And is clean if it gets read back into buffer, even with uncommitted data in it

 Dirty Page Table: in server memory

 One entry per dirty page in buffer pool

 Contains recLSN - the LSN of the log record which first caused the page to
be dirty (spec’s what part of log relates to redos for this page)

 Earliest recLSN in table – important milestone for recovery (spec’s what
part of log relates to redos for whole system)

Checkpointing

 Periodically, the DBMS creates a checkpoint
 minimize time taken to recover in the event of a system crash

 Checkpoint logging:
 begin_checkpoint record: Indicates when checkpoint began

 end_checkpoint record: Contains current transaction table and dirty
page table as of begin_checkpoint time

 So the earliest recLSN (LSN of oldest dirty page) is known at recovery
time, and the set of live transactions, very useful for recovery

 Other transactions continue to run; tables accurate only as of the time
of the begin_checkpoint record – fuzzy checkpoint
 No attempt to force dirty pages to disk at checkpoint time!

 But good to nudge them to disk continuously, to limit recovery time.

 LSN of begin_checkpoint written in special master record on stable
storage

Crash Recovery: Big Picture

Start from a checkpoint (location
found in master record)

Three phases:

ANALYSIS: Find which
transactions committed or failed
since checkpoint

REDO all actions (repeat history)

UNDO effects of failed
transactions (can be a big job)

Oldest log
rec. of Xact
active at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

The Analysis Phase

 Reconstruct state at checkpoint.

 from end_checkpoint record

 Fill in Transaction table, replace status = aborted/running with
status U (needs undo)

 Fill in DPT

 Scan log forward from checkpoint

 End record: Remove T from Transaction table

 Other records: Add T to transaction table, set lastLSN=LSN

 If record is commit change transaction status to C

 Update record on page P

 If P not in Dirty Page Table, add it & set its recLSN=LSN

 Finished: now all Transactions still marked U are “losers”

The REDO Phase

 We repeat history to reconstruct state at crash:

 Reapply all updates (even of aborted transactions), redo CLRs.

 Redo Update, basic case:

 Read in page if not in buffer

 Apply change to part of page (often a row)

 Leave page in buffer, to be pushed out later (lazy again)

 Redo CLR:

 Do same action as original UNDO:

 Read in page if not in buffer, apply change, leave page in buffer

 But sometimes we don’t need to do the redo, check conditions
first…

The REDO Phase in detail

 We repeat history to reconstruct state at crash:

 Reapply all updates (even of aborted transactions), redo CLRs.

 Scan forward from log rec containing smallest recLSN in
Dirty page Table (of oldest dirty page)

 For each CLR or update log rec LSN, REDO the action
unless:

 Affected page is not in the Dirty Page Table (DPT) , or

 Affected page is in DPT, but has recLSN > LSN or pageLSN (in
DB) LSN (page is already more up-to-date than this action)

 To REDO an action:

 Reapply logged action (read page if not in buffer, change part)

 Set pageLSN on the page to LSN. No additional logging!

The UNDO Phase, simple case, no rollbacks

in progress at crash

In this case, losers have no CLRs in the old log

ToUndo = set of lastLSNs for “loser” transactions

(ones active at crash)

Repeat:
 Choose largest LSN among ToUndo

 This LSN is an update. Undo the update, write a CLR, add
prevLSN to ToUndo

UntilToUndo is empty
 i.e. move backwards through update log records of all loser

transactions, doing UNDOs

 End up with a bunch of CLRs in log to document what was done,
so it doesn’t have to be all repeated if this recovery crashes.

The UNDO Phase, general case

Hard to understand from algorithmic description (pg. 592).

Note goals:

 All actions of losers must be undone

 These actions must be undone in reverse log order

 Reason for reverse order:
 T1 changes A from 10 to 20, then from 20 to 30

 Undo: 30->20, 20->10.

 Idea: CLR marks that a certain update has been undone, and points to
next-earlier update log record that needs attention

 So last CLR in the log for a transaction tells the story: transaction undo is
finished, or processing needs to start undo work with pointed-to update

 In fact, once that last CLR is processed, the undo processing follows a
chain of update entries for that transaction back through the log, never
studying an old CLR again, but writing new ones. But this processing is
done along with other transactions.

Example of Recovery: Simple case of no
Rollbacks in progress at Crash

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

05

10

20

30

40

45

50

60

Recovery after crash:
Analysis: from ckpt,

TxnTable (TT): empty
DPT: empty

Scan forward, find:

In TT: T2, T3
Losers: T2, T3
In DPT: P5, P3, P1
Smallest recLSN: 10

Redo:
Scan forward from 10:

10, 20: redo updates
40: redo CLR
45: drop T1 from TT
50, 60: redo updates

Undo…

Example: after crash, undo phase (Simple case
of no Rollbacks in progress at Crash)

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

05

10

20

30

40

45

50

60

Recovery after crash,
undo phase:
From analysis,

Losers: T2, T3
lastLSNs of losers =
ToUndo = {60, 50}

Scan back using ToUndo:
60: undo update, write CLR,

put 20 in ToUndo
now ToUndo = {50, 20}

50: undo update, write CLR,
nothing to put in ToUndo,
write T3 end record
now ToUndo = {20}

20: undo update, write CLR,
nothing to put in ToUndo,
write T2 end record

prevLSNs

Example: Recovery (Simple case of no
Rollbacks in progress at Crash)

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

10

20

30

40,45

50

60

70

80,85

90,95

Case of no crashes

during recovery:

recovery completes

and system come up

after this

Simple case of no Rollbacks in progress at first
Crash, but recovery itself crashes

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN LOG

00

05

10

20

30

40

45

50

60

Recovery after crash,
undo phase:
From analysis,

Losers: T2, T3
lastLSNs of losers =
ToUndo = {60, 50}

Scan back using ToUndo:
60: undo update, write CLR,

put 20 in ToUndo
now ToUndo = {50, 20}

50: undo update, write CLR,
nothing to put in ToUndo,
write T3 end record
now ToUndo = {20}

20: undo update, write CLR,
nothing to put in ToUndo,
write T2 end record

Done with recovery, but
we consider a crash before
20 is written to disk...

prevLSNs

Example: Crash During Recovery!

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

LSN LOG
00,05

10

20

30

40,45

50

60

70

80,85
Crash1 recovery undo

phase writes these 2

CLRs, then gets

interrupted by crash

Same as previous

Example: Crash During Restart!

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

LSN LOG
00,05

10

20

30

40,45

50

60

70

80,85

undonextLSN

Second recovery: case with
undos in progress at crash:
Process last CLR to find out
where to start UNDOing
a transaction

From analysis,
Losers: T2
lastLSNs of losers =
ToUndo = {70}

Redo: same as before
Undo: Scan back using
ToUndo:
70: CLR, put undonextLSN

= 20 in ToUndo
now, ToUndo = {20}

20: undo update, write CLR,
nothing to put in ToUndo,
write T2 end record

Done with recovery

Example: Crash During Restart

Recovery

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

10

20

30

40,45

50

60

70

80,85

90

undonextLSN

Non-simple undo

processes CLRs, finds

one more update to undo,

appends one more CLR

Additional Crash Issues

 What happens if system crashes during Analysis?

During REDO?

 How do you limit the amount of work in REDO?

 Flush asynchronously in the background.

 Fix “hot spots” if you can!

 How do you limit the amount of work in UNDO?

 Avoid long-running Xacts. Good idea anyway.

Summary of Logging/Recovery

 Recovery Manager guarantees Atomicity & Durability.

 Use WAL to allow STEAL/NO-FORCE w/o sacrificing

correctness.

 LSNs identify log records; linked into backwards chains

per transaction (via prevLSN).

 pageLSN allows comparison of data page and log records.

Summary, Cont.

 Checkpointing: A way to limit the amount of log to scan

on recovery.

 Without checkpointing, need to process entire log, i.e.,

back to last DB-start

 Recovery works in 3 phases:

 Analysis: Forward from checkpoint.

 Redo: Forward from oldest recLSN.

 Undo: Backward from end to first LSN of oldest Xact alive at

crash.

 Upon Undo, write CLRs.

 Redo “repeats history”: Simplifies the logic!

Recovering From a Crash

 There are 3 phases in the Aries recovery algorithm:

 Analysis: Scan the log forward (from the most recent checkpoint) to

identify all Xacts that were active, and all dirty pages in the buffer pool

at the time of the crash.

 Redo: Redoes all updates to dirty pages in the buffer pool, as needed,

to ensure that all logged updates are in fact carried out and written to

disk.

 Undo: The writes of all Xacts that were active at the crash are

undone (by restoring the before value of the update, which is in the log

record for the update), working backwards in the log. (Some care

must be taken to handle the case of a crash occurring during the

recovery process!)

Logging Logical Operations

 The log entry studied here has page number, offset on

page, number of bytes

 These are called physical operations, or byte-level

operations

 But the ARIES system also supports logical operations like

“insert this row (…) into table T”, as discussed on page

596.

 This works better with B-tree mods

 Current DBs use row locks and logical logging, or

physiological logging, which targets pages and uses logical

operations in the page.

