
Cloud Basics for developers,

Docker containers

CS634
Class 19

What we have learned so far

 It’s pretty easy to set up a VM in the cloud, esp. if you’ve
done it once before.

 It’s not expensive, maybe $20/mo. for a single CPU.

 It’s available from anywhere on the Internet.

 We are charged only for actual use, can bring the VM up
and down easily to avoid charges. That’s “on demand
availability” and “measured service”

 We see it’s possible to add computing power and disk
resources by clicking a few buttons—that’s “elasticity”
and “self-service”.

 We don’t have to worry about fixing the system—though
should do snapshots/backup to cover human-error
scenarios

What we have learned so far, continued

Google Compute Engine:

 We can get an external IP address for the VM, so it

can work as a server.

 Real user authentication is via Google sign-in, not

system password.

 Multiple users can login to the VM, but each is a

privileged user (i.e., on the development team)

 Ordinary users are handled via services exposed on

the network: web server, web services, databases

 We can open up ports in the default firewall for our

services (port 80 is open by default)

Compute Engine: what kind of cloud service

is it?

Cloud service offerings are classified as follows

 Infrastructure as a service IaaS:

 Just virtual machine supplied, you have to install OS

 Platform as a service PaaS:

 VM with OS, basic tools, supplied Compute Engine VM

 Software as a service SaaS:

 VM with OS, useful hosted apps, supplied: email, etc.

 Information as a service IaaS:

 Specialized information available by web service, etc.

 Business process as a service BPaaS:

 Multistep actions handled by service, example: PriceLine

 Functions as a service FaaS: AWS Lambda

Google App Engine: “Google’s PaaS”

 Although Compute Engine is clearly a PaaS, it’s not Google’s

official one

 The App Engine is a “managed PaaS”

 It uses Compute Engine VMs, but largely transparently.

 You create a web app or web services locally in your favorite

language and upload it all with Google’s gcloud tool

 You can see its status, disable/reenable services, modify

parameters using web pages much like Compute Engine VMs.

 In some cases, you could login to one of the VMs for

debugging.

 App Engine “Flexible” environment can accept software in

containers

What cloud technologies do you need to

know?

Useful summary: 9 Cloud Technologies You Need to Know

for 2018

From its intro:

 Cloud revenues for the first half of 2017 totaled $63.2

billion. Compare to IBM revenue of $79 billion.

 The platform as a service (PaaS) segment of the market,

saw particularly strong growth, with revenues increasing

50.2 percent year-over-year.

 Split into providers: for IaaS/Paas. Amazon on top,

Google not, but growing fast (data as of Dec.,

2017),shows total of $42 billion for IaaS/Paas.

https://www.datamation.com/cloud-computing/slideshows/9-cloud-computing-technologies-you-need-to-understand-for-2018.html
https://www.marketwatch.com/story/amazon-rules-the-public-cloud-but-google-microsoft-alibaba-are-growing-faster-2017-12-20

The list of nine hot cloud technologies

1. Hybrid clouds: using private and public, for example

2. Containers: we’ll study this

3. Kubernetes: “orchestration” of containers in production use

4. Serverless computing, or FaaS: Amazon Lambda

5. APIs, in sense of web services (covered in cs637)

6. Microservices: split “monolithic” apps into many pieces (which

can live in containers) cs636 coverage, with linked videos.

7. Machine Learning: cs671 intro slides

8. Automation via DevOps (containers are important here)

9. Blockchain (cs646 is studying Berkeley blockchain workshops)

Four of these are related to containers!

https://www.cs.umb.edu/cs636/notes23.html
https://www.cs.umb.edu/~dsim/slides1.pdf
https://blockchain.berkeley.edu/workshops/

Containers

Containers create a sandbox environment for a program to run

in, isolating it from other programs and even the filesystem of

the system it’s running in, and its network.

 It does use the OS kernel, originally only Linux.

 Needs to provide its own filesystem, since isolated from the

shared one.

 Needs to have its own network, since isolated from the shared

one.

 Usually a single process runs inside the container, but more are

allowed.

 Note that an ordinary process isolates memory from other

processes, but shares the filesystem, and network ports.

If it’s so isolated, how can it be useful at all?

 It can “expose” a network port, and this can be connected to,
or mapped to a system port.

 Most communication to/from working containers is via TCP
stream connections.

 For debugging or interactive use, can read/write from/to the
terminal (almost the only thing that’s still shared!)

 So can think of a container as a little machine with some hoses
hanging out for connections to other such machines or the
web. Also has a terminal connection.

 Database clients connect to the database server with a TCP
connection, so ready to play in this environment.

 Example: mysql in a container, its client in another container,
connected by the TCP connection, and the client also
connected to the web.

Uses for containers

 Problem: program works fine on developer’s system, fails or
misbehaves on production system

 It’s usually because some dependency is different: version of
programming language, library, environment variables, …

 If developer puts it in a container, it carries with it all these
dependencies, should run fine on production system.

 This idea is part of DevOps, movement to automate handling
of software products, esp. delivery of software onto
production systems.

 Similarly, the program should run fine in a cloud PaaS, or using
Kubernetes.

 “Build once, run anywhere”

 Much smaller than VMs, the competition in a sense

If this is such a great idea, why did it take

until 2013 to come about?

 Actually, some people were thinking about it, but Linux

couldn’t do the basic system support for it.

 Several needed Linux enhancements culminated in v 3.8 with

capabilities for user-level sandboxing. Released Feb., 2013.

 2013: Docker containers developed

 2014: Docker 1.0 released, open-source

 2014: Kubernetes released (helps with the production

execution of many often-unrelated containers), open-source

 2014: Compose 1.0 released (helps set up multiple

communicating containers for a single app), open-source

 2016: Docker for Windows Server 2016 and Windows 10

released (Microsoft responded quickly to this challenge!)

https://kernelnewbies.org/Linux_3.8

Docker Containers and Images

 Container: the executable object, like an executable file but
holding a whole filesystem inside ready for the program.

 Docker Image: stored software in a format ready for use in a
container. A container is built from one or more images. An
image is something like a .class file, a template for building
executables, not an executable itself.
 Pre-built images are available from the Docker hub and elsewhere

 You can build an image from your own software

 Once you have an image, you can “run” it, passing various arguments.
This will build and execute the container.

 Usually containers are executed only once. They are considered
disposable. The exited container can be examined.

 Once installed on a host system, Docker provides the a docker
command, and a docker daemon (dockerd) to live on the host
system and carry out the docker commands.

Docker Hello World: last step of install
$ docker run hello-world

Hello from Docker!

This message shows that your installation appears to be
working correctly.

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world" image from
the Docker Hub. (amd64)

3. The Docker daemon created a new container from that
image which runs the executable that produces the output
you are currently reading.

4. The Docker daemon streamed that output to the Docker
client, which sent it to your terminal.

…

To redo this hello-world from scratch…
remove image and any containers for it, re-run

eoneil@eonvm:~$ sudo docker rmi -f hello-world

Untagged: hello-world:latest

Untagged: hello-
world@sha256:97ce6fa4b6cdc079290b74cfebd...b8c38e979330d547d22ce1

Deleted:
sha256:f2a91732366c0332ccd7af2b9af81f549370f7a19acd460f87686bc7

eoneil@eonvm:~$ sudo docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

9bb5a5d4561a: Pull complete

Digest:
sha256:f5233545e43561214ca4891e1c3c563316ed8e237750d59bde73361e77

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working
correctly…

Hello world: it works, but where’s the code?

 Can get some info about it from Docker Hub

(Google “docker hub hello-world” for ex.)

 Refs code in github

 Turns out it’s in C, so not of much interest to us.

 We would like a hello-world written in Java

 Here is one tutorial that does it.

https://examples.javacodegeeks.com/devops/docker/docker-hello-world-example/

Using an Alpine container

 After the C hello-world, the tutorial does

sudo docker run alpine:latest "echo" "Hello, World“

 Which downloads “alpine” and it does the echo: what is this all about?

 Alpine is a stripped-down Linux image (no kernel, just filesystem) with just a few

Linux commands supported, including echo, and this command runs echo with

argument “Hello, World”

 We can try others like

sudo docker run alpine:latest ls

 and see all the top-level directories of Linux listed

 To see something specific to Alpine, try

 sudo docker run alpine:latest cat /etc/motd

 Other containers allow this kind of access too, but have an app installed in them

Finally, the Java Hello

 This tutorial creates HelloWorld.java, compiles it on the

host system, then creates a container for the .class file

execution.

 In the homework, you’ll also compile it in the container.

 For this approach, you could install java on your VM and

do the compile, or just compile it on pe07 and transfer

the .class file to your VM.

 After all, Java .class files are completely portable.

 OK, assume we have HelloWorld.class on our VM in a

directory with the Dockerfile shown on the next slide…

Executing HelloWorld.class in a container

 We need to build an image, so we create a Dockerfile to say
how. The tutorial has:

 The all-caps commands are Dockerfile commands

 FROM alpine:latest means start from the Alpine slimmed-down
Linux image, a very well-known resource

 apk is the Alpine package manager, like apt-get for Debian

 RUN apk … runs this command in the Alpine Linux already
established, to install the JRE on that OS in the container-to-be

FROM alpine:latest

ADD HelloWorld.class HelloWorld.class

RUN apk --update add openjdk8-jre

ENTRYPOINT ["java", "-Djava.security.egd=

file:/dev/./urandom", "HelloWorld"]

Executing HelloWorld.class in a container

 So this starts with Linux, installs the JRE (Java binaries)

 Just like on our VMs, we’d use apt-get to install the JRE

 ADD copies HelloWorld.class from the current host directory into
the developing image (as a “layer”), at the root of its filesystem, the
default working directory

 We could use COPY here instead (for example)
 COPY HelloWorld.class /

 ENTRYPOINT specs the default command (what happens if the user
does “docker run <this-image>”), here run java with needed flag

FROM alpine:latest

ADD HelloWorld.class HelloWorld.class

RUN apk --update add openjdk8-jre

ENTRYPOINT ["java", "-Djava.security.egd

=file:/dev/./urandom", "HelloWorld"]

That was a classic way to do it: OS +

installed JRE

 But we can start from a JDK or JRE image

 See OpenJDK at Docker Hub

 Their example Dockerfile:

This starts from the JDK image, copies the current directory to
/usr/src/myapp inside the container, sets the working directory
within the container to /usr/src/myapp, runs the compiler and
sets the default command of the container-to-be, the java
command. Of course this will end up with a much bigger image.

FROM openjdk:7

COPY . /usr/src/myapp

WORKDIR /usr/src/myapp

RUN javac Main.java

CMD ["java", "Main“]

https://hub.docker.com/_/openjdk/

Running this image…see Debian OS

Start from Main.java and the Dockerfile of last slide in a directory

Build an image of tag openjdk for easy running by name:

$ sudo docker build -t openjdk .

sudo docker run --rm openjdk

Hello World

We can use Linux commands to query the container environment: Here we are
overriding the CMD java … with cat /etc/motd.

$ sudo docker run --rm openjdk cat /etc/motd

The programs included with the Debian GNU/Linux system are
free software…

We can run a shell inside the container: needs –it to allow terminal input:

$ sudo docker run --rm -it openjdk bash

root@dcf4d09b1b8a:/usr/src/myapp# lsDockerfile Main.class
Main.java

root@dcf4d09b1b8a:/usr/src/myapp# exit

Exit
$

Now we have Java working, what app?

 As discussed in the intro, working containers usually

exchange data via TCP connections.

 Problem 2 in hw6 gives a simple example of a web service

implemented in Java

 We’ll talk to it over a TCP connection: send request to

localhost/ping, get “pong” back

 We’ll look at it more a little later

Accessing the host filesystem from a

container using docker run –v …

 Suppose we wanted to containerize an app that reads and input file and
produces an output file.

 We can use COPY to copy-in the input file, but these Dockerfile
commands are long gone when the container executes to produce the
output file.

 We could use the network to scp it out.

 Or use –v on the docker run command line to map a host directory into
the container’s filesystem.
 For example docker run –v filedir:/mnt myimage maps host

directory filedir (subdirectory of the Dockerfile directory) to /mnt inside the
container

 Then the app in the container just writes output to /mnt/data.dat and it shows
up in filedir/data.dat on the host.

 This is used in problem 1 of hw6 to give a containerized JDK access to a
user’s java program directory. That’s also an input-output situation.

 Also in problem 3, where mysql needs a stable place to store its data: the
internal filesystem disappears when the container exits.

Image layers
 The image is built following the instructions in the Dockerfile, in

layers, one layer for each command there. For our second java
example:

 We can see the layers with the Docker history command: the first
layers come from the steps we see above, which were done locally

 Then we see the layers of the downloaded image “openjdk:7”, i.e,,
the various commands that its Dockerfile used to create it

 Get OS, get OS tools, get JDK, set it up properly

FROM openjdk:7

COPY . /usr/src/myapp

WORKDIR /usr/src/myapp

RUN javac Main.java

CMD ["java", "Main“]

Output of docker history openjdk
IMAGE CREATED CREATED BY SIZE

6fbc97991540 41 hours ago /bin/sh -c #(nop) CMD ["java" "Main"] 0B

ccc921acf457 41 hours ago /bin/sh -c javac Main.java 409B

f8a0681a23e3 41 hours ago /bin/sh -c #(nop) WORKDIR /usr/src/myapp 0B

9447bff1e77f 41 hours ago /bin/sh -c #(nop) COPY dir:83c3b6b77ad65898c… 201B

8da12bfcb376 2 weeks ago /bin/sh -c set -ex; if [! -d /usr/share/m… 263MB

<missing> 2 weeks ago /bin/sh -c #(nop) ENV JAVA_DEBIAN_VERSION=7… 0B

<missing> 2 weeks ago /bin/sh -c #(nop) ENV JAVA_VERSION=7u171 0B

<missing> 5 weeks ago /bin/sh -c #(nop) ENV JAVA_HOME=/docker-jav… 0B

<missing> 5 weeks ago /bin/sh -c ln -svT "/usr/lib/jvm/java-7-open… 33B

<missing> 5 weeks ago /bin/sh -c { echo '#!/bin/sh'; echo 'set… 87B

<missing> 5 weeks ago /bin/sh -c #(nop) ENV LANG=C.UTF-8 0B

<missing> 5 weeks ago /bin/sh -c ap-get update && apt-get install… 2.1MB

<missing> 5 weeks ago /bin/sh -c apt-get update && apt-get install… 123MB

<missing> 5 weeks ago /bin/sh -c set -ex; if ! command -v gpg > /… 0B

<missing> 5 weeks ago /bin/sh -c apt-get update && apt-get install… 44.6MB

<missing> 5 weeks ago /bin/sh -c #(nop) CMD ["bash"] 0B

<missing> 5 weeks ago /bin/sh -c #(nop) ADD file:bc844c4763367b5f0… 123MB

Mystery of “<missing>” image ids

 Unfortunate text: not an error!

 Locally-created layers have image ids

 Downloaded images just have overall image id: layers have been put
together

 The locally-created layers have a physical presence on the local machine,
can be seen in docker daemon workspace /var/lib/docker/overlay2

sudo ls -l /var/lib/docker/overlay2/ffd94…19fe2-init

drwxr-xr-x 4 root root 4096 Mar 23 17:56 diff

-rw-r--r-- 1 root root 26 Mar 23 17:56 link

-rw-r--r-- 1 root root 289 Mar 23 17:56 lower

drwx------ 3 root root 4096 Mar 23 17:56 work

sudo ls -l /var/lib/docker/overlay2/ffd94…19fe2-init/diff

drwxr-xr-x 4 root root 4096 Mar 23 17:56 dev

drwxr-xr-x 2 root root 4096 Mar 23 17:56 etc

This gives a clue as to what’s going on: a layer contains a diff of a filesystem.
This layer records changes to /dev and /etc. Looking inside etc, we see
hostname, hosts, etc.

How Layers Work

 Each layer has the changed files for that action. Example on last
slide: /etc/hostname changed by action, so new file is in the diff

 The layers stored in the image are read-only in the container
environment.

 When the container is created from the image, another
writable layer is added.

 The layers are mounted in place at the root / using a recent
Linux enhancement (union filesystem) allowing multiple
mounts at a single point, with the one mount’s files being
accessible if not overridden by another higher-priority mount’s
files. See UnionFS at Wikipedia if interested in details.

 The whole thing can be accessed as a normal filesystem by the
process(es) running in the container.

https://en.wikipedia.org/wiki/UnionFS

Layer Caching and fast docker builds

 As we have seen, the individual layers are saved on the
host system.

 Using a fairly careful algorithm, a saved layer image can be
used for a build step instead of building it from scratch, or
re-downloading it from elsewhere.

 This speeds up builds and esp. rebuilds, supporting the
notion of a disposable container.

 Layers are now id’d by checksum to avoid possibility of
tampering with them.

 The fact that we see them in /var/lib/docker/overlay2 and
not /var/lib/docker/aufs means we’re using the latest
version, the “overlay2 driver”.

Using the Network

 In problem 2 of hw6, you will work with PingPong.java

 What it does: if you send a request to
http:localhost:8080/ping, you get “pong” back on the same
TCP connection.

 To make this work:

 Build image: PingPong.java, JDK, OS gets put in the image
with one port exported, for the client to connect to.

 Run image, with port mapped to some OS port

 We can use curl as a client, or a browser running on
another system if the port is open externally (e.g., port
80)

 Or we could containerize a client…

Details on ports

 Dockerfile for PingPong has EXPOSE 8080

 This means TCP port 8080 of the container OS is ready for use

from outside the container if the docker run command says how.

 From PingPong tutorial: use –p (or –publish) with docker run for

port, also –d to run as daemon:

sudo docker run –d –p 8080:8080

 This binds exported container port 8080 to host port 8080

 Send GET request to localhost:8080/ping using curl:

curl localhost:8080/ping

pong

Using host port 80: not blocked by firewall
Another way: bind it to host port 80

First kill old run:

sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

5a10ecb3a5ee pingpong "java PingPong" 8 minutes ago Up 8
minutes 0.0.0.0:80->80/tcp, 8080/tcp
compassionate_franklin

$ sudo docker kill 5a10ecb3a5ee

5a10ecb3a5ee

Now run with different host port

sudo docker run –d –p 8080:80

Using curl to port 80:

curl localhost:80/ping

pong

From another system: browse to external IP of VM, URL /ping, see pong

My system (if up): http://35.190.172.174/ping

(I had to stop apache to free up port 80: sudo apachectl –k stop)

http://35.190.172.174/ping

Still another way: use container’s network

 We can use the exposed port without binding it to a host port—
here’s how: use docker run with –expose, no –p:

sudo docker run -d --expose 8080 pingpong

 Then find its usable container id using docker ps (see 2 executions)
sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED …

e14bb9b7858e pingpong "java PingPong" 38 seconds ago… one we want

0e4959d600f0 pingpong "java PingPong" 38 minutes ago…

Use container inspect to find its network
sudo docker inspect e14bb9b7858e | grep IPAddrss

"SecondaryIPAddresses": null,

"IPAddress": "172.17.0.3",

"IPAddress": "172.17.0.3",

Contact port 8080 at that address
curl 172.17.0.3:8080/ping

pong

Mysql in a container

 Hw6 Problem 3 considers a containerized mysql server.

 The default mysql at Docker Hub is now version 8.0,

incompatible with our VM’s mysql, so please specify v. 5.7

by replacing mysql in the original run command by

mysql/mysql-server:5.7. See hw6.html.

 We don’t have the Dockerfile here because we’re pulling

the prebuilt image from the Docker Hub.

 But the general rule is to export the expected port, here

3306, and that value reported in the startup output

 Again we find the container id and use inspect to get the

IP address of the container’s system.

Using the mysql server container

 The server container EXPORTs port 3306, so we can access
the server in it once we know its IP address from “docker
inspect <containerid>”

 But actually logging in requires an account and good password,
and the server starts out nearly empty with only a root
account with host=localhost.

 There are several ways to proceed. See MySQL 5.7 doc,
including more secure methods involving one-time passwords.

 Hw6 shows how to log into mysql inside the container and fix
up the root login to work from remote hosts (including the
docker host system), then save that work in a new image using
docker commit

 But it’s really better to use a Dockerfile to set up an image,
because it documents the process.

https://dev.mysql.com/doc/mysql-installation-excerpt/5.7/en/docker-mysql-more-topics.html

Dockerfile to initialize mysql

Mysql-setup.sql: (could do much more)
CREATE USER 'root'@'%' IDENTIFIED BY 'mypassword';

GRANT ALL PRIVILEGES ON *.* TO 'root'@'%';

Build image:
sudo docker build -t mysql57a .

Run it (no longer need MYSQL_ROOT_PASSWORD here):
sudo docker run -d mysql57a

Find its IP address using inspect and log in from host:
mysql –h 172.17.0.3 –u root -p

FROM mysql/mysql-server:5.7

COPY mysql-setup.sql /docker-entrypoint-initdb.d

Docker Volumes for mysql data

 Current mysql Docker images set up Docker “volumes” for their data by

default, themselves held in /var/lib/mysql/volumes

 Inspect of container shows this JSON for the volume:

"Mounts": [{

"Type": "volume",

"Name":"c530dcad86c92b43f…ef09cd2b6911f",

"Source":

/var/lib/docker/volumes/c530dcad86c92b43f…ef09cd2b6911f/_data",

"Destination": "/var/lib/mysql",

"Driver": "local", "Mode": "", "RW": true, "Propagation": ""

}]

The container name is important: if the original container exits, you can start

a new one referencing the volume by this name, and continue using the data.

sudo docker run -d --mount source=

c530dcad86c92b43f…ef09cd2b6911f,target=/var/lib/mysql mysql57a

Docker volumes can eat up your diskspace!

 If you try out mysql containers too many times, you can

run out of the 10GB we have on a VM!

 Check for overall diskspace: df command
$ df

Filesystem 1K-blocks Used Available Use% Mounted on

udev 1885404 0 1885404 0% /dev

tmpfs 379304 26744 352560 8% /run

/dev/sda1 10188088 8911484 736036 93% / a problem!

tmpfs 1896508 0 1896508 0% /dev/shm

tmpfs 5120 0 5120 0% /run/lock

tmpfs 1896508 0 1896508 0% /sys/fs/cgroup

tmpfs 379300 0 379300 0% /run/user/1000

Check if it’s Docker’s data…
$cd /var/lib/docker

$ sudo du -s $(sudo ls) du output is in KB: do by directory

20 builder

236 containerd

336 containers

9088 image

72 network

2719224 overlay2 images and containers 2.7GB

20 plugins

4 runtimes

4 swarm

4 tmp

4 trust

2330864 volumes volumes for mysql containers 2.3GB

Cleaning up Docker files

 Remove all stopped containers: they’re disposable after all

sudo docker container prune

 Remove all untagged images, once containers are gone:

sudo docker image prune

 Remove all unused volumes

sudo docker volume prune

After this: df shows 71% use, 6.8GB, down from 8.9GB,

with only 0.2GB in /var/lib/docker/volumes.

Should a database server be containerized?

 We have seen the complication of ensuring that the
database data is persistent

 We have not even tackled the maintenance issues, like
backups

 Typically we have one server, many clients for it

 The clients are less problematic to containerize, assuming
they use the database to persist their data (as they
should)

 So for many cases, containerizing the clients and leaving
the database server “normally” installed is a win.

 All the database tools work as expected.

 The error log is where it is expected, etc.

A Containerized database app
 Let’s containerize JdbcCheckup.java (itself unedited):

 Note how we put the driver jar on the command line for the java
command—it was copied into the container in the COPY command.

sudo docker build -t check2 .

sudo docker run -it check2

See next slide for output from run using mysql server on VM (i.e.,
uncontainerized server)

FROM java:8

COPY . /

WORKDIR /

RUN javac JdbcCheckup.java

CMD ["java", "-classpath", "mysql-connector-java-5.1.43-bin.jar:.",

"JdbcCheckup"]

Containerized JdbcCheckup run
sudo docker run -it check2

Please enter information to test connection to the database

Using Oracle (o), MySql (m) or HSQLDB (h)? m

user: eoneil

password: eoneil

use canned MySql connection string (y/n): y

host: 10.142.0.2 Internal IP address of VM

port (often 3306): 3306

using connection string: jdbc:mysql://10.142.0.2:3306/eoneildb

Connecting to the database...connected.

Hello World!

Your JDBC installation is correct.

Note that localhost won’t work here: the client and server are running on different
networks

Also, this needs the host’s mysql server to be enabled for connections from non-
localhost clients by commenting out the line “bind-address=127.0.0.1” in 50-server.cnfg

Security considerations

 Giving a person privileges to run docker means giving them
root privileges on the host system, at least in effect.

 Worry: malicious code inserted into container via original
build or patched in.
 Code inside the container is running with root privileges inside its

sandbox, so can look at everything COPY’d in or mounted, or
generated as it runs.

 Code inside the container can “call home”:
 Run bash inside a container and try “ssh user@pe07.cs.umb.edu”, “curl

topcat.cs.umb.edu:80”: they work fine.

 Can set up a tunnel to port 3306 on pe07 to use mysql or JDBC (need to
specify IPv4 with -4 flag)

 We see that there’s more control over what ports can be used to
reach the container than what ports the container code can reach

 Need firewalls: article says you need a Linux networking
expert, to protect the host and the containers themselves

mailto:user@pe07.cs.umb.edu
https://neuvector.com/docker-security/how-to-deploy-a-docker-container-firewall/

Summary

 We have covered how to write simple Dockerfiles for
containerizing apps, and using database server images (or
not) and a simple JDBC app.

Next steps you might try:

 Arrange for the JDBC app container to use the
containerized mysql. This is currently done by setting up a
network among the containers (surprisingly easy).

 Have two JDBC apps using the same mysql this way.

 Have a whole cs636-style web app using mysql: can
containerize tomcat with app in its filesystem, and
separately mysql, or even Oracle.

 Try out Docker Compose to run multi-container apps.

https://docs.docker.com/compose/overview/

