
Data Warehousing and

Decision Support, part 3

CS634
Class 22

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke, Chapter 25

2

Views and Materialized Views

Views: review of pp. 86-91

View - rows are not explicitly stored, but computed as

needed from view definition

Base table - explicitly stored

3

CREATE VIEW

Given tables for these relations:
Students (ID, name, major)
Enrolled (ID, CourseID, grade)

Can create view:
CREATE VIEW B_Students (name, ID, CourseID) AS

SELECT S.name, S.ID, E.CourseID
FROM Students S, Enrolled E
WHERE S.ID = E.ID AND E.grade = ‘B’;

Now can use B_Students just as if it were a table, for queries

Could be used to shield D_students from view

Can grant select on view, but not on enrolled

4

Updatable Views

SQL-92: Must be defined on a single table using only
selection and projection and not using DISTINCT.

SQL:1999: May involve multiple tables in SQL:1999 if each
view field is from exactly one underlying base table and that
table’s PK is included in view; not restricted to selection
and project, but cannot insert into views that use union,
intersection, or set difference.

So B_Students is updatable by SQL99, and by Oracle 10.

Willie Albino May 15, 20035

What is a Materialized View?

 A database object that stores the results of a query

 Features/Capabilities

 Can be partitioned and indexed

 Can be queried directly

 Can have DML applied against it

 Several refresh options are available (in Oracle)

 Fits best in read-intensive environments

Willie Albino May 15, 20036

Advantages and Disadvantages

 Advantages

 Useful for summarizing, pre-computing, replicating and distributing data

 Faster access for expensive and complex joins

 Transparent to end-users

 MVs can be added/dropped without invalidating coded SQL (like indexes)

 This assumes end users are coding SQL using base tables, not MVs themselves

 Disadvantages

 Performance costs of maintaining the views

 Storage costs of maintaining the views

Similar to Indexes

 Designed to increase query Execution Performance.

 Transparent to SQL Applications allowing DBA’s to create
and drop Materialized Views without affecting the validity
of Applications.

 Consume Storage Space.

 Can be Partitioned.

 Not covered by SQL standards

 But can be queried like tables

MV Support in DBs: from Wikipedia

 Materialized views were implemented first by the Oracle ,

and Oracle has the most features

 In IBM DB2, they are called "materialized query tables";

 Microsoft SQL Server has a similar feature called

"indexed views".

 MySQL doesn't support materialized views natively, but

workarounds can be implemented by using triggers or

stored procedures or by using the open-source

application Flexviews.

http://en.wikipedia.org/wiki/Oracle_Database
http://en.wikipedia.org/w/index.php?title=Flexviews&action=edit&redlink=1

Views vs Materialized Views (Oracle),

from http://www.sqlsnippets.com/en/topic-12874.html

Table View Materialized View

select * from T ;

KEY VAL

---- -----

1 a

2 b

3 c

4

create view v as select

* from t ;

select * from V ;

KEY VAL

----- -----

1 a

2 b

3 c

4

create materialized

view mv as select *

from t ;

select * from MV ;

KEY VAL

---- -----

1 a

2 b

3 c

4

http://www.sqlsnippets.com/en/topic-12874.html

The ROWIDs tell the story…

 The view is using the table’s rows but the MV has its own

rows

Update to T is not propagated immediately

to simple MV

Table View Materialized

View

update t set val = upper(val);

select * from T ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

select * from V ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

select * from MV ;

KEY VAL

---------- -----

1 a

2 b

3 c

4

MV “refresh“ command

Table View Materialized

View

execute dbms_mview.refresh('MV');

select * from T ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

select * from V ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

select * from MV ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

Materialized View Logs for fast refresh

 There is a way to refresh only the changed rows in a

materialized view's base table, called fast refreshing.

 For this, need a materialized view log (MLOG$_T here)

on the base table t:
create materialized view log on t ;

UPDATE t set val = upper(val) where KEY = 1 ;

INSERT into t (KEY, val) values (5, 'e');

select key, dmltype$$ from MLOG$_T ;

KEY DMLTYPE$$

---------- ----------

1 U

5 I

REFRESH FAST

create materialized view mv REFRESH FAST as select * from t ;

select key, val, rowid from mv ;

KEY VAL ROWID

---------- ----- ------------------

1 a AAAWm+AAEAAAAaMAAA

2 b AAAWm+AAEAAAAaMAAB

3 c AAAWm+AAEAAAAaMAAC

4 AAAWm+AAEAAAAaMAAD

execute dbms_mview.refresh(list => 'MV', method => 'F'); --F for fast

select key, val, rowid from mv ;

--see same ROWIDs as above: nothing needed to be changed

Now let's update a row in the base table.

update t set val = 'XX' where key = 3 ;

commit;

execute dbms_mview.refresh(list => 'MV', method => 'F');

select key, val, rowid from mv;

KEY VAL ROWID

---------- ----- ------------------

1 a AAAWm+AAEAAAAaMAAA

2 b AAAWm+AAEAAAAaMAAB

3 XX AAAWm+AAEAAAAaMAAC –See update, same old ROWID

4 AAAWm+AAEAAAAaMAAD

So the MV row was updated based on the log entry

Adding Your Own Indexes

create materialized view mv

refresh fast on commit as

select t_key, COUNT(*) ROW_COUNT from t2 group by t_key ;

create index MY_INDEX on mv (T_KEY) ;

select index_name , i.uniqueness , ic.column_name

from user_indexes i inner join user_ind_columns ic using (index_name)

where i.table_name = 'MV' ;

INDEX_NAME UNIQUENES COLUMN_NAME

--------------- --------- ---------------

I_SNAP$_MV UNIQUE SYS_NC00003$ --Sys-generated

MY_INDEX NONUNIQUE T_KEY

Prove that MY_INDEX is in use

using SQL*Plus's Autotrace feature

set autotrace on explain set linesize 95

select * from mv where t_key = 2 ;

T_KEY ROW_COUNT

---------- ----------

2 2

Execution Plan

--

Plan hash value: 2793437614

--

|Id| Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

|0| SELECT STATEMENT | | 1 | 26 | 2 (0)| 00:00:01 |

|1| MAT_VIEW ACCESS BY INDEX ROWID| MV | 1 | 26 | 2 (0)| 00:00:01 |

|*2| INDEX RANGE SCAN | MY_INDEX | 1 | | 1 (0)| 00:00:01 |

--

MV on Join query

create materialized view log on t with rowid, sequence ;

create materialized view log on t2 with rowid, sequence

create materialized view mv

refresh fast on commit enable query rewrite

as select t.key t_key , t.val t_val , t2.key t2_key ,

t2.amt t2_amt , t.rowid t_row_id , t2.rowid t2_row_id

from t, t2

where t.key = t2.t_key ;

create index mv_i1 on mv (t_row_id) ;

create index mv_i2 on mv (t2_row_id) ;

MV with aggregation

create materialized view log on t2 with rowid, sequence (t_key, amt)

including new values ;

create materialized view mv

refresh fast on commit enable query rewrite

as select t_key , sum(amt) as amt_sum , count(*) as row_count ,

count(amt) as amt_count

from t2 group by t_key ;

create index mv_i1 on mv (t_key) ;

MV with join and aggregation

from Oracle DW docs

CREATE MATERIALIZED VIEW LOG ON products WITH SEQUENCE,

ROWID (prod_id, prod_name,…) INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON sales WITH SEQUENCE, ROWID

(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold,

amount_sold) INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW product_sales_mv BUILD IMMEDIATE

REFRESH FAST ENABLE QUERY REWRITE

AS SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales, COUNT(*)

AS cnt, COUNT(s.amount_sold) AS cnt_amt

FROM sales s, products p WHERE s.prod_id = p.prod_id

GROUP BY p.prod_name;

http://docs.oracle.com/cd/B28359_01/server.111/b28313/basicmv.htm

DW Partitioning, Oracle case

 Clearly a win to partition fact table, big MVs by time

intervals for roll-out, clustering effect

 Can sub-partition fact table by a dimension attribute, but

need to modify queries to get QP to optimize

 Ex: partition by date intervals, product category

 Query: select p.subcategory, … from F where … (no

mention of p.category)

 Modified query: select p.subcategory … where … AND

category=‘Soft Drinks’ --now QP uses partition pruning

 Data warehouse MVs are usually rolled-up, much smaller,

don’t need effective partitioning so much

Summary

 Put raw data in one fact table, partitioned for roll-out

 Create MVs with various roll-ups, for queries, also

partitioned by time

 Add indexes to MVs

 Note MVs are much smaller than raw fact tables

 Every day (say) add data to raw fact table, refresh MVs

Oracle OLAP Cube

 Another way to hold data, optimized for cube queries

 Related to master tables: fact tables, dimensions

 Excel can get data with MDX

 Not itself a MV, but can be used like one

 i.e. SQL queries can be automatically rewritten to use the

OLAP cube, run faster

 Other OLAP servers exist too

Working cheaply: what about mysql?

 If your data can be fit into memory, you don’t need fancy software… so buy

a terabyte of memory…no longer a crazy idea.

 Example: Dell’s PowerEdge R940 can take up to 6TB memory, 4 CPU

sockets for Xeon processors with up to 28 cores/CPU. Up to 122TB disk.

Basic system (2 processors, 8GB memory) $5800.

 Configured one with 4 processors, 1TB of memory: $39, 748

 Have warehouse data in mysql on disk, comes into memory as accessed.

 Mysql has no MV’s, but can compute a joined table periodically as needed

for Excel

 Use Excel for UI

http://www.dell.com/en-us/work/shop/cty/pdp/spd/poweredge-r940/pe_r940_12229

