3/3/2021

Packages

We have seen how packages allow us to organize code to make the software architecture clear:

+ one package for each layer: presentation, service, dao
* one package for domain classes
. * one package for building the system at startup: config
Transactions We sl e 0 know ho pckages actaly workas prt of s
Look at Java tutorial track on packages.

At first, packages appear to be hierarchical, but they are not. In musicl, we have
cs.music.service and cs.music.service.data, but they are independent packages.

Packages, continued Transactions

Definition: A package is a grouping of related types providing access protection and name space Currently we are using auto-commit, the JDBC default.
management. Note that types refers to classes, interfaces, enumerations, and annotation types.

Auto-commit means Commit each statement.

Name space cs636.pizza.service.l ice.java provides a unique name for The database itself needs real commits, so JDBC sends commit commands for us in auto-
UserService, avoiding conflicts if we bring in other code with its own UserService.java commi
Access protection: package protection, specified by lack of other keyword This works fine for single-user work, but concurrent user sessions can get into trouble because

of interleaved actions that should have been separated.
blic class F . class Foo: class Foo i ks ivate tii i ject: . . "
public class Foo vs. class Foo: class Foo is package private (notin use in our projects) If we need to bundle statements together for a certain action, we need to turn off auto-commit

This is our only package-private method: in DbDAO, provides Connection object to other DAOs and start using conn.commit() and conn.rollback().
// package protection: no need to call this fr

service layer conn.setAutoCommit (false);

Then we can design multi-statement transactions. For example, taking money out from one
account and putting it in another.

' ‘]

What can go wrong? What could go wrong, continued

Standard ex: lost update: 2 concurrent processes both adding to an account, only one increment

o] 8
shows (R = read, W=write) ur way
User A User B Read pizza_sys_tab, see next topping id Read pizza_sys_tab, see same next topping id
Rold amt Update row to set id = id+1 Update row to set id = id+1
Add deltal Rold amt Here the updates execute atomically, so the id advances by 2, but the insert fails on PK violation.
W new amt Add delta2 If we put this into a (ACID) transaction, the reads can proceed together, but the fact that a read
W new amt — overwrites other’s update has occurred will make the writes wait, causing a deadlock, and one will be aborted. It can be
Another Ex: Suppose in pizza we had code for new PizzaTopping id: find max(id) in toppings, use ic+1 retried and should succeed.
ininsert
DB transactions were invented to solve these problems. They bind together several actions into
2 admins adding a Topping can get same new id causing failure of one (PK violation) one.
Rold ids Rold ids
Add one add one end up with same id, one insert fails with PK violation

;.]

https://docs.oracle.com/javase/tutorial/java/package/packages.html

ACID properties

Transactions, the deal:

= We programmers specify actions for the transaction by putting commits & rollback at right
place

= The DB will execute these tx’s as if they were executed one-by-one (serially)
Serializable transactions = textbook tx’s

Famous ACID properties:

Atomic — happen in whole or not at all (undo wipes out uncommitted changes)
Consistent — (if each tx code maintains a constraint, so will concurrent tx’s)
Isolation — each tx runs as if only one on system

Durable — once committed, data is held across system crash, disk crash

Serializable vs. Read Committed

DB in effect freezes (until commi k) all data accessed (R or W) by a transaction.
This prevents other Tx’s from changing it. The tx can reread data and see the same values.

Read committed: DB freezes data changed by this Tx, but not data merely read by this Tx. Data can be
read by this transaction, then changed by another tx, thus changing the universe this tx runs in.

Note “freezes” is not a standard term, but | think it captures what's happening.

Let's look at the problems discussed above...

RC allows lost update unless special coding is used — “select for update” — reads with write locking
Orfor SQL update bal = bal + delta in a single update statement

~this is guarded by locks on the updated record, so other tx’s can't intervene

RC uses much less locking, runs faster, but can have real problems for apps with needs for
coordinated changes of multiple entities in the DB.

Transactions in our layered System

Our setup has layers. The execution goes like this:

Presentation = Ul calls service API, calls DAO,
returns to Service, [calls DAO, returns),
returns to Presentation (more Ul here)
So if the service layer method contains the Tx, we will be following the DB App Rule

(Note: if the DAO call contained the Tx, that would also satisfy the Rule, but would be overly
restrictive. The service call may want to do two DAO calls in one Tx.)

The service layer is in charge, so it defines what actions are bundled together into Tx's

Conclusion: put commit/rollback in service layer

3/3/2021

Isolation levels

In real life, “isolation levels” defined by SQL standard are in common use.

There are 4 isolation levels, 2 of which are common:
= Read commited (RC) — default level of most DB’s*, commonly used
= Serializable - full ACID properties

Both are atomic and durable

The difference is in “isolation”.

+ At RC, one tx’s available data can be affected by another concurrent tx: they are imperfectly
isolated from one another.
* Atxonly sees committed data, so not total junk, but it could be very newly committed, since this tx
tarted.

*mysal defaults to Repeatable Read, the next isolation level up

Transactions and Ul

Tx’s use locks, which hold off other Tx’s progress, so Tx's need to run quickly, say <= 50 ms <
human response time

DB App Rule: no Ul during a Tx. (in production)
Tx’s should be short, say less than 50 ms (milliseconds, 1/1000’s of seconds)
Transactions over time: Ul takes much more time than properly short Tx's, looks like this:
Timeline for one user: mostly think time

-1

We see that sometimes the short T's overlap in time (for different users), though not very commonly at
low load. We say they are concurrent. That's when data problems can occur at read-committed isolation,
and deadlocks can happen in Serializable.

Put commit/rollback in service layer

Sounds funny - we are putting all the SQL into the DAO and commit is a DB actio

But start & end Tx are more abstract than “select pid from T” in DAO

Conclysion: start and end T, in each single service layer call. This s what we'll o in izza2 and (eventually)
music3.

Pizza2: client-server but with transactions and object-relational (JPA) support.
Pizza: has several DB-changing service API calls: here are some

makeOrder

addTopping, etc.

markNextOrderReady

receiveOrders

These allwill b turned nto transactions inpizza2 (JPA client-server) and pizza3 (web app). Read-only actions
also.

3/3/2021

Summary on Transactions Transactions and JDBC

* Need for transactions to prevent problems in shared data. Messy Exceptions, messy transactions
- DB is the expert on guarding shared data Reference: Oracle JDBC tutorial, see its section on “Using Transactions”
+ DB uses locking, causing waits (aborts sometimes) IDBC default is “auto-commit”, commit on each statement

JDBC is still in use when we start using JPA: JPA uses it
- Multiple ion can read data si but only one write at a time is allowed €

o // Connection class has transaction methods. We take over on Tx's by turning off auto-commit:
* In an ACID transaction (i.e. using serializable), the DB data appears frozen (unchanged by other)
transactions), other transactions are waiting to access the data your transaction is using. conn.setAutoCommit(false)
« Even a read-only transactions have this effect of freezing data, at serializable isolation level Now no commits until we call commit

We can also request serializable Tx's: we override the default isolation level (almost certainly
READ_COMMITTED, unless using mysal)

+ DB App Rule: No Ul inside a Tx conn.setTransactionlsolation(Connection.TRANSACTION_SERIALIZABLE)

+ CS634 covers this in detail

JDBC Transactions Coding transactions using JDBC

db actions for Tx, in JDBC: The general setup: no start-tx, so just

conn.commit(); // or conn.rollback() * Do DB actions

conn.setAutoCommit(true); // We won't do this, but other apps could *+ Commit or Rollback

Note no startTransaction here. In JDBC, as in embedded SQL in C, a transaction starts at the first Note we can rollback based on data we see, not just DB problems. For example, we figure out

use of database data. the user is not authorized to do something.

- . p - . . The Tricky Part with JDBC: Cleanly aborting a transaction
(In pizza2, we are using JPA over JDBC, so we use its EntityTransaction objects. For an

EntityTransaction tx, tx.begin(), tx.commit(), tx.rollback().) Some DB problem --> SQL exception
In pizza3, we'll be back to using JDBC directly, with transactions, so we will be using Ex. Insert fails. The DB changes we’ve made are now in an indeterminate state, and still locked
conn.commit(), etc. up to avoid affecting other transactions (other than slowing them down).

So we have to do a rollback to get to a determined DB state for our data.

Handling DB errors in JDBC Rollback after Exception code

Ex. Insert fails. The DB changes we've made are now in an indeterminate state, and still locked Rollbacks are handled with rollbackAfterExcepti does the "extra" try-
up to avoid affecting other transactions (other than slowing them down). catch needed to handle possible throws by rollback:
S0 we have to do a rollback to get to a determined DB state for our data. // The caller should issue its oun exception based on the

o X // original exception (or do retry)
Further complication: JDBC rollback() can throw SQLException i siatie oid reiibscnes

eption (Connection conn) (

Suppose something (like an insert) has thrown a SQLException el. We try a rollback and it try {

throws SQLException e2. conn.rollback();

What to do with €2??? It’s usually a lost connection. So we’ll discard e2 and preserve el, } catch (Exception e) (

hopefully a more useful indication of the real problem. // discard secondary exception--probably server can't be reached
) -

A rare case of justifiable exception-squelching. (If we had a log, we could print its message)

there.)

A similar method is used in pizza2 and pizza3, in their DAOS.

https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html

Transfer.java in the jdbc directory

We looked at Transfer.java, available in $cs636/jdbc along with JdbcCheckup.java.

This program turns off auto-commit, sets serializable isolation, and handles transfers between
accounts.

Note that the method doCustomerTransfers has presentation code.

The method doTransfer works like a service-layer method, defining when transactions begin and
end.

doTransfer calls transfer to do the actual database actions (other than commit and rollback), so
transfer is like a DAO method.

Notes on Simplified Code

* In this simplified code the customer transfers would be cut short and fail by a deadlock or
serialization abort.

* Note that these aborts are usually caused by transient conditions, so a retry can be successful
and cause no problem to the presentation environment.

* Also note that money is represented by double here, not a good practice. Should use
BigDecimal as we do in music's Product.

DAO SQLException = ServiceException

Here Connection should be a local variable, since we don’t want state in the fields of the Service
layer. Let’s defer the details of getting this to have a good value. Clearly the DAO is involved.

The “cause”

End up with a Service Exception e, with saved cause el, sent up to the presentation layer code.

We see the pattern there: catch Exception el, throw ServiceException e

Here, as in pizzal, e is created by new ServiceException(* useful message’, e1]

This means we can get el from e by el = e.getCause();

Note that getCause() is a method of Exception, so this is a general mechanism to retrieve the
exception provided in the constructor of this Exception.

We can use this in debugging: it's important to know the real reason something failed.

See method exc

e)in Pi onfig

3/3/2021

Simplified code

If retries are not wanted, doTransfer can be simplified to just:

omAccount

public static void doTransfer (Connection conn, String
String toAccount, double dollars) throws SQLException (
try
transfer (conn, fromAccount, tohccount, dollars);
conn. commit ()

return; // success

} catch (SQLException e) [

rollbact

frerBxception(conn); // rollback, ignore any rollback exception

throw e; // notify caller of problem

Service layer code pattern

Here is another snippet, showing what we will be doing with a DAO-generated Exception: create and throw a service-
layer exception object whenever the DAO throws up to this code.

/1 starting with good Connection conn, in service-layer code
eyt

.doDBMork (conn) ; // this DAO method can throw SQLException

dao.comnit (conn); // succ

catch ception) (

terBxception

n) ;

throw new ServiceException(“DBWork failed”, e);
} finally
conn.close();

Of course there are no explicit transactions in pizzal or musicl, so we don’t see throws from rollback there

Object graph for SQLException saved in
ServiceException

SQLException as cause of ServiceException, in pizzal/pizza2: two objects with a ref between:

<ServiceException> e
| ref in ServiceException

<SQLExc:ptmn> el = e.getCause ()

Both these exceptions have toString()s that provide their messages, so System.out.printin(e)

gives the message provided in the constructor like "Order can not be placed “, while
System.out.printIn(e.getCause()) could be “No such table pizza_orders”.

Next time: We need to know more about HTTP.
HTTP: read Chap. 18 to pg. 555.

jdbc/Transfer.java

