Data Warehousing and
Decision Support, part 3

CS634
Class 22

Slides based on “Database Management Systems™ 3' ed, Ramakrishnan and Gehrke, Chapter 25

Views and Materialized Views

Views: review of pp. 86-9|

View - rows are not explicitly stored, but computed as
needed from view definition

Base table - explicitly stored

4

CREATE VIEW

Given tables for these relations:

Students ﬁ@, name, major)
Enrolled (ID, CourselD, grade)

Can create view:
CREATEVIEW B_Students (name, ID, CourselD) AS
SELECT S.name, S.ID, E.CourselD
FROM Students S, Enrolled E
WHERE S.ID = E.ID AND E.grade =‘B’;

»Now can use B_Students just as if it were a table, for queries
»Could be used to shield D_students from view

»Can grant select on view, but not on enrolled

Updatable Views

SQL-92: Must be defined on a single table using only
selection and projection and not using DISTINCT.

SQL:1999: May involve multiple tables in SQL: 1999 if each
view field is from exactly one underlying base table and that
table’s PK is included in view; not restricted to selection
and project, but cannot insert into views that use union,
intersection, or set difference.

So B_Students is updatable by SQL99, and by Oracle 10.

What is a Materialized View?

» A database object that stores the results of a query

» Features/Capabilities
Can be partitioned and indexed
Can be queried directly
Can have DML applied against it

Several refresh options are available (in Oracle)

Fits best in read-intensive environments 2

Willie Albino May 15, 2003

Advantages and Disadvantages

» Advantages
Useful for summarizing, pre-computing, replicating and distributing data
Faster access for expensive and complex joins

Transparent to end-users
MVs can be added/dropped without invalidating coded SQL (like indexes)

This assumes end users are coding SQL using base tables, not MVs themselves

» Disadvantages
Performance costs of maintaining the views

Storage costs of maintaining the views

6 Willie Albino May 15, 2003

Similar to Indexes

Designed to increase query Execution Performance.

Transparent to SQL Applications allowing DBA's to create
and drop Materialized Views without affecting the validity
of Applications.

Consume Storage Space.

Can be Partitioned.

Not covered by SQL standards

But can be queried like tables

MV Support in DBs: from Wikipedia

» Materialized views were implemented first by the
and Oracle has the most features

» In IBM DB2, they are called "materialized query tables";

» Microsoft SQL Server has a similar feature called
"indexed views".

» MySQL doesn't support materialized views natively, but
workarounds can be implemented by using triggers or
stored procedures or by using the open-source
application

http://en.wikipedia.org/wiki/Oracle_Database
http://en.wikipedia.org/w/index.php?title=Flexviews&action=edit&redlink=1

Views vs Materialized Views (Oracle),
from http://www.sqlsnippets.com/en/topic-12874.html

Table View Materialized View

select * from T ; create view v as select create materialized
KEY VAL *fromt ; view mv as select *
--------- select * from V ; fromt;
1 a KEY VAL select * from MV ;
2 b e KEY VAL
3 C 1 a e
4 2 b 1 a

3 C 2 b

4 3 C

4

http://www.sqlsnippets.com/en/topic-12874.html

The ROWIDs tell the story...

» The view is using the table’s rows but the MV has its own
rows

Table

select rowid
from T
order by rowid ;

ROWID

AALEYOAAEALARNTAAR
ALALEYOAAEAAAAVTAAR
AALEYOAAEAAAAVTAAL
AALEYOAAEALARNTAAD

View Materialized View

select rowid
fraom WV
order by rowid ;

ROWID

AAAEYOAAEAAAANTAAR
AAAEYOAREAMAANTAAD
AAAEYIAAEAAARNTAAL
AAAEYOAREALAANTAAD

select rowid
from MV
order by rowid ;

ROWID

AALEIFAAEANADYWEAARA
AbfelFAAEAAADWEAAR
AALEIFAAEAAADWVEAAL
AALelFAAEALADEAAD

Update to T is not propagated immediately
to simple MV

Table View Materialized
View

update t set val = upper(val);

select * from T ; select * from V ; select * from MV ;
KEY VAL KEY VAL KEY VAL

1A 1A 1la

2B 2B 2b

3C 3C 3cC

MV “refresh“ command

Table View Materialized
View
execute doms_mview.refresh('MV");

select * from T ; select * from V select * from MV :
KEY VAL KEY VAL KEY VAL

1A 1A 1A

2B 2B 2B

3C 3C 3C

Materialized View Logs for fast refresh

» There is a way to refresh only the changed rows in a
materialized view's base table, called fast refreshing.

» For this, need a materialized view log (MLOGS$_T here)
on the base table t:

create materialized view log on t ;

UPDATE t set val = upper(val) where KEY = 1
INSERT into t (KEY, wval) wvalues (5, 'e');

°
14

select key, dmltype$SS from MLOGS T ;

KEY DMLTYPESS

REFRESH FAST

create materialized view mv REFRESH FAST as select * from t ;

select key, val, rowid from mv ;
KEY VAL ROWID

1 a AAAWm+AAEAAAAaAMAAA

2 b AAAWm+AAEAAAAaMAAB

3 ¢ AAAWm+AAEAAAAaMAAC

4 AAAWmMm+AAEAAAAAMAAD

execute dbms_mview.refresh(list => 'MV', method => 'F'); --F for fast
select key, val, rowid from mv ;

--see same ROWIDs as above: nothing needed to be changed

Now let's update a row in the base table.

update t set val = "XX' where key = 3 ;
commit;
execute dbms_mview.refresh(list => 'MV', method => 'F');

select key, val, rowid from my;

KEY VAL ROWID

1 a AAAWmMmt+tAAEAAAAaAMAAA

2 b AAAWm+AAEAAAAaMAAB

3 XX AAAWm+AAEAAAAaMAAC -See update, same old ROWID
4 AAAWM+AAEAAAAaMAAD

So the MV row was updated based on the log entry

Adding Your Own Indexes

create materialized view myv
refresh fast on commit as
select t_key, COUNT (*) ROW_COUNT from t2 group by t_key ;

create index MY_INDEX on mv (T_KEY) ;
select index_name , i.uniqueness , ic.column_name

from user_indexes i inner join user_ind_columns ic using (index_name)

where i.table_name = 'MV';
INDEX NAME UNIQUENES COLUMN NAME
I SNAPS MV UNIQUE SYS NC00003$ --Sys—-generated
MY INDEX NONUNIQUE T KEY

Prove that MY_INDEX is in use
using SQL*Plus's Autotrace feature

set autotrace on explain set linesize 95
select * from mv where t_key = 2 ;

T KEY ROW COUNT

2 2
Execution Plan

Plan hash value: 27934370614

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0] SELECT STATEMENT		1	26	2 (0)	00:00:01	
1] MAT_VIEW ACCESS BY INDEX ROWID	MV	1	26	2 (0)	00:00:01	
*2	INDEX RANGE SCAN	MY_INDEX	1T		1 (0)] 00:00:01	

MV on Join query

create materialized view log on t with rowid, sequence ;
create materialized view log on t2 with rowid, sequence

create materialized view mv
refresh fast on commit enable query rewrite
as select t.key t_key, t.val t val,t2.key t2 key,
t2.amt t2 _amt, t.rowid t row id,t2.rowid t2 row id
from t, t2
where t.key = t2.t_key ;
create index mv_il on mv (t_row id);

create index mv_i2 on mv (t2_row _id);

MV with aggregation

create materialized view log on t2 with rowid, sequence (t_key,amt)
including new values ;

create materialized view mv
refresh fast on commit enable query rewrite
as select t_key , sum(amt) as amt_sum , count(*) as row_count,
count(amt) as amt_count
from t2 group by t_key ;

create index mv_il on mv (t_key) ;

MV with join and aggregation
from docs

CREATE MATERIALIZED VIEW LOG ON products WITH SEQUENCE,
ROWID (prod_id, prod_name,...) INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON sales WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo _id, quantity sold,
amount_sold) INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW product_sales_mv BUILD IMMEDIATE
REFRESH FAST ENABLE QUERY REWRITE

AS SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales, COUNT (*)
AS cnt, COUNT (s.amount_sold) AS cnt_amt

FROM sales s, products p WHERE s.prod_id = p.prod_id
GROUP BY p.prod_name;

http://docs.oracle.com/cd/B28359_01/server.111/b28313/basicmv.htm

DW Partitioning, Oracle case

4

Clearly a win to partition fact table, big MVs by time
intervals for roll-out, clustering effect

Can sub-partition fact table by a dimension attribute, but
need to modify queries to get QP to optimize

Ex: partition by date intervals, product category

Query: select p.subcategory, ... from F where ... (no
mention of p.category)

Modified query: select p.subcategory ... where ... AND
category="Soft Drinks’ --now QP uses partition pruning

Data warehouse MVs are usually rolled-up, much smaller,
don’t need effective partitioning so much

Summary

» Put raw data in one fact table, partitioned for roll-out

» Create MVs with various roll-ups, for queries, also
partitioned by time

» Add indexes to MVs
» Note MVs are much smaller than raw fact tables

» Every day (say) add data to raw fact table, refresh MVs

Oracle OLAP Cube

<
<
<
<
<

Another way to hold data, optimized for cube queries
Related to master tables: fact tables, dimensions

Excel can get data with MDX

Not itself a MV, but can be used like one

i.e. SQL queries can be automatically rewritten to use the
OLAP cube, run faster

Other OLAP servers exist too

Working cheaply: what about mysql?

>

If your data can be fit into memory, you don’t need fancy software... so buy
a terabyte of memory...no longer a crazy idea.

Example: Dell’s PowerEdge R940 can take up to 6TB memory, 4 CPU
sockets for Xeon processors with up to 28 cores/CPU. Up to 122TB disk.
Basic system (2 processors, 8GB memory) $5800.

with 4 processors, | TB of memory: $39, 748
Have warehouse data in mysqgl on disk, comes into memory as accessed.

Mysqgl has no MV’s, but can compute a joined table periodically as needed
for Excel

Use Excel for Ul

http://www.dell.com/en-us/work/shop/cty/pdp/spd/poweredge-r940/pe_r940_12229

