
Data Warehousing and
Decision Support

(mostly using Relational Databases)
CS634

Class 20

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke, Chapter 25

Introduction

 Increasingly, organizations are analyzing current and
historical data to identify useful patterns and support
business strategies.

Emphasis is on complex, interactive, exploratory analysis of
very large datasets created by integrating data from across
all parts of an enterprise
 Contrast such Data Warehousing and On-Line Analytic Processing

(OLAP) with traditional On-line Transaction Processing (OLTP): mostly
long queries, instead of the short update Xacts of OLTP.

• In past, both were using “structured data” that can be fairly easily
loaded into a database

• Today, businesses also monitor social media, web clicks, etc., which
are not properly structured, hard to put in RDB.

Structured vs. Unstructured Data

• So far, we have been working with structured data

• Structured data:
• Entities with attributes, each fitting a SQL data type

• Relationships

• Each row of data is precious

• Loads into relational tables, long-term storage

• Can be huge

• Unstructured data, realm of “big data”
• Often doesn’t fit into E/R model, too sloppy

• Each piece of data is not precious—it’s statistical

• Sometimes just processed and thrown away

• No permanent specialized repository, maybe saved in files

• Can be really huge

Data Warehouses using RDB vs. Data Lakes
using Hadoop

• Both are ways to hold huge amounts of data

• Data lakes hold “big data”, use big data techniques to query and analyze
data. Hadoop provides a high-availability scalable distributed systems.

• Big data can be original, uncleaned data, vs. cleaned data for RDB systems.

• A data lake can hold both original and cleaned data. Term “data lake” was
invented in 2011, i.e., around same time as release of Hadoop.

• RDB Data warehouse technology ends up with data in a form easily
understood by business people

• Big data is not there yet: usually need “data scientists” to interpret the data,
write the queries, or at least new queries.

• Of course this is changing…

• Many big businesses have both a traditional data warehouse and a data lake,
load some of same data in both Datamation article

• We may reserve “data warehouse” without adjective to encompass both
RDB data warehouses and big-data warehouses that provide user-friendly
access methods

Bigness of Data

Huge Data warehouses, all on Teradata systems (hard to find current
sizes)

See article
• Biggest DW: Walmart, passed 1TB in 1992, 2.8 PB (petabytes) = 2800 TB in

2008, 30 PB in 2014, 40+ PB in 2017, processing 2.5PB/hour, growing…

• eBay: 9 PB DW in 2013, also has 40 PB of big data, uses Hadoop, etc.

• Apple: multiple-PB DW

• Big data:
• Usually over 50TB, can’t fit on one machine

• Is judged by “velocity” as well as size

• Google: processed 24 PB of data per day in 2009, invented Map-Reduce,
published 2004

Teradata

• Teradata provides a relational database with ANSI compliant SQL,
targeted to data warehouses

• Proprietary, expensive ($millions)

• Uses a shared-nothing architecture on many independent nodes

• Partitioning by rows or (more recently) columns

• Scales up well: add node, add network bandwidth for it

• Now supports Hadoop as well as RDBMS: Teradata Appliance for
Hadoop

https://www.datamation.com/big-data/data-lake-vs-data-warehouse.html
http://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen

Three Complementary Trends

Data Warehousing: Consolidate data from many sources in one large
repository (relational database or data lake).
• Loading, periodic synchronization of data.
• Semantic integration, Data cleaning of data on way in (RDB only so far)
• Both simple and complex queries and views. (SQL or programmed)
• Note: SQL is available on top of big data in most systems

OLAP/Multidimensional Analysis
• Queries based on spreadsheet-style operations and “multidimensional” view

of data. Interactive queries. Look at data from different directions, granularity,
etc.

• Big Data Example: Apache Kylin, originally from eBay, available 2017

Data Mining: Exploratory search for interesting trends and anomalies.

Note: BI = Business intelligence, analysis of business information, includes
OLAP and data mining

Data Warehousing

 Integrated data spanning long time
periods, often augmented with
summary information.

Several gigabytes to terabytes
common, now petabytes too.

 Interactive response times expected
for complex queries; ad-hoc updates
uncommon.

Read-mostly data

EXTERNAL DATA SOURCES

EXTRACT

TRANSFORM

LOAD

REFRESH

DATA

WAREHOUSE
Metadata

Repository

SUPPORTS

OLAP
DATA

MINING

Warehousing Issues

Semantic Integration: When getting data from multiple
sources, must eliminate mismatches, e.g., different
currencies, schemas.

Heterogeneous Sources: Must access data from a variety of
source formats and repositories.
• Replication capabilities can be exploited here.

Load, Refresh, Purge: Must load data, periodically refresh it,
and purge too-old data.

Metadata Management: Must keep track of source (lineage)
loading time, and other information for all data in the
warehouse.

OLAP: Multidimensional data model

• A way to make complex data understandable by business user, etc.

• Example: sales data

• Dimensions: Product, Location, Time

• A measure is a numeric value like sales we want to understand in
terms of the dimensions

• Example measure: dollar sales value “sales”

• Example data point (one row of fact/cube table):
• Sales = 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in that location, for

that product

• Pid=1: details in Product table

• Locid = 1: details in Location table

• Note aggregation here: sum of sales is most detailed
data (but can have all sales data)

Multidimensional Data Model

 Collection of numeric measures, which depend on a set of
dimensions.
 E.g., measure sales, dimensions Product (key: pid), Location

(locid), and Time (timeid).

 Full table, pg. 851

8 10 10

30 20 50

25 8 15

1 2 3

timeid

p
id

1
1

1
2

1
3

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

13 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

p
id

ti
m

e
id

lo
c
id

sa
le

s

locid

Slice locid=1

is shown:

SalesCube(pid, timeid, locid, sales)
Granularity of Data

• Example of last slide uses time at granularity of days

• Individual transactions (sales at cashier) have been added together to
make one row in this table

• Note: “measures” can always be aggregated

• Current hardware can handle more data

• Typical data warehouses hold the original transaction data

• So such a fact table has more columns, for example

• dateid, timeofday, prodid, storeid, txnid, clerkid, sales, …

Data Warehouse vs. Data for OLAP

• Current DW fact table is huge, with individual transactions, large
number of dimensions

• Can only use a subset of this for OLAP, because of explosion of cells

• Take DW fact table, roll up to days (say), drop less important columns,
get much smaller data for OLAP

• Load data into OLAP, another tool.

• Table on pg. 851 is a cube table, not a DW fact table

• Can think of OLAP as a cache of most important aggregates of DW
tables

Dimension Hierarchies: OLAP, DW

 For each dimension, the set of values can be organized in a
hierarchy:

PRODUCT TIME LOCATION

category week month state

pname date city

year

quarter country

Schema underlying OLAP, used in RDB DW

 Fact/cube table in BCNF; dimension tables not normalized.
• Dimension tables are small; updates/inserts/deletes are rare. So, anomalies

less important than good query performance.

 This kind of schema is very common in DW and OLAP, and is called a
star schema; computing the join of all these relations is called a star
join.
Note: in OLAP, this is not what the user sees, it’s hidden underneath
 In DW, this is the basic setup, but usually with more dimensions
Here only one measure, sales, but can have several

pricecategorypnamepid countrystatecitylocid

saleslocidtimeidpid

holiday_flagweekdatetimeid month quarter year

(Fact table)SALES

TIMES

PRODUCTS LOCATIONS

OLAP (and DW) Queries

 Influenced by SQL and by spreadsheets.

A common operation is to aggregate a measure over one or
more dimensions.
• Find total sales.

• Find total sales for each city, or for each state.

• Find top five products ranked by total sales.

Roll-up: Aggregating at different levels of a dimension
hierarchy.
• E.g., Given total sales by city, we can roll-up to get sales by state.

OLAP Queries: MDX (Multidimensional
Expressions)

• Originally a Microsoft SQL Server project, but now supported widely
in the OLAP industry: Oracle, SAS, SAP, Teradata on server side, as
well as Microsoft. Allows client programs to specify OLAP datasets.

• Example from Wikipedia

SELECT

{ [Measures].[Store Sales] } ON COLUMNS,

{ [Date].[2002], [Date].[2003] } ON ROWS

FROM Sales

WHERE ([Store].[USA].[CA])

• The SELECT clause sets the query axes as the Store Sales member of the
Measures dimension, and the 2002 and 2003 members of the Date
dimension.

• The FROM clause indicates that the data source is the Sales cube.
• The WHERE clause defines the "slicer axis" as the California member of

the Store dimension.

OLAP Queries

 Drill-down: The inverse of roll-up: go from sum to details that were
added up before
• E.g., Given total sales by state, can drill-down to get total sales by county.

• Drill down again, see total sales by city

• E.g., Can also drill-down on different dimension to get total sales by product for
each state.

https://en.wikipedia.org/wiki/MultiDimensional_eXpressions

OLAP Queries: cross-tabs

With relational DBs, we are used to tables with column names across the
top, rows of data.

With OLAP, a spreadsheet-like representation is common,

Called a cross-tabulation:

One dimension horizontally

 Another vertically
63 81 144

38 107 145

75 35 110

WI CA Total

1995

1996

1997

176 223 339Total

OLAP Queries: Pivoting
 Example cross-tabulation:

 Pivoting: switching dimensions on axes, or choosing what dimensions to show
on axes

 Switching dimensions means pivoting around a point in the upper-left-hand
corner
 End up with “1995 1996 1997 Total” across top,
 “WI CA Total” down the side

63 81 144

38 107 145

75 35 110

WI CA Total

1995

1996

1997

176 223 339Total

SQL Queries for cross-tab entries

The cross-tabulation values can be computed
using a collection of SQL queries:

SELECT SUM(S.sales)

FROM Sales S, Times T, Locations L

WHERE S.timeid=T.timeid AND S.timeid=L.timeid

GROUP BY T.year, L.state

SELECT SUM(S.sales)

FROM Sales S, Times T

WHERE S.timeid=T.timeid

GROUP BY T.year

SELECT SUM(S.sales)

FROM Sales S, Location L

WHERE S.timeid=L.timeid

GROUP BY L.state

63 81 144

38 107 145

75 35 110

WI CA Total

1995

1996

1997

176 223 339Total

The CUBE Operator
Generalizing the previous example, if there are k dimensions, we

have 2^k possible SQL GROUP BY queries that can be generated
through pivoting on a subset of dimensions.

 CUBE Query, pg. 857

• Equivalent to rolling up Sales on all eight subsets of the set {pid, locid,
timeid}; each roll-up corresponds to an SQL query of the form:

SELECT SUM(S.sales)

FROM Sales S
GROUP BY grouping-list

SELECT T.year, L.state, SUM(S.sales)

FROM Sales S, Times T, Locations L

WHERE S.timeid = T.timeid and S.locid = L.locid
GROUP BY CUBE (T.year, L.state)

Oracle 10+ supports CUBE queries
select t.year, s.store_state, sum(dollar_sales)

from salesfact f, times t, store s

where f.time_key = t.time_key and s.store_key = f.store_key

group by cube(t.year, s.store_state);

YEAR STORE_STATE SUM(DOLLAR_SALES)

-------- -------------------- -----------------

781403.59

AZ 35684

CA 77420.82

CO 38335.26 (some rows deleted)

TX 40886.54

WA 39540.16

1994 396355.76

1994 AZ 17903.04

1994 CA 38966.54

1994 CO 17870.33

1994 DC 20901.18 … from dbs2 output

Oracle 11+ supports cross-tabs display

Running on dbs3 (Oracle version 12):

SQL> select * from (

2 select cool, stars from yelp_db.review

3) pivot (

4 count(stars)

5 for stars in (2,3,4,5)

6) order by cool;

Here is the output:

COOL 2 3 4 5

---------- ---------- ---------- ---------- ----------

0 323533 421229 787637 1516269

1 51358 88168 198705 300811

2 13812 27798 66019 84758

3 5116 11690 28468 31867

4 2455 5979 14690 15452

... and so on ...

This says 323533 reviews awarded 2 stars but got no “cool” ratings

Same data, relationally:
select cool, stars, count(*) from

yelp_db.reviews

where stars in (2,3,4,5)

group by cool, stars

order by cool, stars;

COOL STARS COUNT(*)

---------- ---------- ----------

0 2 323533

0 3 421229

0 4 787637

0 5 1516269

1 2 51358

…

DW data  OLAP

• The CUBE query can do the roll-ups on DW data needed for OLAP

• Excel is the champ at OLAP queries

• Look at video

• This video shows pivot tables for a single Excel worksheet

• But Excel can work with database tables: see this longer video

• Pivot tables: drill down, roll up, pivot, …

https://www.youtube.com/watch?v=Vx-Fuw46VbY
https://www.youtube.com/watch?v=eGhjklYyv6Y

