Introduction

- Increasingly, organizations are analyzing current and historical data to identify useful patterns and support business strategies.
- Emphasis is on complex, interactive, exploratory analysis of very large datasets created by integrating data from across all parts of an enterprise; data is fairly static.

Contrast Data Warehousing and On-Line Analytic Processing (OLAP) with traditional On-Line Transaction Processing (OLTP):
- Mostly long queries, instead of the short update Xacts of OLTP.
- These are both using “structured data” that can be fairly easily loaded into a database.

Structured vs. Unstructured Data

- So far, we have been working with structured data
- Structured data:
 - Entities with attributes, each fitting a SQL data type
 - Relationships
 - Each row of data is precious
 - Loads into relational tables, long-term storage
 - Can be huge
- Unstructured data, realm of “big data”:
 - Often doesn’t fit into E/R model, too sloppy
 - Each piece of data is not precious—it’s statistical
 - Sometimes just processed and thrown away
 - No permanent specialized repository, maybe saved in files
 - Can be really huge

Bigness of Data

Big data warehouses, all on Teradata systems
- Biggest DW: Walmart, passed 1TB in 1992, 2.8 PB (petabytes) = 2800 TB in 2008, 30 PB in 2014, growing...
- eBay: 9 PB DW in 2013, also has 40 PB of big data
- Apple: multiple PB DW
- Big data:
 - Usually over 50TB, can’t fit on one machine
 - Is judged by “velocity” as well as size
 - Google: processed 24 PB of data per day in 2009, invented Map-Reduce, published 2004

Teradata

- Teradata provides a relational database with ANSI compliant SQL, targeted to data warehouses
- Proprietary, expensive ($millions)
- Uses a shared-nothing architecture on many independent nodes
- Partitioning by rows or (more recently) columns
- Scales up well: add node, add network bandwidth for it

Three Complementary Trends

- **Data Warehousing:** Consolidate data from many sources in one large repository (relational database).
 - Loading, periodic synchronization of replicas.
 - Semantic integration, Data cleaning of data on way in
 - Both simple and complex SQL queries and views.
- **OLAP:**
 - Complex SQL queries (in effect, but not composed by users).
 - Queries based on spreadsheet-style operations and “multidimensional” view of data.
 - Interactive and “online” queries.
- **Data Mining:** Exploratory search for interesting trends and anomalies.
Data Warehousing

- Integrated data spanning long time periods, often augmented with summary information.
- Several gigabytes to terabytes common, now petabytes too.
- Interactive response times expected for complex queries; ad-hoc updates uncommon.
- Read-mostly data

Warehousing Issues

- Semantic Integration: When getting data from multiple sources, must eliminate mismatches, e.g., different currencies, schemas.
- Heterogeneous Sources: Must access data from a variety of source formats and repositories.
 - Replication capabilities can be exploited here.
- Load, Refresh, Purge: Must load data, periodically refresh it, and purge too-old data.
- Metadata Management: Must keep track of source (lineage) loading time, and other information for all data in the warehouse.

OLAP: Multidimensional data model

- Example: sales data
- Dimensions: Product, Location, Time
- A measure is a numeric value like sales we want to understand in terms of the dimensions
- Example measure: dollar sales value “sales”
 - Example data point (one row of fact/cube table):
 - Sales + 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in that location, for that product
 - Pid=1 details in Product table
 - Locid = 1 details in Location table
 - Note aggregation here: sum of sales is most detailed data

Multidimensional Data Model

- SalesCube(pid, timeid, locid, sales)
 - Collection of numeric measures, which depend on a set of dimensions.
 - E.g., measure sales, dimensions Product (key: pid), Location (locid), and Time (timeid).
 - Full table, pg. 851

- Slice locid=1 is shown:
 - Example data point:
 - Pid 11, timeid 1, locid 1, sales 25
 - Pid 11, timeid 2, locid 1, sales 8
 - Pid 11, timeid 3, locid 1, sales 15

Granularity of Data

- Example of last slide uses time at granularity of days
- Individual transactions (sales at cashier) have been added together to make one row in this table
- Note: “measures” can always be aggregated
- Current hardware can handle more data
- Typical data warehouses hold the original transaction data
- So such a fact table has more columns, for example
 - dateid, timeofday, prodid, storeid, txnid, clerkid, sales, ...

Data Warehouse vs. Data for OLAP

- Current DW fact table is huge, with individual transactions, large number of dimensions
- Can only use a subset of this for OLAP, because of explosion of cells
- Take DW fact table, roll up to days (say), drop less important columns, get much smaller data for OLAP
- Load data into OLAP, another tool.
- Table on pg. 851 is a cube table, not a DW fact table
- Can think of OLAP as a cache of most important aggregates of DW tables
MOLAP vs ROLAP vs HOLAP

- Multidimensional data can be stored physically in a (disk-resident, persistent) array; called MOLAP systems. Alternatively, can store as a relation; called ROLAP systems.
- Hybrid of these = HOLAP, current systems
- The main relation, which relates dimensions to a measure, is called the fact table. Each dimension can have additional attributes and an associated dimension table.
 - E.g., Products(pid, pname, category, price)
 - Fact tables are much larger than dimensional tables.

Dimension Hierarchies: OLAP, DW

- For each dimension, the set of values can be organized in a hierarchy:

```
PRODUCT
  category
  pname

TIME
  year
  quarter
  month
  week
  date

LOCATION
  country
  state
  city
```

Schema underlying OLAP, used in DW

```
TIMES
  timeid
  date
  week
  month
  year
  holiday_flag

PRODUCTS
  pid
  name
  local
  sales

SALES (Fact table)
  pid
  name
  category
  price
  local
  city
  state
  country

LOCATIONS
```

OLAP (and DW) Queries

- Inflated by SQL and by spreadsheets.
- A common operation is to aggregate a measure over one or more dimensions.
 - Find total sales.
 - Find total sales for each city, or for each state.
 - Find top five products ranked by total sales.
- Roll-up: Aggregating at different levels of a dimension hierarchy.
 - E.g., Given total sales by city, we can roll-up to get sales by state.

OLAP Queries: MDX (Multidimensional Expressions)

- Originally a Microsoft SQL Server project, but now supported widely in the OLAP industry: Oracle, SAS, SAP, Teradata on server side, as well as Microsoft. Allows client programs to specify OLAP datasets.
- Example from Wikipedia

```
SELECT
  ([Measures].[Store Sales])
ON COLUMNS,
  ([Date].[2002], [Date].[2003])
ON ROWS
FROM
  Sales
WHERE
  ([Store].[USA].[CA])
```

- The SELECT clause sets the query axes as the Store Sales member of the Measures dimension, and the 2002 and 2003 members of the Date dimension.
- The FROM clause indicates that the data source is the Sales cube.
- The WHERE clause defines the "slicer axis" as the California member of the Store dimension.

OLAP Queries

- Drill-down: The inverse of roll-up: go from sum to details that were added up before.
 - E.g., Given total sales by state, can drill-down to get total sales by county.
 - Drill down again, see total sales by city
 - E.g., Can also drill-down on different dimension to get total sales by product for each state.
OLAP Queries: cross-tabs

With relational DBs, we are used to tables with column names across the top, rows of data. With OLAP, a spreadsheet-like representation is common, called a cross-tabulation:

- One dimension horizontally
- Another vertically

<table>
<thead>
<tr>
<th>Year</th>
<th>WI</th>
<th>CA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>63</td>
<td>81</td>
<td>144</td>
</tr>
<tr>
<td>1996</td>
<td>38</td>
<td>107</td>
<td>145</td>
</tr>
<tr>
<td>1997</td>
<td>75</td>
<td>35</td>
<td>110</td>
</tr>
<tr>
<td>Total</td>
<td>176</td>
<td>223</td>
<td>339</td>
</tr>
</tbody>
</table>

OLAP Queries: Pivoting

- Example cross-tabulation:
 - Switching dimensions on axes, or choosing what dimensions to show on axes
 - Switching dimensions means pivoting around a point in the upper-left-hand corner
 - End up with “1995 1996 1997 Total” across top,
 - “WI CA Total” down the side

Oracle 11 supports cross-tabs display

```sql
select * from {
    select times_purchased, state_code
    from customers t
} pivot (
    count(state_code)
for state_code in ('NY','CT','NJ','FL','MO')
) order by times_purchased
```

SQL Queries for cross-tab entries

The cross-tabulation values can be computed using a collection of SQL queries:

```sql
SELECT SUM(S.sales) FROM Sales S, Times T, Locations L
WHERE S.timeid = T.timeid AND S.timeid = L.timeid
GROUP BY T.year, L.state

SELECT SUM(S.sales) FROM Sales S, Times T
WHERE S.timeid = T.timeid
GROUP BY T.year

SELECT SUM(S.sales) FROM Sales S, Location L
WHERE S.timeid = L.timeid
GROUP BY L.state
```

The CUBE Operator

- Generalizing the previous example, if there are k dimensions, we have 2^k possible SQL GROUP BY queries that can be generated through pivoting on a subset of dimensions.

```sql
SELECT T.year, L.state, SUM(S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid = T.timeid AND S.locid = L.locid
GROUP BY CUBE(T.year, L.state)
```

Oracle 10 supports CUBE queries

```sql
select t.year, s.store_state, sum(dollar_sales)
from salesfact f, times t, store s
where f.time_key = t.time_key and s.store_key = f.store_key
group by cube(t.year, s.store_state)
```

<table>
<thead>
<tr>
<th>Year</th>
<th>Store State</th>
<th>SUM(Dollar_Sales)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>AZ</td>
<td>17903.04</td>
</tr>
<tr>
<td>1994</td>
<td>CA</td>
<td>38335.26</td>
</tr>
<tr>
<td>1994</td>
<td>CO</td>
<td>17870.33</td>
</tr>
<tr>
<td>1994</td>
<td>DC</td>
<td>20901.18</td>
</tr>
</tbody>
</table>
DW data → OLAP

- The CUBE query can do the roll-ups on DW data needed for OLAP

Excel is the champ at OLAP queries

- Next time will do Excel pivot table demo
- Based on video by Minder Chen of UCI (Cal state U/Channel Islands)
 - https://www.youtube.com/watch?v=eGhjklYyv6Y
- Setup:
 - His MS Access database with star schema for sales
 - Create view of fact joined with desired dimension data (a star join)
 - Point Excel at this big view, ask it to create pivot table
 - Pivot table: drill down, roll up, pivot, ...

Excel can use Oracle data too

- The database from Chen's demo is now in db2's Oracle
- We could point Excel to an Oracle view of joined tables.
- How does that work?
- Use ODBC (Open Database Connectivity), older than JDBC, but roughly same idea
- Provides client API for accessing multiple databases
- Each database provides a ODBC driver
- Unfortunately, it's not easy to set up ODBC on a Windows system even though Microsoft invented it
- Another way: MDX driver to allow Excel to use live Oracle OLAP data

Star queries

- Oracle definition: a query that joins a large (fact) table to a number of small (dimension) tables, with provided WHERE predicates on the dimension tables to reduce the result set to a very small percentage of the fact table
- The select list still has sum(sales), etc., as desired.
- Oracle will rewrite the query this way if you add the STAR_TRANSFORMATION hint to your SQL, or the DBA has set STAR_TRANSFORMATION_ENABLED

Excel can do Star queries

- Recall GROUP BY queries for individual crosstab entries
- A Star query is of this form, plus WHERE clause predicates on dimension tables such as
 - store.sales_district IN ('WEST', 'SOUTHWEST')
 - time.quarter IN ('3Q96', '4Q96', '1Q97')
- Excel allows "filters" on data that correspond to these predicates of the WHERE clause

Star queries

- Oracle: A better way to write the query would be:
(i.e., give the QP a hint on how to do it)

```
SELECT ... FROM sales
WHERE store_key IN
  ( SELECT store_key FROM store
  WHERE sales_district IN ('WEST', 'SOUTHWEST'))
AND time_key IN
  ( SELECT time_key FROM time
  WHERE quarter IN ('3Q96', '4Q96', '1Q97'))
AND product_key IN
  ( SELECT product_key FROM product
  WHERE department = 'GROCERY')
GROUP BY ...
```

* Oracle will rewrite the query this way if you add the STAR_TRANSFORMATION hint to your SQL, or the DBA has set STAR_TRANSFORMATION_ENABLED
Indexes related to data warehousing

- New indexing techniques: Bitmap indexes, Join indexes, array representations, compression, precomputation of aggregations, etc.

 E.g., Bitmap index:

<table>
<thead>
<tr>
<th>sex</th>
<th>custid</th>
<th>name</th>
<th>rating</th>
<th>ResultBV</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>112</td>
<td>Joe</td>
<td>M</td>
<td>00100</td>
</tr>
<tr>
<td>F</td>
<td>115</td>
<td>Joe</td>
<td>M</td>
<td>00000</td>
</tr>
<tr>
<td>F</td>
<td>119</td>
<td>Sue</td>
<td>M</td>
<td>00000</td>
</tr>
<tr>
<td>M</td>
<td>112</td>
<td>Sue</td>
<td>M</td>
<td>00000</td>
</tr>
</tbody>
</table>

 Many queries can be answered using bit-vector ops!

Bitmap Indexes

- A bitmap index uses one bit vector (BV) for each distinct keyval
- The number of bits = #rows
- Example of last slide, 4 rows, 2 columns with bitmap indexes
 - Sex = ‘M’, BV = 1101
 - Sex = ‘F’, BV = 0010
 - Rating = 3, BV = 1000
 - Rating = 4, BV = 0001
 - Rating = 5, BV = 0110

 Bitmap index for sex column
 Bitmap index for rating column

- Underlying idea: it’s not hard to convert between a table’s row numbers and the row RIDs
- RIDs have file#, page#, row# within page, where file# is fixed for one heap table, and page# ranges from 0 up to some limit.
- For the kind of read-mostly data that bitmap indexes are used, the pages are full, so the RIDs (page#, row# in a certain file) look like (0,0), (0,1), (0,2), (1,0), (1,1), ... easily converted to row indexes 0, 1, 2, 3, 4, 5, ... and back again

Bitmap Indexes

- Implementation: B+-tree of key values, bitmap for each key
- Size = #values*#rows/8 if not compressed
- Bitmaps can be compressed, done by Oracle and others
- Main restriction: slow row insert/delete, so NG for OLTP
 - But great for data warehouses:
 - Data warehouses are updated only periodically, traditionally
 - Low cardinality (#values in column) a clear fit
 - Example: rating, with 10 values
 - But in fact, cardinality can be fairly high with compression
 - Oracle example: bitmap index on unique column!

Oracle Bitmap index plan

- EXPLAIN PLAN FOR SELECT * FROM t WHERE c1 = 2 AND c2 <> 6 OR c3 BETWEEN 10 AND 20;
- EXPLAIN PLAN FOR SELECT * FROM t WHERE c1 = 2 AND c2 <> 6 OR c3 BETWEEN 10 AND 20;

 - SELECT STATEMENT
 - TABLE ACCESS T BY INDEX ROWID
 - BITMAP CONVERSION TO ROWID -- get ROWIDs for each on-bit
 - BITMAP OR -- top level OR
 - BITMAP MINUS -- to remove null values of c2
 - BITMAP INDEX C1_IND SINGLE VALUE -- c1 = 2
 - BITMAP INDEX C2_IND SINGLE VALUE -- c2 = 6
 - BITMAP INDEX C3_IND RANGE SCAN

Bitmap Indexes

- Oracle: create bitmap index sexx on custs(sex);
- Bitmap indexes can be used with AND and OR predicates
- Example
 Select name from sailors s
 where s.rating = 10 and sex = 'M' or sex = 'F'

 BV1 BV2 BV3
 ResultBV = BV1 & BV2 | BV3

 Each bit on in ResultBV shows a row that satisfies the predicate
 Loop through on-bits, finding rows and output name

Bitmaps for star schemas, to be continued

- The dimension tables are not large, maybe 100 rows
- Thus the FK columns in the fact table have only 100 values
- Bitmap indexes can pinpoint rows once determined.
- Bitmaps can be AND’d and OR’d
- Example: time.fiscal_period IN ('3Q95', '4Q95') matches say 180 days in time table, so 180 FK values in fact’s time_key column
 OR together the 180 bitmaps, get a bitmap locating all fact rows that satisfy this predicate