
Data Warehousing and

Decision Support, part 2

CS634
Class 23, Apr 27, 2016

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke, Chapter 25

Multidimensional Data Model

 Collection of numeric measures, which

depend on a set of dimensions.

 E.g., measure sales, dimensions Product (key:

pid), Location (locid), and Time (timeid).

 Full table, pg. 851

8 10 10

30 20 50

25 8 15

1 2 3

timeid

p
id

11

1
2

1

3

11 1 1 25

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

13 1 1 8

13 2 1 10

13 3 1 10

11 1 2 35

p
id

ti
m

ei
d

lo
ci

d

sa
le

s

locid

Slice locid=1

is shown:

SalesCube(pid, timeid, locid, sales)

Fact Table

Star Schema underlying OLAP, used in RDB DW

 Fact/cube table in BCNF; dimension tables not normalized.
 Dimension tables are small; updates/inserts/deletes are rare. So, anomalies

less important than good query performance.

 This kind of schema is very common in DW and OLAP, and is called
a star schema; computing the join of all these relations is called a star
join.

 Note: in OLAP, this is not what the user sees, it’s hidden underneath

 In DW, this is the basic setup, but usually with more dimensions

 Here only one measure, sales, but can have several

pricecategorypnamepid countrystatecitylocid

saleslocidtimeidpid

holiday_flagweekdatetimeid month quarter year

(Fact table)SALES

TIMES

PRODUCTS LOCATIONS

Star queries on star schemas

 Oracle definition: a query that joins a large (fact) table to a number
of small (dimension) tables, with provided WHERE predicates on the
dimension tables to reduce the result set to a very small percentage
of the fact table

 The select list has sum(sales), etc., as desired (measures)

 This calculates certain cells of a pivot table, and is used for other
analysis too.

SELECT store.sales_district, time.fiscal_period,

SUM(sales.dollar_sales) FROM sales, store, time

WHERE sales.store_key = store.store_key AND

sales.time_key = time.time_key AND

store.sales_district IN ('San Francisco', 'Los

Angeles') AND time.fiscal_period IN ('3Q95', '4Q95',

'1Q96')

GROUP BY store.sales_district,time.fiscal_period;

Star queries

 Oracle: A better way to write the query would be:

(i.e., give the QP a hint on how to do it)

SELECT ... FROM sales

WHERE store_key IN

(SELECT store_key FROM store

WHERE sales_district IN ('WEST', 'SOUTHWEST'))

AND time_key IN

(SELECT time_key FROM time

WHERE quarter IN ('3Q96', '4Q96', '1Q97'))

AND product_key IN

(SELECT product_key FROM product

WHERE department = 'GROCERY')

GROUP BY …;

 Oracle will rewrite the query this way if you add the STAR_TRANSFORMATION hint to
your SQL, or the DBA has set STAR_TRANSFORMATION_ENABLED

http://www.orafaq.com/tuningguide/star query.html

Excel can do Star queries

 Recall GROUP BY queries for individual crosstab entries

 A Star query is of this form, plus WHERE clause

predicates on dimension tables such as

 store.sales_district IN ('WEST', 'SOUTHWEST')

 time.quarter IN ('3Q96', '4Q96', '1Q97')

 Excel allows “filters” on data that correspond to these

predicates of the WHERE clause

Star schemas arise in many fields

 The dimensions: the facts of the matter

 What: product

 Where: store

 When: time

 How/why: promotion

 This can be generalized to other subjects: ecology

 What: temperature

 Where: location and height

 When: time

 How/why: quality of data

 Which: working group

Star schema from ecology

Star Schema from Medicine

What’s this?

Indexes related to data warehousing

 Example Bitmap index: if interested, see Bitmap Indexes

sex custid name sex rating rating

Bit-vector:

1 bit for each

possible value.

Many queries can

be answered using

bit-vector ops!

MF

Bitmaps.pdf

Indexing for DW, cont: Join Indexes
 Consider the join of Sales, Products, Times, and Locations,

 A join index can be constructed to speed up such joins. The

index contains [s,p,t,l] if there are tuples (with sid) s in Sales, p

in Products, t in Times and l in Locations that satisfy the join

conditions.

 Can do one dimension column at a time, put <f_rid, c1> in c1’s

join index, where f_rid is the fact table RID and c1 the

dimension-table value we’re interested in.

 It’s as if c1 is an additional column of the fact table, with a

normal index <c1, f_rid> to allow finding rows with certain c1.

 Related topic: materialized views, cover later.

 Bitmap indexes are a good match here…

Organizing huge fact tables

 If the query retrieves 1000 or even 10,000 rows from the fact

table, it’s still pretty fast without special organization (10,000

random i/os = 100 seconds, faster on RAID)

 The problem is that retrieving 100,000 random rows in a huge

fact table (itself billions of rows) means 100,000 page i/os

(1000 seconds) unless we do something about the fact table

organization

 Traditional solution for scattered i/o problem: clustered table.

 But what to cluster on—time? Product? Store?

 Practical simple answer: time, so can insert smoothly and

extend the table, delete old stuff in a range

 But we can do better…

Well, how does Teradata do it?

By multi-dimensional partitioning (toy example):
 CREATE TABLE Sales (storeid INTEGER NOT NULL,
productid INTEGER NOT NULL, salesdate DATE NOT NULL,
sales DECIMAL(13,2), totalsold INTEGER, note
VARCHAR(256), PRIMARY KEY (storeid, productid,
salesdate)) PARTITION BY

(RANGE_N(salesdate BETWEEN DATE '2012-01-01' AND
DATE '2016-12-31' EACH INTERVAL '1' YEAR),

RANGE_N(storeid BETWEEN 1 AND 300 EACH 100),
RANGE_N(productid BETWEEN 1 AND 400 EACH 100));

 This table is first partitioned by year based on salesdate.

 Next, within each year the data will be partitioned by storeid in groups of
100.

 Finally, within each year/storeid group, the data will be partitioned by
productid in groups of 100.

 One cell: sales in 2015 for one group of 100 stores and one group of 100
productids (365x100x100 rows)

How multi-dimensional partitioning speeds

up queries

 Suppose 500 stores, 500 products

 So the partitioning sets up 5 productid ranges, 5 storeid

ranges, as well as 5 time ranges

 Query on 2016 reads only 1/5 of data

 Query on store 25, all years, reads 1/5 of data

 Query on store 25 for 2016 reads only 1/5*1/5 = 1/25 of data

 Query on store 25, product 44 for 2016 reads only

1/5*1/5*1/5 of data

 This assumes the query processor is smart about partitions…

 Also helps with huge delete needed when a year gets

archived: just drop the year’s partition

Teradata System

Partitioning puts a

set of cube cells

on each node

Star query pulls

data from a subset

of cells scattered

across nodes

Partitioning: physical organization

 Not covered by SQL standard

 So we have to look at each product for details

 But similar basic capabilities

 Oracle says start thinking about partitioning if your table

is over 2GB in size.

 Another way of saying it: start thinking about partitioning

if your table and indexes can’t fit in the database buffer

pool.

 Don’t forget to size up the buffer pool to, say, ½ memory when

you install the database!

 Partitioning can also be used with Hadoop

Partitioning Example

 Consider a warehouse with 10TB of data, made up of 2
TB per year of sales data, for 5 years.

 End of year: has grown to 12 TB, need to clean out oldest
2TB, or put it in archive area.

 Or do this every month.

 Either way, massive delete. Could delete rows on many
pages, lowering #rows/page, thus query performance.
Will take a long time for a big table.

 With partitioning, we can just drop a partition, create a
new one for the new year/month. All the surviving
extents still have the same rows.

 So most warehouses are partitioned by year or month.

Partitioning

 The following works in Oracle and mysql:
create table sales (year int, yearday int,

product varchar(10),sales decimal(10,2))

partition by range (year)

(partition p1 values less than (2010),

partition p2 values less than (2011),

partition p3 values less than (2012),

partition p4 values less than (2013);

 Here the sales table is created with 4 partitions. Partition

p1 will contain rows of year 2009 and earlier. Partition p2

will contain rows of year 2010, and so on..

Partitioning by time

 Considering example table partitioned by year

 So if we’re interested in data from a certain year, the disks
do one seek, then read, read, read…

 Much more efficient than if all the years are mixed up on disk.
Partitioning is doing a kind of clustering.

 We could partition by month instead of by year and get finer-
grained clustering

 To add a partition to sales table give the following
command.

alter table sales

add partition p6 values less than (2014);

 Similarly can drop a partition of old data

Oracle Partitioning

 In Oracle, each partition has its own extents, like an

ordinary table or index does. So each extent will have

data all from one year.

 We read-mostly data, we should make sure the extents

are at least 1MB, so say 16MB in size. In Oracle we could

create the one tablespace with a default storage clause

early in our setup

 Could be across two RAID sets, each with 1MB stripes

CREATE TABLESPACE dw_tspace

DATAFILE 'fname1' SIZE 3000G,'fname2' SIZE 3000G

DEFAULT STORAGE (INITIAL 16M NEXT 16M);

Types of Partitioning

 In Oracle and mysql you can partition a table by

 Range Partitioning (example earlier)

 Hash Partitioning

 List Partitioning (specify list of key values for each partition)

 Composite Partitioning (uses subpartitions of range or list
partitions)

 Much more to this than we can cover quickly, but plenty
of documentation online

 Idea from earlier: put cells of cube/fact table together in
various different places. Need last item in above list.

 But Oracle docs/tools shy away from 3-level cases (they
do work, because I’ve done it)

Cube-related partitioning in Oracle
create table sales (year int, dayofyear int, product varchar(10),

sales decimal(10,2))

PARTITION BY RANGE (year)

SUBPARTITION BY HASH(product) SUBPARTITIONS 8

(partition p1 values less than (2008),

partition p2 values less than (2009),

partition p3 values less than (2010),

partition p4 values less than (2011),

partition p5 values less than (2012);

));

 Here have 40 partitions

 Subpartitions are also made of extents (in Oracle), so now in one extent
we have a certain subset of products in a certain year.

 With partitions and subpartitions, we are getting a kind of multi-
dimensional clustering, by two dimensions.

DB2’s Multi-dimensional Clustering (MDC)

Example 3-dim

clustering,

following cube

dimensions.

Note this is not

partitioning, but

can be used with

partitioning

Characteristics of a mainstream DB2 data

warehouse fact table, from DB2 docs

 A typical warehouse fact table, might use the following

design: Create data partitions on the Month column.

 Define a data partition for each period you roll-out, for

example, 1 month, 3 months.

 Create MDC dimensions on Day and on 1 to 4 additional

dimensions. Typical dimensions are: product line and

region.

Example DB2 partition/MDC table

CREATE TABLE orders (YearAndMonth INT,

Province CHAR(2), sales DECIMAL(12,2))

PARTITION BY RANGE (YearAndMonth)

(STARTING 9901 ENDING 9904 EVERY 2)

ORGANIZE BY (YearAndMonth, Province);

 Partition by time for easy roll-out

 Use MDC for fast cube-like queries

 All data for yearandmonth = ‘9901’ and province=‘ON’

(Ontario) in one disk area

 Note this example has no dimension tables

 Could use prodid/1000, etc. as MDC computed column—but

does the QP optimize queries properly for this?

Partition Pruning
 The QP needs to be smart about partitions/MDC cells

 From Oracle docs, the idea:“Do not scan partitions where there
can be no matching values”.

 Example: partitions of table t1 based on region_code:
PARTITION BY RANGE(region_code)

(PARTITION p0 VALUES LESS THAN (64),

PARTITION p1 VALUES LESS THAN (128),

PARTITION p2 VALUES LESS THAN (192),

PARTITION p3 VALUES LESS THAN MAXVALUE);

Query:

SELECT fname, lname, region_code, dob FROM t1

WHERE region_code > 125 AND region_code < 130;

 QP should prune partitions p0 (region_code too low) and p3 (too
high).

 But the capability is somewhat fragile in practice.

Partition Pruning is fragile

 From dba.stackexchange.com:

 The problem with this approach is that partition_year must be
explicitly referenced in queries or partition pruning (highly
desirable because the table is large) doesn't take effect. (Can’t
ask users to add predicates to queries with dates in them)

 Answer:

 … Your view has to apply some form of function to start and
end dates to figure out if they're the same year or not, so I
believe you're out of luck with this approach.

 Our solution to a similar problem was to create materialized
views over the base table, specifying different partition keys on
the materialized views.

 So need to master materialized views to be an expert in DW.

http://dba.stackexchange.com/questions/30346/partition-pruning-with-multiple-date-columns
http://docs.oracle.com/cd/E11882_01/server.112/e25523/part_avail.htm

Parallelism is essential to huge DWs

Shared Memory

(least scalable)

Shared Disk

(medium scalable)

Shared Nothing

(most scalable)

Microsoft SQL

Server

PostgreSQL

MySQL

Oracle RAC

Sybase IQ

Teradata

IBM DB2

Netezza

EnterpriseDB (Postgres)

Greenplum

Vertica

MySQL Cluster

SAP HANA

Table 1: Parallelism approaches taken by different data warehouse
DBMS vendors, from “How to Build a High-Performance Data
Warehouse” by David J. DeWitt, Ph.D.; Samuel Madden, Ph.D.; and
Michael Stonebraker, Ph.D.
(I’ve added bold for the biggest players, green for added entries)

http://db.csail.mit.edu/madden/high_perf.pdf

Shared-nothing vs. Shared-disk

