Music Project Ul and
domain classes/object

The Music project

Last time, defining domain data, designing the service API to allow a stateless service layer by
making each service method "self-contained".

"self-contained" method: all the domain data needed for the method's code is provided in the
method's arguments. Nothing is built incrementally in the service layer.

So we expect this in musicl’s service API, which you will specify as part of the project.
The domain classes are given in musicl-setup, and some of the needed DAOs.

Idea of app: selling CDs for a band. CD=Product

Sound files: each album has a web page

There is one sound.html file for each CD. Example:

htty 'www.cs.umb.edu/cs636/music:

etup/sound/pf01/sound.html

Note that the sound.html files list more tracks than we have in the database, but we have the
ones with mp3s. See Murach, pg. 657 to see his directory structure: we're taking his sound
directory...

From Murach's distribution: one directory for each CD, using the filesystem for decent
organization of data.

Note that this is all read-only data, so doesn’t need to be in the database as much as changeable
data does.

In musicl, not easy to actually play these from Java (need special library), so just print out the
filename as "playing".

2/24/2021

Last time: Music DB
E-R diagram in crow’s foot notation

e et

rocsiejd P

procuct_is FK.

* This diagram shows the FKs determining how the tables are related.

« It shows a "crows foot" at the “many” end of the one-to-many relationship, where we would
put a star in the UML-style diagram. This is another common notation.

Directory/Package Structure: parallel to
pizzal

[The database createdb.sal, etc. |

[The sound fites, .mp3's |

s Source packages as in pizzal, plus

f—donain subpackage of service for transfer
s b

service objects

e

| A few DAO Junits tests |

Musicl service API

PAL: you need to design the service API. The presentation code is sketched out, but not how it calls down. This is
a crucial part of database app design. Each call should be “self-contained” in the sense we discussed last time.
You can use the service AP for pizza as a model. HW3 has some practice on API design.

Note that Murach talks about the layers (see pg. 17), but in fact does not supply a service AP, 5o you need to
design one yourself.

Lack of service API in Murach: Look at Murach, pg. 654 in CatalogController, presentation code. This project is
now available to you in ../murachMusicStore from your cs636 directory. From outside, you could use the full
filespec of the zip file:

zip to genhe project.
Murach's CatalogController s ntroller;

in that project. Here the email of a

userts found in a ookl then et ot Ok DA Cmpremaniad by s St rather than s
singletor

, user = UserDB.selectl i /fcall from code directly into UserDB, a static
class

We want to have presentation code call a service AP, and let the service method call the DAO.

https://www.cs.umb.edu/cs636/music1-setup/sound/pf01/sound.html

2/24/2021

Musicl domain and transfer objects Musicl domain and transfer objects

Recall PizzaOrder vs. PizzaOrderData « Invoice for inside service APl (where this object is mutable: we mark an invoice as "processed"),
InvoiceData for returning to presentation: this is much simpler than Invoice with referenced

in music: User and Lineltems.
User for core code, UserData for transfer to presentation. * Download vs. DownloadData: also simpler.
In this case, User.java has many more fields than UserData. User.java is really meant to have all * Product, Track: invariant, "reference data", use for both inside and outside. This app does not
the fields shown on pg. 663, but we've simplified it down to the basics. support adding or changing a Product or a Track.

y . . " « Of course in reality we could bring the app down, add a Product to the database, and bring it up
Clearly fields like creditCardNumber should be kept as secret as possible. again. But during operation, the set of Products and the Product details remain fixed. So it's OK
Although User is immutable in pad, it has the potential to be mutable as a user address is added to let these objects flow into the presentation layer—note there is no Product-related transfer
toa record of an already-registered user, so we will treat it as mutable. object defined.

* Note that Product and Track have getters but no setters for their properties, as consistent with
their invariant status. So objects returned to presentation are protected against modification.

‘' 3]

User Interface Ul in supplied UserApp.java

* musicl = client-server implementation, like pizzal, so boring line-oriented UI. + Note that in general, it is difficult to convert a web Ul into a line-oriented Ul because a web Ul
has an arbitrary graph connecting different executable units, whereas a normal program has a
tree of calls of different executable units.

* But aimed at web site, with proper web pages, as shown in Murach. Let’s look at them. See
Music Project Ul and Page Flow (for user pages)

. + On the other hand, a tree-like web site is user-friendly, so many websites are basically treelike.
*Look at a page in the Page Flow: Catalog page for example

* The Music Ul is organized in a tree-like way: Look at the page flow for music and see the tree.
From pal.html:
The Catalog page, also shown on pg. 645, displays the catalog, i.e., the list of CDs. The user can + UserApp: supplied code, you just add calls to your service layer.

choose a particular CD (for example product code 8601) and get more info on it, or display the

* Note that it combines the Product and Sound pages into one method processProduct.
current cart (Cart page, see below) or go back to the Home page.

+ This makes sense when you note that both these pages need to allow the user to add to cart and display
« This means the user is given choices of what to do next: get more info on one CD (chosen), see cart and get back to Catalog. i

the current Cart, or go back to the beginning state. We can do this in simple line-oriented U, as * You should not have to change the control structure of the supplied UserApp.java.

done in the provided skeleton UserApp.java.

' U]

What about the Cart for music? . .
It's domain data not held in the database... Carts in action

* First note that a Cart is specific to a user, i.e., user-private data, not shared data among users.

The service layer can still act on Carts: we just have a method with a Cart argument.
*+ Following Murach, we're not saving carts to the database. We want to put all the important code for the app in the service layer, not hidden in the
 They just g away when the user buys some CDs or abandons the process. presentation layer, because different Uls could talk to the user, but they all should work with

Carts the same way.
* The resulting Invoice object from the purchase is of course put in the DB, along with its Lineltems.

Note we want to do the needed “new Cart()” in the service layer, since that action is needed

* But carts are domain data. They could be saved to the DB, and many actual sites do this, for logged-in whatever the Ul is, by the Thin Presentation Layer rule.

users (we need the userid of the login to be a key in the database). » by y -

* In our case, the Cart, private to the current user, needs to be saved in the presentation layer Yet we need to hold the resulting Cart object in a field in the presentation code.
« That is, there is a field holding a Cart object in the presentation layer class but no such field in the No problem: Cart createCart() in the service API, result saved in presentation. In UserApp, we
service layer class (that would be state in the service layer, against the Stateless Service Layer would have cart = xxService.createCart() (or whatever you want to call it)

principle)

. § Similarly, code to add an item to a Cart should be in the service layer.

« See UserApp.java for field cart (commented out for now.)

file:///F:/cs/cs636/MusicProjectUI.html

Cart details

* Carts need to record user selections: 2 copies of CD pf02 for example and 1 copy of jr0.

* So need a set of Cartltems, where Cartltem has product info and quantity.
* Note that the Cart is examined in the presentation layer and printed out to the user.

« Various possibilities exist here: see current setup uses product code and quantity, but it would
be possible to use a Product object given that it is immutable now.

* Note that the product code is a “natural key”, a unique id for the product with a meaningful
name. It would be possible to use the PK integer id, but it is less meaningful.

« If the presentation layer wants more details about the product, they should be able to call a
service layer method to get them, using an argument of the key.

Relationships among the domain objects
for Music

Last time we looked at relationships among the domain objects for Music, and found mostly
unidirectional relationships (in terms of inter-object refs), many of which follow a FK in the DB.

The exception was a bidirectional relationship between Product and Track.

We found state held inthe presentation layer across multile calls to the service API: Cart, User
Product objects. Cart cart and UserData user are fields of UserApp, Product is a local variable of
processProduct that holds state across multiple calls to the service AP/, so is “longer term” state in the
system. Note that these are all user-private variables, as are all variables defined in the presentation
Two kinds of domain objects

 Persistent domain objects, whose data is tied to database data. For example a Product object is tied
toa certain row of the products table.

- Memory-only domain objects, so non-persistent, like Cart. There is no cart table in the database (but
there could be). If a user abandons a cart, it is eventually garbage-collected and forgotten by the

Summary on domain objects

- Domain objects are normally not long-lived : they carry fresh data from DB, whenever service layer
needs data. Most of them live only for one service call.

+ Exception: Product object in UserApp, representing user choice, but note that Product objects are
invariant. OK for presentation layer to hold (invariant) domain data for a user.

+ Domain objects can be mutable, like PizzaOrder, orimmutable/invariant, like PizzaTopping. It
depends on what the app is designed to do.

* Invariant domain objects are OK to return to presentation code as is.

* When the app wants to return the data of a mutable object to the presentation layer, it's best
practice for it to create another “transfer” object, e.g., PizzaOrderData for PizzaOrder. PizzaOrderData
has all the data of PizzaOrder, but no methods to change the data. Some transfer objects have only a
subset of the data.

* Domain objects are POJOs, informal “Java Beans”, with “properties”, available via getters and possibly
setters. Reference:Java tutorial at http://docs.oracle.com/javase/tutorial/javabeans

2/24/2021

Presentation variables in Music holding
domain data across calls to the service layer

- Currently commented out in UserApp.java: fields holding domain data, all specific to the current
user. You will need to uncomment these when filling out UserApp.java.

private UserData user; // once registered, non-null

private Cart cart; // the CDs selected so far by the user (registered or not),
// but not yet bought

* We see that the Cart object belongs to the presentation layer, but the action of creating a Cart
should be done by the service layer, in a “Cart createCart(...” call. We want the service layer to do all
the important actions of an app.

« Also, inside processProduct, local variable product holds the current Product being examined by the
user, across calls to the service layer.

- So the Product object saved in presentation layer does live a while. It represents a specific user’s
choice, ie., user-private data. We could switch it to key value instead, especially recommended if we
change Product to be mutable.

Summary on domain objects

* They hold “domain data”, though not the only way domain data can be held (ex: int currentDay
in Pizza)

+ Domain objects move across the layers, carrying domain data where it’s needed.

+ As domain data, they are not stored (held in fields) in the service layer (or DAO) from one
service call to another (“stateless service layer”)

+ Domain objects (persistent ones) hold data from DB as “scratch copy”, or data bound for DB.

* Domain objects can hold domain data not from the DB, or only partially from the DB. The other
data source is the user.

DAO design:
problem of inter-related objects

- How much should we fill in of the objects hanging off the one we're focused on?

« Recall all the things that can hang off an Invoice object: User, several Lineltems, each Lineltem refs a
Product. Each Product refs allits Tracks

- Example: need to return a PizzaOrder from DAO, should it have all its Toppings hanging off of it?

“ We do have the option of leaving the ref to the Set<Topping> null, saying no details are available
* This should be made clear in the header comment of the DAO method.
See 2 finders for PizzaOrders
Set<PizzaOrder> find OrdersByRoom(...) ~ full details: Toppings, PizzaSize
Set<PizzaOrder> find OrdersByDays(...) — no details! P.O. object has null size ref, null
Set<Toppings>
(only used by code that doesn't need details)

You might say “what a kludge!”

* Clearly this lack of clarity on what exactly to return from the DAO muddles the separation of the
layers’ responsibilities.

+ Wouldn't it be nice to not have to decide between full information (with all that database
access, slowing things down), and fast access of basic info?

* That’s part of what object-relational mapping offers. You only retrieve the PizzaOrder info and
that PizzaOrder object is returned by the DAO.

+ But that PizzaOrder object cleverly detects accesses to its ref to Toppings (while within the
service layer) and fills them in then, only when needed. “lazy loading”

+ The domain objects seem to be the same old POJOs, but in fact they are “managed” by the
runtime system of the object-relational system.

* This is possible by code-rewriting of the getters of the POJO by “bytecode enhancement”.

Checking out the domain relationships

Working on object graph:
Download > Track = Product
> User
Track.java:
public class Track {
private long id;
private Product product; € ref to Product
private int trackNumber;
private String title;
private String sampleFilename;

Product is just being ref'd, doesn't have any relevant refs for this. Similarly User.

Null refs to indicate missing data

* Earlier we saw how pizzal’s DAO in some cases returns incomplete object
graphs, e.g. PizzaOrders without PizzaToppings, to avoid some processing costs.

« Similarly you can return Invoice objects with null refs to Lineltems if that
suffices for some action needed by the service layer, or Lineltems with null refs
to Product.

+ Note that if we had bidirectional relationships everywhere, we would have even
more objects ref’d from each object, and it would be hard to know where to
draw the line and null-out further refs.

* So that’s an additional “cost” to additional relationships in the domain classes:
needing to decide where to cut them off.

Music project object graphs

Last time we worked on this--

A Download object has a User object and a Track object (providing the song info), and that points to a Product

Download

> Track = Product
> User

Put ovals around these class names to make a better picture.

Let's Check the source files to see these refs set up:

Download.java:
public class Download implements S
private

static final long serialVers

long id;
User user; €
Track track;

alizable {
onuID = 1L;

ref to User (later see getUser())

€ ref to Track (later see getTrack())

2/24/2021

Invoice object graph

Invoice -> User

-> SetLineltem> > Lineltem -> Product -> Set<Track> -> Track

->Track

> Lineltem -> Product -> Set<Track> -> Track

->Track

Note that the Set is represented by the HashSet or TreeSet object in the actual object graph
Part of Invoice.java:

private
private
private
private
private

User user; € ref to User

Date invoiceDate; <€Date is an object, but not a domain object
BigDecimal totalAmount;

boolean isProcessed;

Set<LineItem> lineltems; € Set of LineItems

Building new domain objects

Look at Download: We don’t see new User() or new Track()

~Instead, see setters for User and Track: DI for Download creation

Look at Invoice: We don’t see new HashSet() or new TreeSet(), or new User()
Accept User object

~Instead see constructor:
public Invoice(long id, User u, Date d, boolean isProc,
Set<LineTtem> items, BigDecimal totAmount) {

invoiceld
user = uj

invoiceDate
isProcessed
lineltems =
totalAmount

i
i

d;

da;
isProc;
tems;
totAmount;

)
There are setters as well. Again see proper DI (dependency injection)

Check for news in domain Do we need to destroy domain objects?

2/24/2021

F:\cs\cs636\musicl-setup\src\main\java\cs636\music\domain>grep new *.java * No, they don’t have any refs to long-lived objects like Connection or file handles.
Cart.java: * Construct a new Cart to hold items . . §
Cart.java: items = new HashSet<CartItem>(); * We just let Java garbage-collect them, typically at the end of a service call.
Cart.java: items = new HashSet<CartItem>(); Typical lifetime of a domain object (mutable ones anyway):

Download.java: downloadDate = new Date();

LineItem.java: BigDecimal total = product.getPrice().multiply (new 1. Creation in DAO in a DAO finder, representing a scratch copy of database data

BigD:s i 1(quantity)); . . : N :
ropesinat fanantty 2. Use in service layer to do the current action, i.e., service call
« Only see one creation of a domain object: Cartltem 3.
+ Could be refactored. o
+ Could argue that it's a completely private detail of Cart, not a dependency that ever would be needed to r
unit-test Cart. 1

Loss of inbound refs at end of service call leads to garbage-collection

Creation in service layer, argued to DAO create-call or update call or delete call

2. Later return to service layer, lose inbound refs at end of service call, get GC'd.

