Data Warehousing and
Decision Support
(mostly using Relational Databases)

Cs634
Class 20

Slides based on “Database Systems™ 3 ed, ind Gehrke, Chapter 25

Structured vs. Unstructured Data

* So far, we have been working with structured data

* Structured data:
« Entities with attributes, each fitting a SQL data type
* Relationships
* Each row of data is precious
* Loads into relational tables, long-term storage
* Can be huge

 Unstructured data, realm of “big data”
« Often doesn’t fit into E/R model, too sloppy
« Each piece of data is not precious—it’s statistical
* Sometimes just processed and thrown away
* No permanent specialized repository, maybe saved in files
* Can be really huge

Bigness of Data

Huge Data warehouses, all on Teradata systems (hard to find current
sizes)

See article
 Biggest DW: Walmart, passed 1TB in 1992, 2.8 PB (petabytes) = 2800 TB in
2008, 30 PB in 2014, 40+ PB in 2017, processing 2.5PB/hour, growing...
« eBay: 9 PB DW in 2013, also has 40 PB of big data, uses Hadoop, etc.
« Apple: multiple-PB DW
* Big data:
* Usually over 50TB, can’t fit on one machine
* Is judged by “velocity” as well as size
* Google: processed 24 PB of data per day in 2009, invented Map-Reduce,
published 2004

Introduction

= Increasingly, organizations are analyzing current and
historical data to identify useful patterns and support
business strategies.

= Emphasis is on complex, interactive, exploratory analysis of
very large datasets created by integrating data from across
all parts of an enterprise
= Contrast such and
with traditional : mostly
long queries, instead of the short update Xacts of OLTP.
* In past, both were using “structured data” that can be fairly easily
loaded into a database
« Today, businesses also monitor social media, web clicks, etc., which
are not properly structured, hard to put in RDB.

Data Warehouses using RDB vs. Data Lakes
using Hadoop

« Both are ways to hold huge amounts of data

« Data lakes hold “big data”, use big data techniques to query and analyze
data. Hadoop provides a high-availability scalable distributed systems.

* Big data can be original, uncleaned data, vs. cleaned data for RDB systems.

* A data lake can hold both original and cleaned data. Term “data lake” was
invented in 2011, i.e., around same time as release of Hadoop.

* RDB Data warehouse technology ends up with data in a form easily
understood by business people

* Big data is not there yet: usually need “data scientists” to interpret the data,
write the queries, or at least new queries.

« Of course this is changing...

« Many big businesses have both a traditional data warehouse and a data lake,
load some of same data in both Datamation article

* We may reserve “data warehouse” without adjective to encompass both
RDB data warehouses and big-data warehouses that provide user-friendly
access methods

Teradata

« Teradata provides a relational database with ANSI compliant SQL,
targeted to data warehouses

* Proprietary, expensive (Smillions)

* Uses a shared-nothing architecture on many independent nodes
« Partitioning by rows or (more recently) columns

« Scales up well: add node, add network bandwidth for it

* Now supports Hadoop as well as RDBMS: Teradata Appliance for
Hadoop

https://www.datamation.com/big-data/data-lake-vs-data-warehouse.html
http://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen

Three Complementary Trends

= Data Warehousing: Consolidate data from many sources in one large
repository (relational database or data lake).
* Loading, periodic synchronization of data.
* Semantic integration, Data cleaning of data on way in (RDB only so far)
« Both simple and complex queries and views. (SQL or programmed)
* Note: SQL is available on top of big data in most systems

= OLAP/Multidimensional Analysis
« Queries based on spreadsheet-style operations and “multidimensional” view
of data. Interactive queries. Look at data from different directions, granularity,
etc.
* Big Data Example: Apache Kylin, originally from eBay, available 2017

= Data Mining: Exploratory search for interesting trends and anomalies.

Note: Bl = Business intelligence, analysis of business information, includes
OLAP and data mining

Warehousing Issues

=Semantic Integration: When getting data from multiple
sources, must eliminate mismatches, e.g., different
currencies, schemas.

=Heterogeneous Sources: Must access data from a variety of
source formats and repositories.

+ Replication capabilities can be exploited here.

= Load, Refresh, Purge: Must load data, periodically refresh it,
and purge too-old data.

= Metadata Management: Must keep track of source (lineage)
loading time, and other information for all data in the

warehouse.

=R
Multidimensional Data Model T £33
SalesCube(pid, timeid, locid, sales) 1? f 1_ 2w5

= Collecti f i ~asures, which d d t of
dﬁ,ﬂi?;%:)o numeric measures, whic epend on a set O 11 2 1 8
':Elfc.idn)'l'e:il;r;sna‘ch{idmizsﬁsionsProduct(key:pid),Location 1113 |1 15
= Full table, pg. 851 1211 |1 130
1212 |1 |20
12 |3 |1 |50
Slice locid=1 | 8 |10 10 13[1]1 8
is shown: 2302050 132 [1 10
9125 8 |15 /ocid 133 |1 |10
1 2 3 1111 |2 |35

timeid

EXTERNAL DATA SOURCES

I

= Integrated data spanning long time EXTRACT
periods, often augmented with TRANSFORM
summary information. LOAD

REFRESH
for complex queries; ad-hoc updates Metadata

DATA
- WAREHOUSE
uncommon. Repository
PPORT:

OLAP

Data Warehousing

=Several gigabytes to terabytes

common, now petabytes too. D
= Interactive response times expected

= Read-mostly data

DATA
MINING ¢

OLAP: Multidimensional data model

* A way to make complex data understandable by business user, etc.
« Example: sales data
« Dimensions: Product, Location, Time

* A measure is a numeric value like sales we want to understand in
terms of the dimensions

* Example measure: dollar sales value “sales”
* Example data point (one row of fact/cube table):

* Sales = 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in that location, for
that product

* Pid=1: details in Product table

* Locid = 1: details in Location table

* Note aggregation here: sum of sales is most detailed
data (but can have all sales data)

Granularity of Data

« Example of last slide uses time at granularity of days

« Individual transactions (sales at cashier) have been added together to
make one row in this table

* Note: “measures” can always be aggregated

* Current hardware can handle more data

* Typical data warehouses hold the original transaction data
* So such a fact table has more columns, for example

« dateid, timeofday, prodid, storeid, txnid, clerkid, sales, ...

Data Warehouse vs. Data for OLAP

 Current DW fact table is huge, with individual transactions, large
number of dimensions
« Can only use a subset of this for OLAP, because of explosion of cells

« Take DW fact table, roll up to days (say), drop less important columns,
get much smaller data for OLAP

* Load data into OLAP, another tool.
« Table on pg. 851 is a cube table, not a DW fact table

« Can think of OLAP as a cache of most important aggregates of DW
tables

Schema underlying OLAP, used in RDB DW

TIMES

|timeid ‘ date ‘ week‘ month ‘ quarter ‘ year\ holiday_flag |

[pid Jtimeid | locid [sales] saLes (Fact table)

PRODUCTS LOCATIONS

|pid ‘pname ‘category ‘price | |Iocid ‘ city ‘stale ‘ country |

= Fact/cube table in BCNF; dimension tables not normalized.
« Dimension tables are small; updates/inserts/deletes are rare. So, anomalies
less important than good query performance.

= This kind of schema is very common in DW and OLAP, and is called a
; computing the join of all these relations is called a

= Note: in OLAP, this is not what the user sees, it’s hidden underneath
= In DW, this is the basic setup, but usually with more dimensions
= Here only one measure, sales, but can have several

OLAP Queries: MDX (Multidimensional
Expressions)

* Originally a Microsoft SQL Server project, but now supported widely
in the OLAP industry: Oracle, SAS, SAP, Teradata on server side, as
well as Microsoft. Allows client programs to specify OLAP datasets.

* Example from Wikipedia
SELECT
{ [Measures].[Store Sales] } ON COLUMNS,
{ [Date].[2002], [Date].[2003] } ON ROWS
FROM Sales
WHERE ([Store].[USA].[CA])
The SELECT clause sets the query axes as the Store Sales member of the
Measures dimension, and the 2002 and 2003 members of the Date
dimension.
The FROM clause indicates that the data source is the Sales cube.
The WHERE clause defines the "slicer axis" as the California member of
the Store dimension.

Dimension Hierarchies: OLAP, DW

= For each dimension, the set of values can be organized in a
hierarchy:

PRODUCT TIME LOCATION
year
quarter country
P
category week month state
~
pname date city

OLAP (and DW) Queries

= Influenced by SQL and by spreadsheets.
= A common operation is to a measure over one or
more dimensions.
* Find total sales.
* Find total sales for each city, or for each state.
* Find top five products ranked by total sales.
Aggregating at different levels of a dimension

hierarchy.
« E.g., Given total sales by city, we can roll-up to get sales by state.

OLAP Queries

The inverse of roll-up: go from sum to details that were
added up before
+ E.g., Given total sales by state, can drill-down to get total sales by county.
« Drill down again, see total sales by city

+ E.g., Can also drill-down on different dimension to get total sales by product for

each state.

https://en.wikipedia.org/wiki/MultiDimensional_eXpressions

OLAP Queries: cross-tabs
With relational DBs, we are used to tables with column names across the
top, rows of data.

With OLAP, a spreadsheet-like representation is common,
Called a cross-tabulation:

= One dimension horizontally Wil CA |Total

1995 | 63 | 81 |144

1996 | 38 |107(145

= Another vertically

1997 | 75 | 35 |110
Total | 176|223 (339

WI CA | Total
SQL Queries for cross-tab entries 1995 | 63 | 81 |144

) 1996 | 38 |107]145
The cross-tabulation values can be computed
using a collection of SQL queries: 1997 | 75 | 35 1110

SELECT SUM(S.sales) Total |176] 223|339
FROM Sales S, Times T, Locations L

WHERE S.timeid=T.timeid AND S.timeid=L.timeid
GROUPBY T.year, L.state

SELECT SUM(S.sales) SELECT SUM(S.sales)
FROM Sales S, Times T FROM Sales S, Location L
WHERE S.timeid=T.timeid WHERE S.timeid=L.timeid
GROUPBY T.year GROUPBY L.state

Oracle 10+ supports CUBE queries
select t.year, s.store_state, sum(dollar_sales)
from salesfact f, times t, store s
where f.time key = t.time key and s.store_key = f.store_key
group by cube (t.year, s.store_state);

YEAR STORE_STATE SUM (DOLLAR_SALES)
781403.59
az 35684
ca 77420.82
co 38335.26 (some rows deleted)
X 40886.54
WA 39540.16
1994 396355.76
1994 az 17903.04
1994 ca 38966.54
1994 co 17870.33

1994 pc 20901.18 from dbs2 output

OLAP Queries: Pivoting Wi cA | Total

= Example cross-tabulation: 1995 63 | 811144

1996 | 38 |107|145

1997 75 | 35| 110
Total | 176|223 339

= Pivoting: switching dimensions on axes, or choosing what dimensions to show

on axes

= Switching dimensions means pivoting around a point in the upper-left-hand
corner
= End up with “1995 1996 1997 Total” across top,
= “WI CA Total” down the side

The CUBE Operator

= Generalizing the previous example, if there are k dimensions, we
have 27k possible SQL GROUP BY queries that can be generated
through pivoting on a subset of dimensions.

= CUBE Query, pg. 857

SELECT T.year, L.state, SUM(S.sales)
FROM Sales S, Times T, Locations L

WHERE S.timeid = T.timeid and S.locid = L.locid
GROUP BY CUBE (T.year, L.state)

« Equivalent to rolling up Sales on all eight subsets of the set {pid, locid,
timeid}; each roll-up corresponds to an SQL query of the form:

SELECT SUM(S.sales)
FROM Sales S
GROUP BY grouping-list

Oracle 11+ supports cross-tabs display

Same data, relationally:
select cool, stars, count(*) from

Running on dbs3 (Oracle version 12): Yeip_db.reviews
SoL> select * £rom (aroup

2 select cool, stars from yelp db.review | order by
co
3) pivor (
4 count (stars)
S for stars in (2,3,4,5)
&) order by cool;
) v 1516269
51358

0
0
0
1

Here is the output:

cooL 2 3 4
o 323533 421229
1 51358 88168
2 13812 27798
3 5116 11690
1 2455 5979
.. and soon ...
This says 323533 reviews awarded 2 stars but got no “cool” ratings

DW data = OLAP

* The CUBE query can do the roll-ups on DW data needed for OLAP
« Excel is the champ at OLAP queries

* Look at video

* This video shows pivot tables for a single Excel worksheet

* But Excel can work with database tables: see this longer video

* Pivot tables: drill down, roll up, pivot, ...

https://www.youtube.com/watch?v=Vx-Fuw46VbY
https://www.youtube.com/watch?v=eGhjklYyv6Y

