
Data Warehousing and 
Decision Support 

(mostly using Relational Databases) 
CS634

Class 20

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke, Chapter 25



Introduction

 Increasingly, organizations are analyzing current and 
historical data to identify useful patterns and support 
business strategies.

Emphasis is on complex, interactive, exploratory analysis of 
very large datasets created by integrating data from across 
all parts of an enterprise
 Contrast such Data Warehousing and  On-Line Analytic Processing 

(OLAP) with traditional On-line Transaction Processing (OLTP): mostly 
long queries, instead of  the short update Xacts of OLTP.  

• In past, both were using “structured data” that can be fairly easily 
loaded into a database

• Today, businesses also monitor social media, web clicks, etc., which 
are not properly structured, hard to put in RDB.



Structured vs. Unstructured Data

• So far, we have been working with structured data

• Structured data:
• Entities with attributes, each fitting a SQL data type

• Relationships

• Each row of data is precious

• Loads into relational tables, long-term storage

• Can be huge

• Unstructured data, realm of “big data”
• Often doesn’t fit into E/R model, too sloppy

• Each piece of data is not precious—it’s statistical

• Sometimes just processed and thrown away

• No permanent specialized repository, maybe saved in files

• Can be really huge



Data Warehouses using RDB vs. Data Lakes 
using Hadoop

• Both are ways to hold huge amounts of data

• Data lakes hold “big data”, use big data techniques to query and analyze 
data. Hadoop provides a high-availability scalable distributed systems.

• Big data can be original, uncleaned data, vs. cleaned data for RDB systems.

• A data lake can hold both original and cleaned data. Term “data lake” was 
invented in 2011, i.e., around same time as release of Hadoop.

• RDB Data warehouse technology ends up with data in a form easily 
understood by business people

• Big data is not there yet: usually need “data scientists” to interpret the data, 
write the queries, or at least new queries.

• Of course this is changing…

• Many big businesses have both a traditional data warehouse and a data lake, 
load some of same data in both Datamation article

• We may reserve “data warehouse” without adjective to encompass both 
RDB data warehouses and big-data warehouses that provide user-friendly 
access methods

https://www.datamation.com/big-data/data-lake-vs-data-warehouse.html


Bigness of Data

Huge Data warehouses, all on Teradata systems (hard to find current 
sizes)

See article
• Biggest DW: Walmart, passed 1TB in 1992, 2.8 PB (petabytes) = 2800 TB in 

2008, 30 PB in 2014,  40+ PB in 2017, processing 2.5PB/hour, growing…

• eBay: 9 PB DW in 2013, also has 40 PB of big data, uses Hadoop, etc.

• Apple: multiple-PB DW

• Big data:
• Usually over 50TB, can’t fit on one machine

• Is judged by “velocity” as well as size

• Google: processed 24 PB of data per day in 2009, invented Map-Reduce, 
published 2004

http://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen


Teradata

• Teradata provides a relational database with ANSI compliant SQL, 
targeted to data warehouses

• Proprietary, expensive ($millions)

• Uses a shared-nothing architecture on many independent nodes

• Partitioning by rows or (more recently) columns

• Scales up well: add node, add network bandwidth for it

• Now supports Hadoop as well as RDBMS: Teradata Appliance for 
Hadoop



Three Complementary Trends

Data Warehousing: Consolidate data from many sources in one large 
repository (relational database or data lake).
• Loading, periodic synchronization of data.
• Semantic integration, Data cleaning of data on way in (RDB only so far)
• Both simple and complex queries and views. (SQL or programmed)
• Note: SQL is available on top of big data in most systems

OLAP/Multidimensional Analysis
• Queries based on spreadsheet-style operations and “multidimensional” view 

of data. Interactive queries. Look at data from different directions, granularity, 
etc.

• Big Data Example: Apache Kylin, originally from eBay, available 2017

Data Mining:  Exploratory search for interesting trends and anomalies. 

Note: BI = Business intelligence, analysis of business information, includes 
OLAP and data mining



Data Warehousing

 Integrated data spanning long time 
periods, often augmented with 
summary information. 

Several gigabytes to terabytes 
common, now petabytes too.

 Interactive response times expected 
for complex queries; ad-hoc updates 
uncommon.

Read-mostly data

EXTERNAL DATA SOURCES

EXTRACT

TRANSFORM

LOAD

REFRESH

DATA

WAREHOUSE
Metadata

Repository

SUPPORTS

OLAP
DATA

MINING



Warehousing Issues

Semantic Integration: When getting data from multiple 
sources, must eliminate mismatches, e.g., different 
currencies, schemas.

Heterogeneous Sources: Must access data from a variety of 
source formats and repositories.
• Replication capabilities can be exploited here.

Load, Refresh, Purge: Must load data, periodically refresh it, 
and purge too-old data.

Metadata Management: Must keep track of source (lineage) 
loading time, and other information for all data in the 
warehouse.



OLAP: Multidimensional data model

• A way to make complex data understandable by business user, etc.

• Example: sales data

• Dimensions: Product, Location, Time

• A measure is a numeric value like sales we want to understand in 
terms of the dimensions

• Example measure: dollar sales value “sales”

• Example data point (one row of fact/cube table):
• Sales = 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in that location, for 

that product

• Pid=1: details in Product table

• Locid = 1: details in Location table

•Note aggregation here: sum of sales is most detailed 
data (but can have all sales data)



Multidimensional Data Model

 Collection of numeric measures, which depend on a set of 
dimensions.
 E.g., measure sales, dimensions Product (key: pid), Location

(locid),  and Time (timeid).

 Full table, pg. 851

8     10    10

30    20    50

25     8     15

1      2      3

timeid

p
id

11
  
  
1
2
  
  
1

3

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

13 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

p
id

ti
m

ei
d

lo
ci

d

sa
le

s

locid

Slice locid=1

is shown:

SalesCube(pid, timeid, locid, sales)



Granularity of Data

• Example of last slide uses time at granularity of days

• Individual transactions (sales at cashier) have been added together to 
make one row in this table

• Note: “measures” can always be aggregated

• Current hardware can handle more data

• Typical data warehouses hold the original transaction data

• So such a fact table has more columns, for example

• dateid, timeofday, prodid, storeid, txnid, clerkid, sales, …



Data Warehouse vs. Data for OLAP

• Current DW fact table is huge, with individual transactions, large 
number of dimensions

• Can only use a subset of this for OLAP, because of explosion of cells

• Take DW fact table, roll up to days (say), drop less important columns, 
get much smaller data for OLAP

• Load data into OLAP, another tool.

• Table on pg. 851 is a cube table, not a DW fact table

• Can think of OLAP as a cache of most important aggregates of DW 
tables



Dimension Hierarchies: OLAP, DW

 For each dimension, the set of values can be organized in a 
hierarchy:

PRODUCT TIME LOCATION

category           week          month                  state

pname                       date                                city

year

quarter                          country



Schema underlying OLAP, used in RDB DW

 Fact/cube table in BCNF; dimension tables not normalized.
• Dimension tables are small; updates/inserts/deletes are rare. So, anomalies 

less important than good query performance.

 This kind of schema is very common in DW and OLAP, and is called a 
star schema; computing the join of all these relations is called a star 
join.
Note: in OLAP, this is not what the user sees, it’s hidden underneath
 In DW, this is the basic setup, but usually with more dimensions
Here only one measure, sales, but can have several

pricecategorypnamepid countrystatecitylocid

saleslocidtimeidpid

holiday_flagweekdatetimeid month quarter year

(Fact table)SALES

TIMES

PRODUCTS LOCATIONS



OLAP (and DW) Queries

 Influenced by SQL and by spreadsheets.

A common operation is to aggregate a measure over one or 
more dimensions.
• Find total sales.

• Find total sales for each city, or for each state.

• Find top five products ranked by total sales.

Roll-up: Aggregating at different levels of  a dimension 
hierarchy.  
• E.g., Given total sales by city, we can roll-up to get sales by state.



OLAP Queries: MDX (Multidimensional 
Expressions)

• Originally a Microsoft SQL Server project, but now supported widely 
in the OLAP industry: Oracle, SAS, SAP, Teradata on server side, as 
well as Microsoft. Allows client programs to specify OLAP datasets.

• Example from Wikipedia

SELECT

{ [Measures].[Store Sales] } ON COLUMNS,

{ [Date].[2002], [Date].[2003] } ON ROWS

FROM Sales

WHERE ( [Store].[USA].[CA] )

• The SELECT clause sets the query axes as the Store Sales member of the 
Measures dimension, and the 2002 and 2003 members of the Date 
dimension.

• The FROM clause indicates that the data source is the Sales cube.
• The WHERE clause defines the "slicer axis" as the California member of 

the Store dimension.

https://en.wikipedia.org/wiki/MultiDimensional_eXpressions


OLAP Queries

 Drill-down: The inverse of roll-up: go from sum to details that were 
added up before
• E.g., Given total sales by state, can drill-down to get total sales by county.

• Drill down again, see total sales by city

• E.g., Can also drill-down on different dimension to get total sales by product for 
each state.



OLAP Queries: cross-tabs

With relational DBs, we are used to tables with column names across the 
top, rows of data.

With OLAP, a spreadsheet-like representation is common,

Called a cross-tabulation:

One dimension horizontally

 Another vertically
63    81   144

38   107  145

75    35   110

WI    CA     Total

1995

1996

1997

176  223  339Total



OLAP Queries: Pivoting
 Example cross-tabulation:

 Pivoting: switching dimensions on axes, or choosing what dimensions to show 
on axes

 Switching dimensions means pivoting around a point in the upper-left-hand 
corner
 End up with “1995 1996 1997 Total” across top,
 “WI CA Total” down the side

63    81   144

38   107  145

75    35   110

WI    CA     Total

1995

1996

1997

176  223  339Total



SQL Queries for cross-tab entries

The cross-tabulation values can be computed 
using a collection of  SQL queries:

SELECT SUM(S.sales)

FROM  Sales S, Times T, Locations L

WHERE  S.timeid=T.timeid AND S.timeid=L.timeid

GROUP BY T.year, L.state

SELECT SUM(S.sales)

FROM  Sales S, Times T

WHERE  S.timeid=T.timeid

GROUP BY T.year

SELECT SUM(S.sales)

FROM  Sales S, Location L

WHERE  S.timeid=L.timeid

GROUP BY L.state

63    81   144

38   107  145

75    35   110

WI    CA     Total

1995

1996

1997

176  223  339Total



The CUBE Operator
Generalizing the previous example, if there are k dimensions, we 

have 2^k possible SQL GROUP BY queries that can be generated 
through pivoting on a subset of dimensions.

 CUBE Query, pg. 857

• Equivalent to rolling up Sales on all eight subsets of the set {pid, locid, 
timeid}; each roll-up corresponds to an SQL query of the form:

SELECT SUM(S.sales)

FROM  Sales S
GROUP BY grouping-list

SELECT T.year, L.state, SUM(S.sales)

FROM  Sales S, Times T, Locations L

WHERE S.timeid = T.timeid and S.locid = L.locid
GROUP BY CUBE (T.year, L.state)



Oracle 10+ supports CUBE queries
select t.year, s.store_state, sum(dollar_sales)

from salesfact f, times t, store s

where f.time_key = t.time_key and s.store_key = f.store_key

group by cube(t.year, s.store_state);

YEAR STORE_STATE          SUM(DOLLAR_SALES)

-------- -------------------- -----------------

781403.59

AZ                    35684

CA                    77420.82

CO                    38335.26  (some rows deleted)

TX                    40886.54

WA                    39540.16

1994                          396355.76

1994 AZ                  17903.04

1994     CA                  38966.54

1994     CO                  17870.33

1994     DC                  20901.18   … from dbs2 output



Oracle 11+ supports cross-tabs display

Running on dbs3 (Oracle version 12):

SQL> select * from (

2  select cool, stars from yelp_db.review

3  ) pivot (

4  count(stars)

5  for stars in (2,3,4,5)

6  ) order by cool;

Here is the output:

COOL          2          3          4          5

---------- ---------- ---------- ---------- ----------

0     323533     421229     787637    1516269

1      51358      88168     198705     300811

2      13812      27798      66019      84758

3       5116      11690      28468      31867

4       2455       5979      14690      15452

... and so on ... 

This says 323533 reviews awarded 2 stars but got no “cool” ratings

Same data, relationally:
select cool, stars, count(*) from 

yelp_db.reviews

where stars in (2,3,4,5)

group by cool, stars

order by cool, stars;

COOL      STARS   COUNT(*)

---------- ---------- ----------

0          2     323533

0          3     421229

0          4     787637

0          5    1516269

1          2      51358

…



DW data  OLAP

• The CUBE query can do the roll-ups on DW data needed for OLAP

• Excel is the champ at OLAP queries

• Look at video

• This video shows pivot tables for a single Excel worksheet

• But Excel can work with database tables: see this longer video

• Pivot tables: drill down, roll up, pivot, …

https://www.youtube.com/watch?v=Vx-Fuw46VbY
https://www.youtube.com/watch?v=eGhjklYyv6Y

