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Introduction

 Increasingly, organizations are analyzing current and 
historical data to identify useful patterns and support 
business strategies.

Emphasis is on complex, interactive, exploratory analysis of 
very large datasets created by integrating data from across 
all parts of an enterprise
 Contrast such Data Warehousing and  On-Line Analytic Processing 

(OLAP) with traditional On-line Transaction Processing (OLTP): mostly 
long queries, instead of  the short update Xacts of OLTP.  

• In past, both were using “structured data” that can be fairly easily 
loaded into a database

• Today, businesses also monitor social media, web clicks, etc., which 
are not properly structured, hard to put in RDB.

Structured vs. Unstructured Data

• So far, we have been working with structured data

• Structured data:
• Entities with attributes, each fitting a SQL data type

• Relationships

• Each row of data is precious

• Loads into relational tables, long-term storage

• Can be huge

• Unstructured data, realm of “big data”
• Often doesn’t fit into E/R model, too sloppy

• Each piece of data is not precious—it’s statistical

• Sometimes just processed and thrown away

• No permanent specialized repository, maybe saved in files

• Can be really huge

Data Warehouses using RDB vs. Data Lakes 
using Hadoop

• Both are ways to hold huge amounts of data

• Data lakes hold “big data”, use big data techniques to query and analyze 
data. Hadoop provides a high-availability scalable distributed systems.

• Big data can be original, uncleaned data, vs. cleaned data for RDB systems.

• A data lake can hold both original and cleaned data. Term “data lake” was 
invented in 2011, i.e., around same time as release of Hadoop.

• RDB Data warehouse technology ends up with data in a form easily 
understood by business people

• Big data is not there yet: usually need “data scientists” to interpret the data, 
write the queries, or at least new queries.

• Of course this is changing…

• Many big businesses have both a traditional data warehouse and a data lake, 
load some of same data in both Datamation article

• We may reserve “data warehouse” without adjective to encompass both 
RDB data warehouses and big-data warehouses that provide user-friendly 
access methods

Bigness of Data

Huge Data warehouses, all on Teradata systems (hard to find current 
sizes)

See article
• Biggest DW: Walmart, passed 1TB in 1992, 2.8 PB (petabytes) = 2800 TB in 

2008, 30 PB in 2014,  40+ PB in 2017, processing 2.5PB/hour, growing…

• eBay: 9 PB DW in 2013, also has 40 PB of big data, uses Hadoop, etc.

• Apple: multiple-PB DW

• Big data:
• Usually over 50TB, can’t fit on one machine

• Is judged by “velocity” as well as size

• Google: processed 24 PB of data per day in 2009, invented Map-Reduce, 
published 2004

Teradata

• Teradata provides a relational database with ANSI compliant SQL, 
targeted to data warehouses

• Proprietary, expensive ($millions)

• Uses a shared-nothing architecture on many independent nodes

• Partitioning by rows or (more recently) columns

• Scales up well: add node, add network bandwidth for it

• Now supports Hadoop as well as RDBMS: Teradata Appliance for 
Hadoop

https://www.datamation.com/big-data/data-lake-vs-data-warehouse.html
http://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen


Three Complementary Trends

Data Warehousing: Consolidate data from many sources in one large 
repository (relational database or data lake).
• Loading, periodic synchronization of data.
• Semantic integration, Data cleaning of data on way in (RDB only so far)
• Both simple and complex queries and views. (SQL or programmed)
• Note: SQL is available on top of big data in most systems

OLAP/Multidimensional Analysis
• Queries based on spreadsheet-style operations and “multidimensional” view 

of data. Interactive queries. Look at data from different directions, granularity, 
etc.

• Big Data Example: Apache Kylin, originally from eBay, available 2017

Data Mining:  Exploratory search for interesting trends and anomalies. 

Note: BI = Business intelligence, analysis of business information, includes 
OLAP and data mining

Data Warehousing

 Integrated data spanning long time 
periods, often augmented with 
summary information. 

Several gigabytes to terabytes 
common, now petabytes too.

 Interactive response times expected 
for complex queries; ad-hoc updates 
uncommon.

Read-mostly data
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Warehousing Issues

Semantic Integration: When getting data from multiple 
sources, must eliminate mismatches, e.g., different 
currencies, schemas.

Heterogeneous Sources: Must access data from a variety of 
source formats and repositories.
• Replication capabilities can be exploited here.

Load, Refresh, Purge: Must load data, periodically refresh it, 
and purge too-old data.

Metadata Management: Must keep track of source (lineage) 
loading time, and other information for all data in the 
warehouse.

OLAP: Multidimensional data model

• A way to make complex data understandable by business user, etc.

• Example: sales data

• Dimensions: Product, Location, Time

• A measure is a numeric value like sales we want to understand in 
terms of the dimensions

• Example measure: dollar sales value “sales”

• Example data point (one row of fact/cube table):
• Sales = 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in that location, for 

that product

• Pid=1: details in Product table

• Locid = 1: details in Location table

• Note aggregation here: sum of sales is most detailed 
data (but can have all sales data)

Multidimensional Data Model

 Collection of numeric measures, which depend on a set of 
dimensions.
 E.g., measure sales, dimensions Product (key: pid), Location

(locid),  and Time (timeid).

 Full table, pg. 851
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SalesCube(pid, timeid, locid, sales)
Granularity of Data

• Example of last slide uses time at granularity of days

• Individual transactions (sales at cashier) have been added together to 
make one row in this table

• Note: “measures” can always be aggregated

• Current hardware can handle more data

• Typical data warehouses hold the original transaction data

• So such a fact table has more columns, for example

• dateid, timeofday, prodid, storeid, txnid, clerkid, sales, …



Data Warehouse vs. Data for OLAP

• Current DW fact table is huge, with individual transactions, large 
number of dimensions

• Can only use a subset of this for OLAP, because of explosion of cells

• Take DW fact table, roll up to days (say), drop less important columns, 
get much smaller data for OLAP

• Load data into OLAP, another tool.

• Table on pg. 851 is a cube table, not a DW fact table

• Can think of OLAP as a cache of most important aggregates of DW 
tables

Dimension Hierarchies: OLAP, DW

 For each dimension, the set of values can be organized in a 
hierarchy:

PRODUCT TIME LOCATION

category           week          month                  state

pname                       date                                city

year

quarter                          country

Schema underlying OLAP, used in RDB DW

 Fact/cube table in BCNF; dimension tables not normalized.
• Dimension tables are small; updates/inserts/deletes are rare. So, anomalies 

less important than good query performance.

 This kind of schema is very common in DW and OLAP, and is called a 
star schema; computing the join of all these relations is called a star 
join.
Note: in OLAP, this is not what the user sees, it’s hidden underneath
 In DW, this is the basic setup, but usually with more dimensions
Here only one measure, sales, but can have several

pricecategorypnamepid countrystatecitylocid

saleslocidtimeidpid

holiday_flagweekdatetimeid month quarter year

(Fact table)SALES

TIMES

PRODUCTS LOCATIONS

OLAP (and DW) Queries

 Influenced by SQL and by spreadsheets.

A common operation is to aggregate a measure over one or 
more dimensions.
• Find total sales.

• Find total sales for each city, or for each state.

• Find top five products ranked by total sales.

Roll-up: Aggregating at different levels of  a dimension 
hierarchy.  
• E.g., Given total sales by city, we can roll-up to get sales by state.

OLAP Queries: MDX (Multidimensional 
Expressions)

• Originally a Microsoft SQL Server project, but now supported widely 
in the OLAP industry: Oracle, SAS, SAP, Teradata on server side, as 
well as Microsoft. Allows client programs to specify OLAP datasets.

• Example from Wikipedia

SELECT

{ [Measures].[Store Sales] } ON COLUMNS,

{ [Date].[2002], [Date].[2003] } ON ROWS

FROM Sales

WHERE ( [Store].[USA].[CA] )

• The SELECT clause sets the query axes as the Store Sales member of the 
Measures dimension, and the 2002 and 2003 members of the Date 
dimension.

• The FROM clause indicates that the data source is the Sales cube.
• The WHERE clause defines the "slicer axis" as the California member of 

the Store dimension.

OLAP Queries

 Drill-down: The inverse of roll-up: go from sum to details that were 
added up before
• E.g., Given total sales by state, can drill-down to get total sales by county.

• Drill down again, see total sales by city

• E.g., Can also drill-down on different dimension to get total sales by product for 
each state.

https://en.wikipedia.org/wiki/MultiDimensional_eXpressions


OLAP Queries: cross-tabs

With relational DBs, we are used to tables with column names across the 
top, rows of data.

With OLAP, a spreadsheet-like representation is common,

Called a cross-tabulation:

One dimension horizontally

 Another vertically
63    81   144

38   107  145

75    35   110

WI    CA     Total

1995
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176  223  339Total

OLAP Queries: Pivoting
 Example cross-tabulation:

 Pivoting: switching dimensions on axes, or choosing what dimensions to show 
on axes

 Switching dimensions means pivoting around a point in the upper-left-hand 
corner
 End up with “1995 1996 1997 Total” across top,
 “WI CA Total” down the side

63    81   144

38   107  145

75    35   110

WI    CA     Total

1995

1996

1997

176  223  339Total

SQL Queries for cross-tab entries

The cross-tabulation values can be computed 
using a collection of  SQL queries:

SELECT SUM(S.sales)

FROM  Sales S, Times T, Locations L

WHERE  S.timeid=T.timeid AND S.timeid=L.timeid

GROUP BY T.year, L.state

SELECT SUM(S.sales)

FROM  Sales S, Times T

WHERE  S.timeid=T.timeid

GROUP BY T.year

SELECT SUM(S.sales)

FROM  Sales S, Location L

WHERE  S.timeid=L.timeid

GROUP BY L.state

63    81   144

38   107  145

75    35   110

WI    CA     Total

1995

1996

1997

176  223  339Total

The CUBE Operator
Generalizing the previous example, if there are k dimensions, we 

have 2^k possible SQL GROUP BY queries that can be generated 
through pivoting on a subset of dimensions.

 CUBE Query, pg. 857

• Equivalent to rolling up Sales on all eight subsets of the set {pid, locid, 
timeid}; each roll-up corresponds to an SQL query of the form:

SELECT SUM(S.sales)

FROM  Sales S
GROUP BY grouping-list

SELECT T.year, L.state, SUM(S.sales)

FROM  Sales S, Times T, Locations L

WHERE S.timeid = T.timeid and S.locid = L.locid
GROUP BY CUBE (T.year, L.state)

Oracle 10+ supports CUBE queries
select t.year, s.store_state, sum(dollar_sales)

from salesfact f, times t, store s

where f.time_key = t.time_key and s.store_key = f.store_key

group by cube(t.year, s.store_state);

YEAR STORE_STATE          SUM(DOLLAR_SALES)

-------- -------------------- -----------------

781403.59

AZ                    35684

CA                    77420.82

CO                    38335.26  (some rows deleted)

TX                    40886.54

WA                    39540.16

1994                          396355.76

1994 AZ                  17903.04

1994     CA                  38966.54

1994     CO                  17870.33

1994     DC                  20901.18   … from dbs2 output

Oracle 11+ supports cross-tabs display

Running on dbs3 (Oracle version 12):

SQL> select * from (

2  select cool, stars from yelp_db.review

3  ) pivot (

4  count(stars)

5  for stars in (2,3,4,5)

6  ) order by cool;

Here is the output:

COOL          2          3          4          5

---------- ---------- ---------- ---------- ----------

0     323533     421229     787637    1516269

1      51358      88168     198705     300811

2      13812      27798      66019      84758

3       5116      11690      28468      31867

4       2455       5979      14690      15452

... and so on ... 

This says 323533 reviews awarded 2 stars but got no “cool” ratings

Same data, relationally:
select cool, stars, count(*) from 

yelp_db.reviews

where stars in (2,3,4,5)

group by cool, stars

order by cool, stars;

COOL      STARS   COUNT(*)

---------- ---------- ----------

0          2     323533

0          3     421229

0          4     787637

0          5    1516269

1          2      51358

…



DW data  OLAP

• The CUBE query can do the roll-ups on DW data needed for OLAP

• Excel is the champ at OLAP queries

• Look at video

• This video shows pivot tables for a single Excel worksheet

• But Excel can work with database tables: see this longer video

• Pivot tables: drill down, roll up, pivot, …

https://www.youtube.com/watch?v=Vx-Fuw46VbY
https://www.youtube.com/watch?v=eGhjklYyv6Y

