Data Warehousing and Decision Support (mostly using Relational Databases) CS634 Class 20

Slides based on "Database Management Systems" 3rd ed, Ramakrishnan and Gehrke, Chapter 25

Introduction

- Increasingly, organizations are analyzing current and historical data to identify useful patterns and support business strategies.
- Emphasis is on complex, interactive, exploratory analysis of very large datasets created by integrating data from across all parts of an enterprise
 - Contrast such Data Warehousing and On-Line Analytic Processing (OLAP) with traditional On-line Transaction Processing (OLTP): mostly long queries, instead of the short update Xacts of OLTP.
 - In past, both were using "structured data" that can be fairly easily loaded into a database
 - Today, businesses also monitor social media, web clicks, etc., which are not properly structured, hard to put in RDB.

Structured vs. Unstructured Data

- So far, we have been working with structured data
- Structured data:
 - Entities with attributes, each fitting a SQL data type
 - Relationships
 - Each row of data is precious
 - Loads into relational tables, long-term storage
 - Can be huge
- Unstructured data, realm of "big data"
 - Often doesn't fit into E/R model, too sloppy
 - Each piece of data is not precious—it's statistical
 - Sometimes just processed and thrown away
 - No permanent specialized repository, maybe saved in files
 - Can be really huge

Data Warehouses using RDB vs. Data Lakes using Hadoop

- Both are ways to hold huge amounts of data
- Data lakes hold "big data", use big data techniques to query and analyze data. Hadoop provides a high-availability scalable distributed systems.
- Big data can be original, uncleaned data, vs. cleaned data for RDB systems.
- A data lake can hold both original and cleaned data. Term "data lake" was invented in 2011, i.e., around same time as release of Hadoop.
- RDB Data warehouse technology ends up with data in a form easily understood by business people
- Big data is not there yet: usually need "data scientists" to interpret the data, write the queries, or at least new queries.
- Of course this is changing...
- Many big businesses have both a traditional data warehouse and a data lake, load some of same data in both <u>Datamation article</u>
- We may reserve "data warehouse" without adjective to encompass both RDB data warehouses and big-data warehouses that provide user-friendly access methods

Bigness of Data

Huge Data warehouses, all on Teradata systems (hard to find current sizes)

See <u>article</u>

- Biggest DW: Walmart, passed 1TB in 1992, 2.8 PB (petabytes) = 2800 TB in 2008, 30 PB in 2014, 40+ PB in 2017, processing 2.5PB/hour, growing...
- eBay: 9 PB DW in 2013, also has 40 PB of big data, uses Hadoop, etc.
- Apple: multiple-PB DW
- Big data:
 - Usually over 50TB, can't fit on one machine
 - Is judged by "velocity" as well as size
 - Google: processed 24 PB of data per day in 2009, invented Map-Reduce, published 2004

Teradata

- Teradata provides a relational database with ANSI compliant SQL, targeted to data warehouses
- Proprietary, expensive (\$millions)
- Uses a shared-nothing architecture on many independent nodes
- Partitioning by rows or (more recently) columns
- Scales up well: add node, add network bandwidth for it
- Now supports Hadoop as well as RDBMS: Teradata Appliance for Hadoop

Three Complementary Trends

- Data Warehousing: Consolidate data from many sources in one large repository (relational database or data lake).
 - Loading, periodic synchronization of data.
 - Semantic integration, Data cleaning of data on way in (RDB only so far)
 - Both simple and complex queries and views. (SQL or programmed)
 - Note: SQL is available on top of big data in most systems
- OLAP/Multidimensional Analysis
 - Queries based on spreadsheet-style operations and "multidimensional" view of data. Interactive queries. Look at data from different directions, granularity, etc.
 - Big Data Example: Apache Kylin, originally from eBay, available 2017

Data Mining: Exploratory search for interesting trends and anomalies.

Note: BI = Business intelligence, analysis of business information, includes OLAP and data mining

EXTERNAL DATA SOURCES

Data Warehousing

- Integrated data spanning long time periods, often augmented with summary information.
- Several gigabytes to terabytes common, now petabytes too.
- Interactive response times expected for complex queries; ad-hoc updates uncommon.
- Read-mostly data

Warehousing Issues

- Semantic Integration: When getting data from multiple sources, must eliminate mismatches, e.g., different currencies, schemas.
- Heterogeneous Sources: Must access data from a variety of source formats and repositories.
 - Replication capabilities can be exploited here.
- Load, Refresh, Purge: Must load data, periodically refresh it, and purge too-old data.
- Metadata Management: Must keep track of source (lineage) loading time, and other information for all data in the warehouse.

OLAP: Multidimensional data model

- A way to make complex data understandable by business user, etc.
- Example: sales data
- Dimensions: Product, Location, Time
- A measure is a numeric value like sales we want to understand in terms of the dimensions
- Example measure: dollar sales value "sales"
- Example data point (one row of fact/cube table):
 - Sales = 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in that location, for that product
 - Pid=1: details in Product table
 - Locid = 1: details in Location table
- Note aggregation here: sum of sales is most detailed data (but can have all sales data)

Multidimensional Data Model

SalesCube(pid, timeid, locid, sales)

- Collection of numeric <u>measures</u>, which depend on a set of dimensions.
 - E.g., measure sales, dimensions Product (key: pid), Location (locid), and Time (timeid).
 - Full table, pg. 851

is shown:

	pid	timeid	locid	sales
-	11	1	1	25
	11	2	1	8
	11	3	1	15
	12	1	1	30
	12	2	1	20
	12	3	1	50
	13	1	1	8
	13	2	1	10
	13	3	1	10
	11	1	2	35

Granularity of Data

- Example of last slide uses time at granularity of days
- Individual transactions (sales at cashier) have been added together to make one row in this table
- Note: "measures" can always be aggregated
- Current hardware can handle more data
- Typical data warehouses hold the original transaction data
- So such a fact table has more columns, for example
- dateid, timeofday, prodid, storeid, txnid, clerkid, sales, ...

Data Warehouse vs. Data for OLAP

- Current DW fact table is huge, with individual transactions, large number of dimensions
- Can only use a subset of this for OLAP, because of explosion of cells
- Take DW fact table, roll up to days (say), drop less important columns, get much smaller data for OLAP
- Load data into OLAP, another tool.
- Table on pg. 851 is a cube table, not a DW fact table
- Can think of OLAP as a cache of most important aggregates of DW tables

Dimension Hierarchies: OLAP, DW

For each dimension, the set of values can be organized in a hierarchy:

Schema underlying OLAP, used in RDB DW

- Fact/cube table in BCNF; dimension tables not normalized.
 - Dimension tables are small; updates/inserts/deletes are rare. So, anomalies less important than good query performance.
- This kind of schema is very common in DW and OLAP, and is called a star schema; computing the join of all these relations is called a star join.
- Note: in OLAP, this is not what the user sees, it's hidden underneath
- In DW, this is the basic setup, but usually with more dimensions
- Here only one measure, sales, but can have several

OLAP (and DW) Queries

- Influenced by SQL and by spreadsheets.
- A common operation is to <u>aggregate</u> a measure over one or more dimensions.
 - Find total sales.
 - Find total sales for each city, or for each state.
 - Find top five products ranked by total sales.
- <u>Roll-up</u>: Aggregating at different levels of a dimension hierarchy.
 - E.g., Given total sales by city, we can roll-up to get sales by state.

OLAP Queries: MDX (**Multidimensional Expressions**)

- Originally a Microsoft SQL Server project, but now supported widely in the OLAP industry: Oracle, SAS, SAP, Teradata on server side, as well as Microsoft. Allows client programs to specify OLAP datasets.
- Example from Wikipedia

SELECT

- { [Measures].[Store Sales] } ON COLUMNS,
- { [Date].[2002], [Date].[2003] } ON ROWS

FROM Sales

```
WHERE ( [Store].[USA].[CA] )
```

- The SELECT clause sets the query axes as the Store Sales member of the Measures dimension, and the 2002 and 2003 members of the Date dimension.
- The FROM clause indicates that the data source is the Sales cube.
- The WHERE clause defines the "slicer axis" as the California member of the Store dimension.

OLAP Queries

- Drill-down: The inverse of roll-up: go from sum to details that were added up before
 - E.g., Given total sales by state, can drill-down to get total sales by county.
 - Drill down again, see total sales by city
 - E.g., Can also drill-down on different dimension to get total sales by product for each state.

OLAP Queries: cross-tabs

With relational DBs, we are used to tables with column names across the top, rows of data.

With OLAP, a spreadsheet-like representation is common,

Called a <u>cross-tabulation</u>:

- One dimension horizontally
- Another vertically

	WI	CA	Total
1995	63	81	144
1996	38	107	145
1997	75	35	110
Total	176	223	339

OLAP Queries: Pivoting

Example cross-tabulation:

	WI	CA	Tota	l
1995	63	81	144	
1996	38	107	145	
1997	75	35	110	
Total	176	223	339	

- Pivoting: switching dimensions on axes, or choosing what dimensions to show on axes
- Switching dimensions means pivoting around a point in the upper-left-hand corner
 - End up with "1995 1996 1997 Total" across top,
 - "WI CA Total" down the side

			WI	CA	Total
SQL Queries for cross-tak	entries	1995	63	81	144
The cross tabulation values can	1996	38	107	145	
using a collection of SQL quer	1997	75	35	110	
SELECT SUM (S.sales)		Total	176	223	339
FROM Sales S, Times T, Locations L WHERE S.timeid=T.timeid AND S.timeid=L.timeid GROUP BY T.year, L.state					
SELECT SUM(S.sales) FROM Sales S, Times T WHERE S.timeid=T.timeid	SELECT SUM(S.sales) FROM Sales S, Location L WHERE S.timeid=L.timeid CROUP BY L state			-	

The CUBE Operator

- Generalizing the previous example, if there are k dimensions, we have 2^k possible SQL GROUP BY queries that can be generated through pivoting on a subset of dimensions.
- CUBE Query, pg. 857

SELECT T.year, L.state, SUM(S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid = T.timeid and S.locid = L.locid
GROUP BY CUBE (T.year, L.state)

 Equivalent to rolling up Sales on all eight subsets of the set {pid, locid, timeid}; each roll-up corresponds to an SQL query of the form:

SELECT SUM(S.sales)FROMSales SGROUP BY grouping-list

Oracle 10+ Supports CUBE queries select t.year, s.store_state, sum(dollar_sales) from salesfact f, times t, store s where f.time_key = t.time_key and s.store_key = f.store_key group by cube(t.year, s.store state);

YEAR	STORE_STATE	SUM (DOLLAR_SALES)
	·	
		781403.59
	AZ	35684
	CA	77420.82
	со	38335.26 (some rows deleted)
	TX	40886.54
1994	WA	39540.16 396355.76
1994	AZ	17903.04
1994	CA	38966.54
1994	со	17870.33
1994	DC	20901.18 from dbs2 output

Oracle 11+ supports cross-tabs display

select cool, stars, count(*) from yelp db.reviews Running on dbs3 (Oracle version 12): where stars in (2,3,4,5)SQL> select * from (group by cool, stars order by cool, stars; 2 select cool, stars from yelp db.review COOL STARS COUNT(*) 3) pivot (4 count(stars) 0 2 323533 3 421229 0 5 for stars in (2, 3, 4, 5)0 4 787637) order by cool; 6 5 0 1516269 1 2 51358 Here is the output: ••• 2 3 5 COOL 4 323533 421229 787637 1516269 0 51358 88168 198705 300811 1 2 13812 27798 66019 84758 5116 11690 3 28468 31867 4 2455 5979 14690 15452

Same data, relationally:

... and so on ...

This says 323533 reviews awarded 2 stars but got no "cool" ratings

DW data \rightarrow OLAP

- The CUBE query can do the roll-ups on DW data needed for OLAP
- Excel is the champ at OLAP queries
- Look at <u>video</u>
- This video shows pivot tables for a single Excel worksheet
- But Excel can work with database tables: see this longer video
- Pivot tables: drill down, roll up, pivot, ...