
Servlets, Spring Boot
Controllers

1

Last time:
ch05emailS, start on pizza3
• Both use Spring boot’s embedded tomcat for easy development

• Both use Maven, which builds an all-dependencies jar file in the target directory

• Both use servlets, but we haven’t yet covered pizza3’s servlets (Spring controllers).

• Only pizza3 uses Spring beans for singletons. ch05emailS doesn’t use singletons, rather setting
up APIs based on static methods, a competing pattern.

• Only pizza3 uses real database access, so we need to handle the database account params.

• Only pizza3 can run as a web app or as an ordinary executable, running SystemTest or whatever.
This means app-specific code needs to run after Spring sets up the beans. This is a tricky point:
turns out we need a @Component bean of a certain type to pick up the execution at that point.

2

More on forwarding the request for ch05email

• The forwarding operation is a little mysterious because it utilizes a URL but does not
involve handling an external request coming into the server.

• Instead it is used to “chain” work inside the server. The code to do the forward in
EmailListServlet is:

getServletContext().getRequestDispatcher(url).forward(request, response);
where url = "/thanks.jsp"

• This shows the request and response objects being handed over to be reused with the
target servlet.

• No other data objects are handed over, but we know lots of info can be attached to the
request.

• The request attributes, added by, say, request.setAttribute("user", user);
become request variables, accessible from the forwarded-to JSP

3

Forwarding in tomcat
• The forwarding action occurs inside the tomcat server, so there is no round-trip time back to the
browser involved.

• The browser doesn’t know anything about it, and so the address bar in the browser doesn’t
change either, never displaying the name of the .jsp being forwarded to.

• The browser gets the HTML generated by the .jsp as the response to its request.

• Timeline: browser B uses URL for servlet S, which forwards to JSP J (really its servlet), which
creates HTML response for browser B:

---*---------------------------**-------------------------------*---------

B SJ B

time--->

4

Forwarding in here,
very fast

The forwarding URL
• The url in the ch05emailS case is “/thanks.jsp”. This is neither a relative URL nor an absolute
one.

• The / here represents the root directory of the webapp, webapp itself for embedded tomcat,
webapps/ch05email for shared tomcat, so this is forwarding to thanks.jsp in that directory.

• We see that we don’t need to know the webapp name to code the webapp, or even whether it
will run on embedded tomcat or shared tomcat, because this forwarding URL is relative to the
root directory of the webapp, wherever that is.

• We must always use a URL like this for forward, that is, it must start with a /. Forwards can only
go to somewhere in our current webapp, not out into the Internet or even to another webapp
on this server.

5

Aside: Same-syntax URL, different meaning…
• Another URL starting with / is shown on pg. 101, in HTML: …

• The / means something different outside of servlet forwarding: it means the document root of
the webserver filesystem.

• It is a "document-root-relative" or "site-root-relative" or just "root relative" URL (apparently no
standard terminology)

• For example, our class website, https://www.cs.umb.edu/cs636, could be linked to from any
page on the whole departmental site by CS636

• So there are three kinds of URLs in all: absolute, relative, and root-relative. Absolute includes a
server hostname, root-relative starts with / and has no hostname, relative starts with non-/ and
has no server hostname.

• This URL syntax for forward is special-purpose, not part of the general setup.

6

https://www.cs.umb.edu/cs636

Forwarding, further notes
• Only the request and response objects are handed over in a forward.

• All the other variables are not accessible to the forwarded-to servlet/JSP, unlike in PHP.

• The trick is to attach attributes to request to let them ride across to the target.

• In webapp ch05emailS, we saw that the servlet accessed the DB (just a stub actually), attached
a User object as an attribute of the request object, and forwarded to a JSP, which used EL to
access the request attributes and generate HTML

• A servlet can forward to a JSP, which compiles to a servlet, or an HTML file, which tomcat knows
how to handle, or another servlet in its context.

7

Ch05emailS MVS request-response cycle

8

forward

localhost:9000/emailList

HTML

View: thanks.jsp, composes
HTML for response using data
passed from the controller in a
request variable

Controller: in charge of
assembling all needed data for
the view

What about the layers? Where do they
fit in this MVC picture?
The view is pure presentation.

The Model is the DAO.

Thus by elimination, the service layer is in the Controller.

But not all of the controller code is service-layer.

The mechanics of accepting the user input is presentation code. Once the user's intention is
known, calls are made to the service layer, then on to the DAO/Model.

With the help of the data from the DB, the service layer makes decisions, and finally returns to
the presentation code of the controller, which attaches data to the request (the request
variables) and forwards the request to the view JSP.

9

Ch05emailS Layers

10

localhost:9000/emailList

HTML

View: thanks.jsp, all
presentation layer

Controller: partly presentation,
partly service layer

Service layer

forwardPresentation

Now on to Spring Controllers…
• We have seen how to handle the endpoint with path “/emailList” with a servlet
that passes a “user” request variable from the servlet to the JSP.

• Also the endpoint “/test” with a hello-world level servlet that just outputs
HTML composed in Strings.

• Spring Controllers let us handle endpoints with less coding

• Let’s look at the simplest case, the hello-world level, and then one that passes
data from the controller to the JSP.

11

Look at the simplest Spring controller in pizza3

@Controller  class annotation: this is a Controller bean
public class StudentController {

@Autowired

private StudentService studentService; ref to service API

@RequestMapping("welcome.html") path of incoming request (endpoint)

public String welcome(Model model) { controller method with annotation

return "welcome"; says to forward to welcome.jsp

}

This controller method (a “handler”) handles incoming requests to /welcome.html, the starting path
of the web app. It doesn’t do any computation, just returns “welcome” to tell tomcat to forward to
welcome.jsp.

12

The Spring DispatcherServlet at work
Execution sequence:

1. GET /welcome.html comes into tomcat (or POST), it locates right servlet, in this case Spring’s
DispatcherServlet, which has been in existence since the web app started.

2. That servlet has previously scanned (in its init()) all the @RequestMappings in our code, and
has a registry of them to consult. It finds that the endpoint “/welcome.html” is handled by
method “welcome” in StudentController.

3. The DispatcherServlet calls StudentContoller.welcome, gets back “welcome”, and forwards the
request to welcome.jsp.

13

Compare to ch05emailS’s TestServlet
TestServlet (code on next slide, from Chapter5slides) handles GETs and POSTs to an endpoint
“/test”. It outputs HTML directly for the response instead of forwarding to a JSP.

Execution:

1. Client sends a GET request to the endpoint, after opening a TCP stream connection to the
tomcat server

GET /test HTTP/1.1 (vs. GET /ch05email/test HTTP/1.1 for shared tomcat’s ch05email)

2. tomcat locates servlet by analyzing URL’s path: / for embedded tomcat, /ch05email for shared

3. tomcat looks at that servlet’s registered endpoints, and on match, calls doGet in that servlet’s
code.

4. doGet outputs HTML to responses’s PrintWriter, which is then sent back to the client

14

Murach's Java Servlets/JSP (3rd Ed.), C5 © 2014, MIKE MURACH & ASSOCIATES, INC. Slide 15

A servlet that returns HTML
package murach.email;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name="MurachTestServlet", urlPatterns={"/test"})

public class TestServlet extends HttpServlet {

 @Override

 protected void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 try {

 out.println("<h1>HTML from servlet</h1>");

 } finally {

 out.close();

 }

 }

Line added to original
slide, for our setup.
Registers endpoint /test
for the servlet.

doGet also comes here,
because doGet calls
doPost

doGet is down here

Summary on simplest endpoints
We have seen the simplest cases of endpoints using both explicit servlets and Spring controllers.

In both:

• The code has endpoint-registration via annotations:

Explicit servlet: @WebServlet(name="MurachTestServlet", urlPatterns={"/test"})

(older way, in textbook: use web.xml)

Spring controller: @RequestMapping("welcome.html")

 The code in the method specifies what HTML should be returned, but doesn’t provide any
variables to make properly dynamic HTML.

 So next we want to consider endpoint handlers that do provide variables for dynamic HTML.

16

In Spring controllers:
What the Model is for: sending data to JSP
@RequestMapping("orderForm.html")  request to /orderForm.html

public String displayOrderForm(Model model) throws ServletException {

List<String> allSizes = null;

List<String> allToppings = null;

try {

allSizes = studentService.getSizeNames(); call service API

allToppings = studentService.getToppingNames();

} catch (Exception e) {…}

model.addAttribute("allSizes", allSizes); pack up data in model

model.addAttribute("allToppings", allToppings);

model.addAttribute("numRooms", 10);

return "jsp/orderForm"; forward to orderForm.jsp in jsp dir

}

17

Spring code will attach the attributes from model to the request, making
them request variables. The JSP will have access to request variables
allSizes, allToppings, and numRooms.

This forwards to JSP for pizza order page
%@taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%

…

<!--change to method="post" when development is done -->

<form method="get" action="orderPizza.html">

Pizza Size:

<c:forEach items="${allSizes}" var="curSize">

<input type="radio" name="size" value="${curSize}"> ${curSize}

</c:forEach>

…

18

Needed for JSTL: taglib
directive at top of page

Use JSTL to loop
through allSizes

The Spring DispatcherServlet again…
Execution sequence:

1. GET /orderForm.html comes into tomcat (or POST), it locates right servlet, in this case Spring’s
DispatcherServlet.

2. That servlet has previously scanned for all the @RequestMappings in our code, and has a
registry of them to consult. It finds that the endpoint “/orderForm.html” is handled by method
“displayOrderForm” in StudentController.

3. The DispatcherServlet calls StudentContoller.displayOrderForm with an empty Model object,
gets back a filled-in Model object and return value “jsp/orderForm”. It uses the Model object to
set request attributes, forming request variables allSizes, etc., and forwards the request to
orderForm.jsp in the jsp directory of webapp, the document root.

19

Compare to ch05emailS’s EmailServlet
EmailListServlet (code on next slide, from Chapter5slides) handles GETs and POSTs to an endpoint
“/emailList”. It forwards to a JSP named thanks.jsp.

Execution:

1. Client sends a GET request to the endpoint, after opening a TCP stream connection to the tomcat
server

GET /emailList HTTP/1.1

2. tomcat locates servlet by analyzing URL’s path

3. tomcat looks at that servlet’s registered endpoints, and on match, calls doGet in that servlet’s code.

4. doGet interprets user input (not done by the Spring controller we looked at, but of course
possible), then creates a User object and attaches it to the request object, making it into a request
variable named “user” that can be used in the forwarded-to JSP, thanks.jsp.

20

Murach's Java Servlets/JSP (3rd Ed.), C2

© 2014, MIKE MURACH & ASSOCIATES, INC. Slide 21

The EmailListServlet class
package murach.email;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import murach.business.User;

import murach.data.UserDB;

@WebServlet(name = "EmailList", description = "Servlet to handle email list",
urlPatterns = {"/emailList"})

public class EmailListServlet extends HttpServlet {

 @Override

 protected void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String url = "/index.html";

 // get current action

 String action = request.getParameter("action");

 if (action == null) {

 action = "join"; // default action

 }

Line added to slide, for our
setup (replacing web.xml):
registers endpoint /emailList

doGet also comes here,
because doGet calls
doPost

Murach's Java Servlets/JSP (3rd Ed.), C2 © 2014, MIKE MURACH & ASSOCIATES, INC. Slide 22

The EmailListServlet class (continued)

 // perform action and set URL to appropriate page

 if (action.equals("join")) {

 url = "/index.html"; // the "join" page

 }

 else if (action.equals("add")) {

 // get parameters from the request

 String firstName = request.getParameter("firstName");

 String lastName = request.getParameter("lastName");

 String email = request.getParameter("email");

 // store data in User object and save User object in db

 User user = new User(firstName, lastName, email);

 UserDB.insert(user);

 // set User object in request object and set URL

 request.setAttribute("user", user);

 url = "/thanks.jsp"; // the "thanks" page

 }

 // forward request and response objects to specified URL

 getServletContext()

 .getRequestDispatcher(url)

 .forward(request, response);

 }

How we provide a
request variable named
“user” to the JSP

Summary on Spring Controllers so far
So far, we have seen how to set up simple endpoint handlers in a Spring controller, a Java source file
with class annotation @Controller.

We have covered:

• How to specify the JSP to forward to: just return a String name, Spring will append “.jsp” to it (this is
configurable).

• How to specify request variables that the forwarded-to JSP can access. Here the deal is: have a
method argument “Model model”, so that Spring can supply an empty Model object to the code,
then, in the method, we add attributes to model that we want turned into request variables.

We need to cover in the future:

• How to get user input out of the incoming request object.

• How to use session variables to keep a conversation going with our user.

23

Request parameters: firstName=Joe&lastName=Li&email=jli&action=add

Servlet: create User, attach as request variable, forward to thanks.jsp

Another
way to look
at EmailList
Servlet: as
page flow
with servlet
execution
on the way

Request variable: name: “user” value: User object

25

Rough page-flow
picture for Spring
controller that
sets up the pizza
order page in
pizza3

Next: MVC webapps with session variables.
• Start reading Chap 7 on Session Variables.

• So far, we have been using "request variables" like the "user" attribute in ch05email and
“allSizes” for pizza3’s show-order-form page.

• Request variables are great for communicating between the servlet controller and the JSP it
forwards to, since they use the same request object.

• But as soon as the request-response cycle finishes, those request variables and values
evaporate.

• In many cases, we need to remember information in the server for longer, from one request
cycle to another. That's when we use session variables, or of course the database.

• The session variables hang off the "session" object just like the request variables hang off the
request object. The session object hangs off the request object, so everything is accessible from
the request object.

26

Chapter 7: How to work with sessions
Look at Chapter7 slides (6pp)

27

protected/Chapter7slides.pdf
file:///F:/cs/cs636/protected/Chapter7slides.pdf
protected/Chapter7slides_6pp.pdf

