Data Warehousing and Decision Support
(mostly using Relational Databases)

CS634
Class 20

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke, Chapter 25
Introduction

- Increasingly, organizations are analyzing current and historical data to identify useful patterns and support business strategies.

- Emphasis is on complex, interactive, exploratory analysis of very large datasets created by integrating data from across all parts of an enterprise
 - Contrast such Data Warehousing and On-Line Analytic Processing (OLAP) with traditional On-line Transaction Processing (OLTP): mostly long queries, instead of short update Xacts of OLTP.
 - In past, both were using “structured data” that can be fairly easily loaded into a database
 - Today, businesses also monitor social media, web clicks, etc., which are not properly structured, hard to put in RDB.
Structured vs. Unstructured Data

• So far, we have been working with structured data
• Structured data:
 • Entities with attributes, each fitting a SQL data type
 • Relationships
 • Each row of data is precious
 • Loads into relational tables, long-term storage
 • Can be huge
• Unstructured data, realm of “big data”
 • Often doesn’t fit into E/R model, too sloppy
 • Each piece of data is not precious—it’s statistical
 • Sometimes just processed and thrown away
 • No permanent specialized repository, maybe saved in files
 • Can be really huge
Data Warehouses using RDB vs. Data Lakes using Hadoop

• Both are ways to hold huge amounts of data
• Data lakes hold “big data”, use big data techniques to query and analyze data. Hadoop provides a high-availability scalable distributed systems.
• Big data can be original, uncleaned data, vs. cleaned data for RDB systems.
• A data lake can hold both original and cleaned data. Term “data lake” was invented in 2011, i.e., around same time as release of Hadoop.
• RDB Data warehouse technology ends up with data in a form easily understood by business people
• Big data is not there yet: usually need “data scientists” to interpret the data, write the queries, or at least new queries.
• Of course this is changing...
• Many big businesses have both a traditional data warehouse and a data lake, load some of same data in both Datamation article
• We may reserve “data warehouse” without adjective to encompass both RDB data warehouses and big-data warehouses that provide user-friendly access methods
Bigness of Data

Huge Data warehouses, all on Teradata systems (hard to find current sizes)

See article

- Biggest DW: Walmart, passed 1TB in 1992, 2.8 PB (petabytes) = 2800 TB in 2008, 30 PB in 2014, 40+ PB in 2017, processing 2.5PB/hour, growing...
- eBay: 9 PB DW in 2013, also has 40 PB of big data, uses Hadoop, etc.
- Apple: multiple-PB DW

- Big data:
 - Usually over 50TB, can’t fit on one machine
 - Is judged by “velocity” as well as size
 - Google: processed 24 PB of data per day in 2009, invented Map-Reduce, published 2004
Teradata

- Teradata provides a relational database with ANSI compliant SQL, targeted to data warehouses
- Proprietary, expensive ($millions)
- Uses a shared-nothing architecture on many independent nodes
- Partitioning by rows or (more recently) columns
- Scales up well: add node, add network bandwidth for it
- Now supports Hadoop as well as RDBMS: Teradata Appliance for Hadoop
Three Complementary Trends

- **Data Warehousing:** Consolidate data from many sources in one large repository (relational database or data lake).
 - Loading, periodic synchronization of data.
 - Semantic integration, Data cleaning of data on way in (RDB only so far)
 - Both simple and complex queries and views. (SQL or programmed)
 - Note: SQL is available on top of big data in most systems

- **OLAP/Multidimensional Analysis**
 - Queries based on spreadsheet-style operations and “multidimensional” view of data. Interactive queries. Look at data from different directions, granularity, etc.
 - Big Data Example: Apache Kylin, originally from eBay, available 2017

- **Data Mining:** Exploratory search for interesting trends and anomalies.

Note: BI = Business intelligence, analysis of business information, includes OLAP and data mining
Data Warehousing

- Integrated data spanning long time periods, often augmented with summary information.
- Several gigabytes to terabytes common, now petabytes too.
- Interactive response times expected for complex queries; ad-hoc updates uncommon.
- Read-mostly data
Warehousing Issues

- **Semantic Integration:** When getting data from multiple sources, must eliminate mismatches, e.g., different currencies, schemas.

- **Heterogeneous Sources:** Must access data from a variety of source formats and repositories.
 - Replication capabilities can be exploited here.

- **Load, Refresh, Purge:** Must load data, periodically refresh it, and purge too-old data.

- **Metadata Management:** Must keep track of source (lineage) loading time, and other information for all data in the warehouse.
OLAP: Multidimensional data model

• A way to make complex data understandable by business user, etc.
• Example: sales data
• **Dimensions**: Product, Location, Time
• A **measure** is a numeric value like sales we want to understand in terms of the dimensions
• Example measure: dollar sales value “sales”
• Example data point (one row of fact/cube table):
 • Sales = 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in that location, for that product
 • Pid=1: details in Product table
 • Locid = 1: details in Location table
• Note aggregation here: sum of sales is most detailed data (but can have all sales data)
Multidimensional Data Model

SalesCube(pid, timeid, locid, sales)

- Collection of numeric measures, which depend on a set of dimensions.
 - E.g., measure sales, dimensions Product (key: pid), Location (locid), and Time (timeid).
 - Full table, pg. 851

Slice locid=1 is shown:
Granularity of Data

• Example of last slide uses time at granularity of days
• Individual transactions (sales at cashier) have been added together to make one row in this table
• Note: “measures” can always be aggregated
• Current hardware can handle more data
• Typical data warehouses hold the original transaction data
• So such a fact table has more columns, for example
• dateid, timeofday, prodid, storeid, txnid, clerkid, sales, ...
Data Warehouse vs. Data for OLAP

• Current DW fact table is huge, with individual transactions, large number of dimensions
• Can only use a subset of this for OLAP, because of explosion of cells
• Take DW fact table, roll up to days (say), drop less important columns, get much smaller data for OLAP
• Load data into OLAP, another tool.
• Table on pg. 851 is a cube table, not a DW fact table
• Can think of OLAP as a cache of most important aggregates of DW tables
Dimension Hierarchies: OLAP, DW

- For each dimension, the set of values can be organized in a hierarchy:

```
PRODUCT
  category
    pname

TIME
  year
    quarter
      week
      month
        date

LOCATION
  country
    state
      city
```
Fact/cube table in BCNF; dimension tables not normalized.
• Dimension tables are small; updates/inserts/deletes are rare. So, anomalies less important than good query performance.
• This kind of schema is very common in DW and OLAP, and is called a star schema; computing the join of all these relations is called a star join.
• Note: in OLAP, this is not what the user sees, it’s hidden underneath
• In DW, this is the basic setup, but usually with more dimensions
• Here only one measure, sales, but can have several
OLAP (and DW) Queries

- Influenced by SQL and by spreadsheets.
- A common operation is to aggregate a measure over one or more dimensions.
 - Find total sales.
 - Find total sales for each city, or for each state.
 - Find top five products ranked by total sales.
- Roll-up: Aggregating at different levels of a dimension hierarchy.
 - E.g., Given total sales by city, we can roll-up to get sales by state.
OLAP Queries: MDX (Multidimensional Expressions)

• Originally a Microsoft SQL Server project, but now supported widely in the OLAP industry: Oracle, SAS, SAP, Teradata on server side, as well as Microsoft. Allows client programs to specify OLAP datasets.

• Example from Wikipedia

```sql
SELECT
    { [Measures].[Store Sales] } ON COLUMNS,
    { [Date].[2002], [Date].[2003] } ON ROWS
FROM Sales
WHERE ( [Store].[USA].[CA] )
```

• The SELECT clause sets the query axes as the Store Sales member of the Measures dimension, and the 2002 and 2003 members of the Date dimension.

• The FROM clause indicates that the data source is the Sales cube.

• The WHERE clause defines the "slicer axis" as the California member of the Store dimension.
OLAP Queries

- **Drill-down:** The inverse of roll-up: go from sum to details that were added up before
 - E.g., Given total sales by state, can drill-down to get total sales by county.
 - Drill down again, see total sales by city
 - E.g., Can also drill-down on different dimension to get total sales by product for each state.
OLAP Queries: cross-tabs

With relational DBs, we are used to tables with column names across the top, rows of data.

With OLAP, a spreadsheet-like representation is common, called a cross-tabulation:

- One dimension horizontally
- Another vertically

<table>
<thead>
<tr>
<th></th>
<th>WI</th>
<th>CA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>63</td>
<td>81</td>
<td>144</td>
</tr>
<tr>
<td>1996</td>
<td>38</td>
<td>107</td>
<td>145</td>
</tr>
<tr>
<td>1997</td>
<td>75</td>
<td>35</td>
<td>110</td>
</tr>
<tr>
<td>Total</td>
<td>176</td>
<td>223</td>
<td>339</td>
</tr>
</tbody>
</table>
OLAP Queries: Pivoting

- **Example cross-tabulation:**

<table>
<thead>
<tr>
<th></th>
<th>WI</th>
<th>CA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>63</td>
<td>81</td>
<td>144</td>
</tr>
<tr>
<td>1996</td>
<td>38</td>
<td>107</td>
<td>145</td>
</tr>
<tr>
<td>1997</td>
<td>75</td>
<td>35</td>
<td>110</td>
</tr>
<tr>
<td>Total</td>
<td>176</td>
<td>223</td>
<td>339</td>
</tr>
</tbody>
</table>

- Pivoting: switching dimensions on axes, or choosing what dimensions to show on axes
- Switching dimensions means pivoting around a point in the upper-left-hand corner
 - End up with “1995 1996 1997 Total” across top,
 - “WI CA Total” down the side
SQL Queries for cross-tab entries

The cross-tabulation values can be computed using a collection of SQL queries:

```
SELECT SUM(S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid = T.timeid AND S.timeid = L.timeid
GROUP BY T.year, L.state

SELECT SUM(S.sales)
FROM Sales S, Times T
WHERE S.timeid = T.timeid
GROUP BY T.year

SELECT SUM(S.sales)
FROM Sales S, Location L
WHERE S.timeid = L.timeid
GROUP BY L.state
```

<table>
<thead>
<tr>
<th></th>
<th>WI</th>
<th>CA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>63</td>
<td>81</td>
<td>144</td>
</tr>
<tr>
<td>1996</td>
<td>38</td>
<td>107</td>
<td>145</td>
</tr>
<tr>
<td>1997</td>
<td>75</td>
<td>35</td>
<td>110</td>
</tr>
<tr>
<td>Total</td>
<td>176</td>
<td>223</td>
<td>339</td>
</tr>
</tbody>
</table>
The CUBE Operator

- Generalizing the previous example, if there are k dimensions, we have 2^k possible SQL GROUP BY queries that can be generated through pivoting on a subset of dimensions.

- CUBE Query, pg. 857

```
SELECT T.year, L.state, SUM(S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid = T.timeid and S.locid = L.locid
GROUP BY CUBE (T.year, L.state)
```

- Equivalent to rolling up Sales on all eight subsets of the set \{pid, locid, timeid\}; each roll-up corresponds to an SQL query of the form:

```
SELECT SUM(S.sales)
FROM Sales S
GROUP BY grouping-list
```
Oracle 10+ supports CUBE queries

```
select t.year, s.store_state, sum(dollar_sales)
from salesfact f, times t, store s
where f.time_key = t.time_key and s.store_key = f.store_key
group by cube(t.year, s.store_state);
```

<table>
<thead>
<tr>
<th>YEAR</th>
<th>STORE_STATE</th>
<th>SUM(DOLLAR_SALES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>AZ</td>
<td>35684</td>
</tr>
<tr>
<td>1994</td>
<td>CA</td>
<td>77420.82</td>
</tr>
<tr>
<td>1994</td>
<td>CO</td>
<td>38335.26</td>
</tr>
<tr>
<td>1994</td>
<td>TX</td>
<td>40886.54</td>
</tr>
<tr>
<td>1994</td>
<td>WA</td>
<td>39540.16</td>
</tr>
</tbody>
</table>

... from dbs2 output
Oracle 11+ supports cross-tabs display

Running on dbs3 (Oracle version 12):

```sql
SQL> select * from ( 2 select cool, stars from yelp_db.review 3 ) pivot ( 4 count(stars) 5 for stars in (2,3,4,5) 6 ) order by cool;
```

Here is the output:

<table>
<thead>
<tr>
<th>COOL</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>323533</td>
<td>421229</td>
<td>787637</td>
<td>1516269</td>
</tr>
<tr>
<td>1</td>
<td>51358</td>
<td>88168</td>
<td>198705</td>
<td>300811</td>
</tr>
<tr>
<td>2</td>
<td>13812</td>
<td>27798</td>
<td>66019</td>
<td>84758</td>
</tr>
<tr>
<td>3</td>
<td>5116</td>
<td>11690</td>
<td>28468</td>
<td>31867</td>
</tr>
<tr>
<td>4</td>
<td>2455</td>
<td>5979</td>
<td>14690</td>
<td>15452</td>
</tr>
</tbody>
</table>

... and so on ...

This says 323533 reviews awarded 2 stars but got no “cool” ratings

Same data, relationally:

```sql
select cool, stars, count(*) from yelp_db.reviews
where stars in (2,3,4,5)
group by cool, stars
order by cool, stars;
```

<table>
<thead>
<tr>
<th>COOL</th>
<th>STARS</th>
<th>COUNT(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>323533</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>421229</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>787637</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>1516269</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>51358</td>
</tr>
</tbody>
</table>

...
DW data \rightarrow OLAP

- The CUBE query can do the roll-ups on DW data needed for OLAP
- Excel is the champ at OLAP queries
- Look at video
- This video shows pivot tables for a single Excel worksheet
- But Excel can work with database tables: see this longer video
- Pivot tables: drill down, roll up, pivot, ...