
Data Warehousing and

Decision Support, part 3

CS634
Class 22

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke, Chapter 25

2

Views and Materialized Views

Views: review of pp. 86-91

View - rows are not explicitly stored, but computed as

needed from view definition

Base table - explicitly stored

3

CREATE VIEW

Given tables for these relations:
Students (ID, name, major)
Enrolled (ID, CourseID, grade)

Can create view:
CREATE VIEW B_Students (name, ID, CourseID) AS

SELECT S.name, S.ID, E.CourseID
FROM Students S, Enrolled E
WHERE S.ID = E.ID AND E.grade = ‘B’;

Now can use B_Students just as if it were a table, for queries

Could be used to shield D_students from view

Can grant select on view, but not on enrolled

4

Updatable Views

SQL-92: Must be defined on a single table using only
selection and projection and not using DISTINCT.

SQL:1999: May involve multiple tables in SQL:1999 if each
view field is from exactly one underlying base table and that
table’s PK is included in view; not restricted to selection
and project, but cannot insert into views that use union,
intersection, or set difference.

So B_Students is updatable by SQL99, and by Oracle 10.

Willie Albino May 15, 20035

What is a Materialized View?

 A database object that stores the results of a query

 Features/Capabilities

 Can be partitioned and indexed

 Can be queried directly

 Can have DML applied against it

 Several refresh options are available (in Oracle)

 Fits best in read-intensive environments

Willie Albino May 15, 20036

Advantages and Disadvantages

 Advantages

 Useful for summarizing, pre-computing, replicating and distributing data

 Faster access for expensive and complex joins

 Transparent to end-users

 MVs can be added/dropped without invalidating coded SQL (like indexes)

 This assumes end users are coding SQL using base tables, not MVs themselves

 Disadvantages

 Performance costs of maintaining the views

 Storage costs of maintaining the views

Similar to Indexes

 Designed to increase query Execution Performance.

 Transparent to SQL Applications allowing DBA’s to create
and drop Materialized Views without affecting the validity
of Applications.

 Consume Storage Space.

 Can be Partitioned.

 Not covered by SQL standards

 But can be queried like tables

MV Support in DBs: from Wikipedia

 Materialized views were implemented first by the Oracle ,

and Oracle has the most features

 In IBM DB2, they are called "materialized query tables";

 Microsoft SQL Server has a similar feature called

"indexed views".

 MySQL doesn't support materialized views natively, but

workarounds can be implemented by using triggers or

stored procedures or by using the open-source

application Flexviews.

Views vs Materialized Views (Oracle),

from http://www.sqlsnippets.com/en/topic-12874.html

Table View Materialized View

select * from T ;

KEY VAL

---- -----

1 a

2 b

3 c

4

create view v as select

* from t ;

select * from V ;

KEY VAL

----- -----

1 a

2 b

3 c

4

create materialized

view mv as select *

from t ;

select * from MV ;

KEY VAL

---- -----

1 a

2 b

3 c

4

The ROWIDs tell the story…

 The view is using the table’s rows but the MV has its own

rows

Update to T is not propagated immediately

to simple MV

Table View Materialized

View

update t set val = upper(val);

select * from T ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

select * from V ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

select * from MV ;

KEY VAL

---------- -----

1 a

2 b

3 c

4

MV “refresh“ command

Table View Materialized

View

execute dbms_mview.refresh('MV');

select * from T ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

select * from V ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

select * from MV ;

KEY VAL

---------- -----

1 A

2 B

3 C

4

http://en.wikipedia.org/wiki/Oracle_Database
http://en.wikipedia.org/w/index.php?title=Flexviews&action=edit&redlink=1
http://www.sqlsnippets.com/en/topic-12874.html

Materialized View Logs for fast refresh

 There is a way to refresh only the changed rows in a

materialized view's base table, called fast refreshing.

 For this, need a materialized view log (MLOG$_T here)

on the base table t:
create materialized view log on t ;

UPDATE t set val = upper(val) where KEY = 1 ;

INSERT into t (KEY, val) values (5, 'e');

select key, dmltype$$ from MLOG$_T ;

KEY DMLTYPE$$

---------- ----------

1 U

5 I

REFRESH FAST

create materialized view mv REFRESH FAST as select * from t ;

select key, val, rowid from mv ;

KEY VAL ROWID

---------- ----- ------------------

1 a AAAWm+AAEAAAAaMAAA

2 b AAAWm+AAEAAAAaMAAB

3 c AAAWm+AAEAAAAaMAAC

4 AAAWm+AAEAAAAaMAAD

execute dbms_mview.refresh(list => 'MV', method => 'F'); --F for fast

select key, val, rowid from mv ;

--see same ROWIDs as above: nothing needed to be changed

Now let's update a row in the base table.

update t set val = 'XX' where key = 3 ;

commit;

execute dbms_mview.refresh(list => 'MV', method => 'F');

select key, val, rowid from mv;

KEY VAL ROWID

---------- ----- ------------------

1 a AAAWm+AAEAAAAaMAAA

2 b AAAWm+AAEAAAAaMAAB

3 XX AAAWm+AAEAAAAaMAAC –See update, same old ROWID

4 AAAWm+AAEAAAAaMAAD

So the MV row was updated based on the log entry

Adding Your Own Indexes

create materialized view mv

refresh fast on commit as

select t_key, COUNT(*) ROW_COUNT from t2 group by t_key ;

create index MY_INDEX on mv (T_KEY) ;

select index_name , i.uniqueness , ic.column_name

from user_indexes i inner join user_ind_columns ic using (index_name)

where i.table_name = 'MV' ;

INDEX_NAME UNIQUENES COLUMN_NAME

--------------- --------- ---------------

I_SNAP$_MV UNIQUE SYS_NC00003$ --Sys-generated

MY_INDEX NONUNIQUE T_KEY

Prove that MY_INDEX is in use

using SQL*Plus's Autotrace feature

set autotrace on explain set linesize 95

select * from mv where t_key = 2 ;

T_KEY ROW_COUNT

---------- ----------

2 2

Execution Plan

--

Plan hash value: 2793437614

--

|Id| Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

|0| SELECT STATEMENT | | 1 | 26 | 2 (0)| 00:00:01 |

|1| MAT_VIEW ACCESS BY INDEX ROWID| MV | 1 | 26 | 2 (0)| 00:00:01 |

|*2| INDEX RANGE SCAN | MY_INDEX | 1 | | 1 (0)| 00:00:01 |

--

MV on Join query

create materialized view log on t with rowid, sequence ;

create materialized view log on t2 with rowid, sequence

create materialized view mv

refresh fast on commit enable query rewrite

as select t.key t_key , t.val t_val , t2.key t2_key ,

t2.amt t2_amt , t.rowid t_row_id , t2.rowid t2_row_id

from t, t2

where t.key = t2.t_key ;

create index mv_i1 on mv (t_row_id) ;

create index mv_i2 on mv (t2_row_id) ;

MV with aggregation

create materialized view log on t2 with rowid, sequence (t_key, amt)

including new values ;

create materialized view mv

refresh fast on commit enable query rewrite

as select t_key , sum(amt) as amt_sum , count(*) as row_count ,

count(amt) as amt_count

from t2 group by t_key ;

create index mv_i1 on mv (t_key) ;

MV with join and aggregation

from Oracle DW docs

CREATE MATERIALIZED VIEW LOG ON products WITH SEQUENCE,

ROWID (prod_id, prod_name,…) INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON sales WITH SEQUENCE, ROWID

(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold,

amount_sold) INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW product_sales_mv BUILD IMMEDIATE

REFRESH FAST ENABLE QUERY REWRITE

AS SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales, COUNT(*)

AS cnt, COUNT(s.amount_sold) AS cnt_amt

FROM sales s, products p WHERE s.prod_id = p.prod_id

GROUP BY p.prod_name;

DW Partitioning, Oracle case

 Clearly a win to partition fact table, big MVs by time

intervals for roll-out, clustering effect

 Can sub-partition fact table by a dimension attribute, but

need to modify queries to get QP to optimize

 Ex: partition by date intervals, product category

 Query: select p.subcategory, … from F where … (no

mention of p.category)

 Modified query: select p.subcategory … where … AND

category=‘Soft Drinks’ --now QP uses partition pruning

 Data warehouse MVs are usually rolled-up, much smaller,

don’t need effective partitioning so much

Summary

 Put raw data in one fact table, partitioned for roll-out

 Create MVs with various roll-ups, for queries, also

partitioned by time

 Add indexes to MVs

 Note MVs are much smaller than raw fact tables

 Every day (say) add data to raw fact table, refresh MVs

Oracle OLAP Cube

 Another way to hold data, optimized for cube queries

 Related to master tables: fact tables, dimensions

 Excel can get data with MDX

 Not itself a MV, but can be used like one

 i.e. SQL queries can be automatically rewritten to use the

OLAP cube, run faster

 Other OLAP servers exist too

Working cheaply: what about mysql?

 If your data can be fit into memory, you don’t need fancy software… so buy

a terabyte of memory…no longer a crazy idea.

 Example: Dell’s PowerEdge R940 can take up to 6TB memory, 4 CPU

sockets for Xeon processors with up to 28 cores/CPU. Up to 122TB disk.

Basic system (2 processors, 8GB memory) $5800.

 Configured one with 4 processors, 1TB of memory: $39, 748

 Have warehouse data in mysql on disk, comes into memory as accessed.

 Mysql has no MV’s, but can compute a joined table periodically as needed

for Excel

 Use Excel for UI

http://docs.oracle.com/cd/B28359_01/server.111/b28313/basicmv.htm
http://www.dell.com/en-us/work/shop/cty/pdp/spd/poweredge-r940/pe_r940_12229

