# Data Warehousing and **Decision Support** (mostly using Relational Databases)

Slides based on "Database Management Systems" 3rd ed, Ramakrishnan and Gehrke, Chapter 25

#### Structured vs. Unstructured Data

- · So far, we have been working with structured data
- · Structured data:
  - · Entities with attributes, each fitting a SQL data type
  - Relationships
  - Each row of data is precious
  - Loads into relational tables, long-term storage
  - Can be huge
- · Unstructured data, realm of "big data"
  - Often doesn't fit into E/R model, too sloppy
  - Each piece of data is not precious—it's statistical
  - Sometimes just processed and thrown away
  - · No permanent specialized repository, maybe saved in files · Can be really huge

### Bigness of Data

Huge Data warehouses, all on Teradata systems (hard to find current sizes)

- Biggest DW: Walmart, passed 1TB in 1992, 2.8 PB (petabytes) = 2800 TB in 2008, 30 PB in 2014, 40+ PB in 2017, processing 2.5PB/hour, growing...
- eBay: 9 PB DW in 2013, also has 40 PB of big data, uses Hadoop, etc.
- Apple: multiple-PB DW
- · Big data:
  - . Usually over 50TB, can't fit on one machine

  - Is judged by "velocity" as well as size
    Google: processed 24 PB of data per day in 2009, invented Map-Reduce, published 2004

### Introduction

- Increasingly, organizations are analyzing current and historical data to identify useful patterns and support business strategies.
- Emphasis is on complex, interactive, exploratory analysis of very large datasets created by integrating data from across all parts of an enterprise
  - Contrast such Data Warehousing and On-Line Analytic Processing (OLAP) with traditional On-line Transaction Processing (OLTP): mostly long queries, instead of the short update Xacts of OLTP.
  - In past, both were using "structured data" that can be fairly easily loaded into a database
  - Today, businesses also monitor social media, web clicks, etc., which are not properly structured, hard to put in RDB.

### Data Warehouses using RDB vs. Data Lakes using Hadoop

- Both are ways to hold huge amounts of data
- Data lakes hold "big data", use big data techniques to query and analyze data. Hadoop provides a high-availability scalable distributed systems.
- Big data can be original, uncleaned data, vs. cleaned data for RDB systems.
- A data lake can hold both original and cleaned data. Term "data lake" was invented in 2011, i.e., around same time as release of Hadoop.
- BOB Data warehouse technology ends up with data in a form easily understood by business people
  Big data is not there yet: usually need "data scientists" to interpret the data, write the queries, or at least new queries.
- Of course this is changing...
- Many big businesses have both a traditional data warehouse and a data lake, load some of same data in both Datamation article
- We may reserve "data warehouse" without adjective to encompass both RDB data warehouses and big-data warehouses that provide user-friendly access methods

#### Teradata

- · Teradata provides a relational database with ANSI compliant SQL, targeted to data warehouses
- Proprietary, expensive (\$millions)
- Uses a shared-nothing architecture on many independent nodes
- · Partitioning by rows or (more recently) columns
- · Scales up well: add node, add network bandwidth for it
- Now supports Hadoop as well as RDBMS: Teradata Appliance for Hadoop

#### Three Complementary Trends

- Data Warehousing: Consolidate data from many sources in one large repository (relational database or data lake).
  - Loading, periodic synchronization of data.
  - . Semantic integration, Data cleaning of data on way in (RDB only so far)
  - · Both simple and complex queries and views. (SQL or programmed)
- · Note: SQL is available on top of big data in most systems
- OLAP/Multidimensional Analysis
  - Queries based on spreadsheet-style operations and "multidimensional" view of data. Interactive queries. Look at data from different directions, granularity,
  - Big Data Example: Apache Kylin, originally from eBay, available 2017
- Data Mining: Exploratory search for interesting trends and anomalies.

Note: BI = Business intelligence, analysis of business information, includes OLAP and data mining

#### Data Warehousing

- Integrated data spanning long time periods, often augmented with summary information.
- Several gigabytes to terabytes common, now petabytes too.
- ■Interactive response times expected for complex queries; ad-hoc updates Metadata uncommon.
- Read-mostly data



OLAF

EXTERNAL DATA SOURCES

#### Warehousing Issues

- Semantic Integration: When getting data from multiple sources, must eliminate mismatches, e.g., different currencies, schemas.
- Heterogeneous Sources: Must access data from a variety of source formats and repositories.
  - · Replication capabilities can be exploited here.
- Load, Refresh, Purge: Must load data, periodically refresh it, and purge too-old data.
- Metadata Management: Must keep track of source (lineage) loading time, and other information for all data in the warehouse.

### OLAP: Multidimensional data model

- A way to make complex data understandable by business user, etc.
- · Example: sales data
- Dimensions: Product, Location, Time
- A measure is a numeric value like sales we want to understand in terms of the dimensions
- Example measure: dollar sales value "sales"
- Example data point (one row of fact/cube table):
- Sales = 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in that location, for that product
- Pid=1: details in Product table
- Locid = 1: details in Location table
- · Note aggregation here: sum of sales is most detailed data (but can have all sales data)

# Multidimensional Data Model

# SalesCube(pid, timeid, locid, sales)

- Collection of numeric measures, which depend on a set
  - E.g., measure sales, dimensions Product (key: pid), Location (locid), and Time (timeid).
  - Full table, pg. 851

# Slice locid=1 is shown:



|    | pid | timeid | locid | sales |
|----|-----|--------|-------|-------|
| ,  | 11  | 1      | 1     | 25    |
| of | 11  | 2      | 1     | 8     |
|    | 11  | 3      | 1     | 15    |
|    | 12  | 1      | 1     | 30    |
|    | 12  | 2      | 1     | 20    |
|    | 12  | 3      | 1     | 50    |
|    | 13  | 1      | 1     | 8     |
|    | 13  | 2      | 1     | 10    |
|    | 13  | 3      | 1     | 10    |
|    | 11  | 1      | 2     | 35    |
|    |     | •      | •     | •     |

## Granularity of Data

- · Example of last slide uses time at granularity of days
- Individual transactions (sales at cashier) have been added together to make one row in this table
- Note: "measures" can always be aggregated
- · Current hardware can handle more data
- Typical data warehouses hold the original transaction data
- · So such a fact table has more columns, for example
- dateid, timeofday, prodid, storeid, txnid, clerkid, sales, ...

#### Data Warehouse vs. Data for OLAP

- · Current DW fact table is huge, with individual transactions, large number of dimensions
- · Can only use a subset of this for OLAP, because of explosion of cells
- Take DW fact table, roll up to days (say), drop less important columns, get much smaller data for OLAP
- · Load data into OLAP, another tool
- Table on pg. 851 is a cube table, not a DW fact table
- Can think of OLAP as a cache of most important aggregates of DW

# Schema underlying OLAP, used in RDB DW



- Fact/cube table in BCNF; dimension tables not normalized.
  - Dimension tables are small; updates/inserts/deletes are rare. So, anomalies less important than good query performance.
- This kind of schema is very common in DW and OLAP, and is called a star schema; computing the join of all these relations is called a star
- Note: in OLAP, this is not what the user sees, it's hidden underneath
- In DW, this is the basic setup, but usually with more dimensions
- Here only one measure, sales, but can have several

## OLAP Queries: MDX (Multidimensional Expressions)

- · Originally a Microsoft SQL Server project, but now supported widely in the OLAP industry: Oracle, SAS, SAP, Teradata on server side, as well as Microsoft. Allows client programs to specify OLAP datasets.
- Example from Wikipedia

SELECT

{ [Measures].[Store Sales] } ON COLUMNS, { [Date].[2002], [Date].[2003] } ON ROWS

FROM Sales

- WHERE ( [Store].[USA].[CA] )

   The SELECT clause sets the query axes as the Store Sales member of the Measures dimension, and the 2002 and 2003 members of the Date dimension.
- The FROM clause indicates that the data source is the Sales cube.
- · The WHERE clause defines the "slicer axis" as the California member of the Store dimension.

#### Dimension Hierarchies: OLAP, DW

• For each dimension, the set of values can be organized in a hierarchy:



### OLAP (and DW) Queries

- Influenced by SQL and by spreadsheets.
- A common operation is to aggregate a measure over one or more dimensions.
  - · Find total sales.
  - Find total sales for each city, or for each state.
  - Find top five products ranked by total sales.
- Roll-up: Aggregating at different levels of a dimension
  - E.g., Given total sales by city, we can roll-up to get sales by state.

#### **OLAP Queries**

- <u>Drill-down:</u> The inverse of roll-up: go from sum to details that were added up before
  - E.g., Given total sales by state, can drill-down to get total sales by county.
  - · Drill down again, see total sales by city
  - . E.g., Can also drill-down on different dimension to get total sales by product for each state

#### **OLAP Queries: cross-tabs**

With relational DBs, we are used to tables with column names across the top, rows of data.

With OLAP, a spreadsheet-like representation is common, Called a cross-tabulation:

- One dimension horizontally
- Another vertically

|       | WI  | CA  | Total |
|-------|-----|-----|-------|
| 1995  | 63  | 81  | 144   |
| 1996  | 38  | 107 | 145   |
| 1997  | 75  | 35  | 110   |
| Total | 176 | 223 | 339   |

#### 81 144 63 SQL Queries for cross-tab entries 38 1996 107 145

The cross-tabulation values can be computed using a collection of SQL queries:

1997 75 35 110 Total 176 223 339

WI CA | Total

SELECT SUM(S.sales) FROM Sales S, Times T, Locations L WHERE S.timeid=T.timeid AND S.timeid=L.timeid GROUP BY T. vear, L. state

SELECT SUM(S.sales) FROM Sales S, Times T WHERE S.timeid=T.timeid **GROUP BY** T.year

SELECT SUM(S.sales) FROM Sales S, Location L WHERE S.timeid=L.timeid GROUP BY L.state

#### Oracle 10+ supports CUBE queries

select t.year, s.store\_state, sum(dollar\_sales) from salesfact f, times t, store s where f.time\_key = t.time\_key and s.store\_key = f.store\_key group by cube(t.year, s.store\_state);

| YEAR | STORE_STATE | SUM (DOLLAR_SALES)         |     |
|------|-------------|----------------------------|-----|
|      |             |                            |     |
|      |             | 781403.59                  |     |
|      | AZ          | 35684                      |     |
|      | CA          | 77420.82                   |     |
|      | co          | 38335.26 (some rows delete | ed) |
|      | TX          | 40886.54                   |     |
| 1994 | WA          | 39540.16<br>396355.76      |     |
| 1994 | AZ          | 17903.04                   |     |
| 1994 | CA          | 38966.54                   |     |
| 1994 | co          | 17870.33                   |     |
| 1994 | DC          | 20901.18 from dbs2 outp    | ut  |

### **OLAP Queries: Pivoting**

Example cross-tabulation:

|       | WI  | CA  | Tota |
|-------|-----|-----|------|
| 1995  | 63  | 81  | 144  |
| 1996  | 38  | 107 | 145  |
| 1997  | 75  | 35  | 110  |
| Total | 176 | 223 | 339  |

- Pivoting: switching dimensions on axes, or choosing what dimensions to show
- Switching dimensions means pivoting around a point in the upper-left-hand
  - End up with "1995 1996 1997 Total" across top,
    "WI CA Total" down the side

#### The CUBE Operator

- Generalizing the previous example, if there are k dimensions, we have 2<sup>k</sup> possible SQL GROUP BY queries that can be generated through pivoting on a subset of dimensions.
- CUBE Query, pg. 857

SELECT T.year, L.state, SUM(S.sales) FROM Sales S, Times T, Locations L WHERE S.timeid = T.timeid and S.locid = L.locid GROUP BY CUBE (T.year, L.state)

• Equivalent to rolling up Sales on all eight subsets of the set {pid, locid, timeid); each roll-up corresponds to an SQL query of the form:

> SELECT SUM(S.sales) FROM Sales S **GROUP BY grouping-list**

### Oracle 11+ supports cross-tabs display



# DW data → OLAP

- The CUBE query can do the roll-ups on DW data needed for OLAP
- Excel is the champ at OLAP queries
- Look at <u>video</u>
- This video shows pivot tables for a single Excel worksheet
- $\bullet$  But Excel can work with database tables: see this  $\underline{\text{longer video}}$
- Pivot tables: drill down, roll up, pivot, ...