
PHP Web Services

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 2

Intro to REST Web Services

REST = Representation State Transfer

Example: an Order Service

A simple CRUD service:

• Create an order

• Retrieve the order to check status

• Update/replace the order

• Delete the order

But instead of accessing its own DB, the client

sends requests over the Internet to the server:

REST client---------------REST server

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 3

This Order Service Maps into HTTP verbs as follows:

Verb URI Use

POST /orders/ Create new order

GET /orders/1234 Get info on order 1234

PUT /orders/1234 Update all of order 1234

DELETE /orders/1234 Delete order 1234

• The URI is added onto the server’s URL, so the actual URL in

use with POST is http://example.com/exservice/orders, for

example, where http://example.com/exservice is the “service

endpoint” in use.

•The POST body has a JSON representation of the order, and

similarly with PUT.

• Similarly, the GET returns that JSON representation.

REST client---------------REST server (or XML instead of JSON)

JSON

http://example.com/exservice/orders
http://example.com/exservice

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 4

From the client viewpoint:

POST an Order and find out its new URL (one request-

response cycle):

1. POST JSON (or XML) describing the order to

http://server.com/rest/orders/, the collection URL.

2. Get back JSON for order with id filled in, say order 22,

and Location header with http://server.com/rest/orders/22,

or alternatively, just get back the new URL in Location.

• This means this order’s new resource has URL

http://server.com/rest/orders/22, so a GET to that URL will

retrieve the JSON representation.

• Note: Although we see JSON on the network, the data in

the server is usually in ordinary database tables.

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 5

JSON and XML: similar capabilities
{

"ID": "1",

"Name": "M Vaqqas",

"Email": "m.vaqqas@gmail.com",

"Country": "India"

}

<Person>

<ID>1</ID>

<Name>M Vaqqas</Name>

<Email>m.vaqqas@gmail.com</Email>

<Country>India</Country>

</Person>

From
http://www.drdobbs.com/web-development/restful-

web-services-a-tutorial/240169069

http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 6

From client viewpoint: Find out the order status for order

22 (one request/response cycle) :

1. Do GET to http://server.com/rest/orders/22

2. Get back JSON for order with current status filled in

• Note that the server-side software can change the

status over time, so a later GET may return a changed

order. Or some client did a PUT to change it.

• The rules of REST say the server should not change

the order because of the GET. GET is “read-only”. If

you want to change a resource, use POST or PUT.

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 7

The idea of REST is to use HTTP directly.

With REST, we use multiple HTTP verbs:

• GET for reading data (no changes allowed in server!)

• POST for creating new data items

• PUT for updating old data items

• DELETE for deleting old data items

• HTTP headers are also used. One so far, Location, but

more to come.

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 8

The idea of REST is to use HTTP directly.

There’s no message “envelope” as seen in other web

service methodologies, like SOAP

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 9

• We can say REST is a software architectural style for

distributed systems.

• It’s OK to say “REST protocol” as long as you understand

it’s really just the HTTP protocol.

• It was created by Roy Fielding, and described in his widely-

read PhD thesis.

• He got a degree in 2000 after doing a lot of important work

on the HTTP and URL specs.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 10

“Everything is a resource”

--the RESTful way.

Each resource has its own URL

Example: http://server.com/rest/orders/22

for order 22

Also, generally a resource has just one URL, to avoid

“aliasing” problems, but this is not a strict requirement.

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 11

REST is a “Stateless” Protocol

Each request contains all the information needed by the

receiver to understand and process it. (This is also true for

SOAP.)

That’s just like HTTP, after all.

Note the Wikipedia article on REST

Good tutorial:
http://www.drdobbs.com/web-development/restful-

web-services-a-tutorial/240169069

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069

How do we do this from PHP?

• We see that REST involves sending HTTP requests from
the client to the server, and JSON data

• Client-side: so far, we've sent GETs and POSTs from the
browser with the help of HTML forms and links
– Now we need to generate them from the PHP program as

needed for REST requests, and send and accept JSON data

• Server-side: so far we've handled GETs and POSTs, but
just POSTS with form data
– Now we need to accept GETs, send back JSON, and accept

POSTs with JSON data, send back JSON

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 13

Most basic approach for the client side: use the libCurl

Library, usually supplied with PHP, to send HTTP requests

from our PHP code

From PHP docs:

PHP libcurl allows you to connect and communicate to

many different types of servers with many different types

of protocols.

• libcurl currently supports the http, https, ftp, gopher,

telnet, dict, file, and ldap protocols

• Good to know—we’ll just use http and https, the secure

version of http

• Current XAMPP has libcurl installed for you.
 To check, write a file test.php with “<?php phpInfo();”, browse to

it and see listing of installed libraries (search for curl on the

page)

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 14

 curl_init($url)

 curl_setopt($curl, OPTION, $value)

 curl_exec($curl)

 curl_close($curl)

Common cURL functions

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 15

// Initialize the cURL session

$curl = curl_init('http://www.example.com');

// Set the cURL options so the session returns data

curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);

// Transfer the data and store it

$page = curl_exec($curl);

// Close the session

curl_close($curl);

// Process the data

$page = nl2br(htmlspecialchars($page));

echo $page;

How to use the cURL functions

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 16

// Set up the URL for the query

$query = 'space shuttle';

$query = urlencode($query);

$base_url = 'http://gdata.youtube.com/feeds/api/videos';

$params = 'alt=json&q=' . $query;

$url = $base_url . '?' . $params;

// Use cURL to get data in JSON format

$curl = curl_init($url);

curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);

$json_data = curl_exec($curl);

curl_close($curl);

// Get an array of videos from the JSON data

$data = json_decode($json_data, true);

$videos = $data['feed']['entry'];

How to use cURL to query YouTube (obsolete)

 From M&H, second edition

Newer v3 YouTube API: uses HTTPS:, needs additional

curl setup

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 17

Search view as it once worked

Disadvantages of Curl Library

• Hard to work with headers (and we need
them for Web Services)

• Hard to see the text of the actual web
requests

• Old-fashioned error handling

• Not easy to work with uploads and downloads

• So, we turn to Guzzle, a PHP component

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 18

http://docs.guzzlephp.org/en/latest/

PHP Components

• A Component is a bundle of OO code meant to do one
particular job, with documentation and compatibility
with autoloading.
– We’ll use the well-known Guzzle component for HTTP

requests, for client-side web service code
– We’ll use the Slim component for server-side web service.
– Another component called CSV helps with reading and

writing CSV (comma-separated-value) files

• De facto component registry: https://packagist.org
• Tool for using packages: composer
• See Lockhart, “Modern PHP” for good intro on

components.

Murach's PHP and MySQL, C14 © 2014, Mike Murach & Associates, Inc.
Slide 19

https://packagist.org/
https://www.oreilly.com/library/view/modern-php/9781491905173/ch04.html

HTTPGuzzle

• Well-known PHP component

• OO, has autoload (like all components do)
– So no complicated includes/requires needed

• Do GET, POST, other HTTP commands

• Set/get headers, do authorization, etc.

• Provides Exceptions on its errors.

• To be used for client-side web services

• Is implemented using the curl library

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 20

Curl vs. Guzzle

// Initialize the cURL session
$curl = curl_init('http://www.example.com');

// Set the cURL options so the session returns
data
curl_setopt($curl,
CURLOPT_RETURNTRANSFER, true);

// Transfer the data and store it
$page = curl_exec($curl);

// Close the session
curl_close($curl);

// Process the data
$page = nl2br(htmlspecialchars($page));
echo $page;

Murach's PHP and MySQL, C22 © 2010, Mike Murach & Associates, Inc.
Slide 21

// set up autoloading so no includes needed

require '../vendor/autoload.php';

// Instantiate Guzzle HTTP client

$httpClient = new \GuzzleHttp\Client();

// do the GET

$response = $httpClient->get(
'http://www.example.com');

$page = $response->getBody();

// Process the data

$page = nl2br(htmlspecialchars($page));

echo $page;

Server side: use Slim

• Slim is a PHP component that helps with accepting and
answering REST requests

• OO, has autoload (as all components do)
– So no complicated includes/requires needed

• Can accept incoming GET, POST, PUT, DELETE, etc.
• Helps with parsing the incoming URL, for example picking

up the id.
• Has nothing to do with curl: curl only helps with generating

HTTP requests, not handling incoming ones.
• In fact, we could use plain PHP to do the server side coding,

but this is the more standard approach, and can help with
advanced features like authorization and CORS.

http://www.slimframework.com/

Pizza2

• Pizza2, our second programming project, will use REST web
services to access the database data. It involves several
cooperating codebases, i.e., projects.
– The pizza2_phpclient project (supplied) will run the student UI

and issue web service calls to get the data on toppings, orders,
etc.

– Eventually pizza2_jsclient will do the same using Javascript.
– The pizza2_server project (in PHP) will manage the database

and answer the web service requests
– We’ll continue to use the pizza1 project for the admin UI

• The pizza2_phpclient project will use the PHP component
Guzzle

• Similarly, the pizza2_server project will have the Slim
component installed, to help with web service code.

Pizza2

Pizza2_phpclient------------------Pizza2_server
PHP HTTP, JSON PHP

Pizza2_jsclient---------------------Pizza2_server
JS HTTP, JSON PHP

• The data flows over the network in JSON, converted to/from PHP
arrays for PHP programs, or to/from JS arrays for JS programs.

• PHP is commonly used this way on the server side to assist with
Javascript apps.

• Both PHP and JS can input and output JSON easily.
• You will implement pizza2_server and pizza2_jsclient in Project 2.

Provided ch05_gs_client/server

• Ch05_guitar_shop has been modified to use REST web
services to access its data, to serve as a complete example
for PHP web services.

• We’ll call it ch05_gs for short—

ch05_gs_client------------------ch05_gs_server
PHP HTTP, JSON PHP

• Ch05_gs_client uses REST web services to access the
database data, with the help of Guzzle.
– Otherwise it’s the same as the old ch05_guitar_shop.

• Ch05_gs_server manages the database and answers the
web service requests, with the help of Slim.
– It has no user interface itself: it only answers web requests

REST API for Ch05_guitar_shop

GET /categories

GET /categories/{category}/products

GET /categories/{category}/products/{pid}

POST /categories/{category}/products

DELETE /categories/{category}/products/{pid}

Another possible setup:

GET /categories

GET /products

GET /products/{pid}

POST /products

DELETE products/{pid}

• The hierarchical API allows a query

for all the products in a certain

category, a common need in this app.

• To do that in the second API, you

would have to request all the products

and go through them to find the ones

in the category of interest.

REST Ch05_guitar_ship

REST API for project:

GET /categories

GET /categories/{category}/products

GET /categories/{category}/products/{pid}

POST /categories/{category}/products

DELETE /categories/{category}/products/{pid}

Examples:

GET /categories/guitars/products // get all guitars

POST /categories/guitars/products // add a guitar

DELETE /categories/basses/products/2 // delete bass 2

We see that {category} has string values here, but alternatively it could
numeric ids. In general it needs to be a unique attribute of categories.

Displaying and Understanding Deep Arrays

Recall example from Chapter 11

Creating this array

$array0 = array('first'=>'Mike',

'last'=>'Murach‘,'id'=>6453);

// Or alternatively, use []

$array0 = ['first'=>'Mike',

'last'=>'Murach','id'=>6453];

$array1 = array('first'=>'Joel',

'last'=>'Murach','id'=>5635);

$a = array($array0,$array1);

// or alternatively—

$a =[$array0,$array1];

Printing out the array

print_r($a);

Array ([0] => Array ([first] => Mike [last] =>

Murach [id] => 6453) [1] => Array ([first] =>

Joel [last] => Murach [id] => 5635))

Seeing it better: don’t let HTML processing mess with its natural

formatting: Use <pre> to say it’s preformatted:

echo '<pre>';

print_r($a);

echo '</pre>';

Much better output!

Array

(

[0] => Array

(

[first] => Mike

[last] => Murach

[id] => 6453

)

[1] => Array

(

[first] => Joel

[last] => Murach

[id] => 5635

)

)

From YouTube WS: $data array
Array

(

[kind] => youtube#searchListResponse

[etag] => "tbWC5XrSXxe1WOAx6MK9z4hHSU8/cSqvDUAWEuyI_04UBZ1VjqSkQnE"

[nextPageToken] => CAUQAA

[pageInfo] => Array

(

[totalResults] => 1000000

[resultsPerPage] => 5

)

[items] => Array

(

[0] => Array

(

[kind] => youtube#searchResult

[etag] => "tbWC5XrSXxe1WOAx6MK9z4hHSU8/0AePmGSSrYn8E4js8CGXESKeY8Y"

[id] => Array

(

[kind] => youtube#video

[videoId] => ek_W75G_JJw

)

[snippet] => Array

(

[publishedAt] => 2015-05-03T13:00:01.000Z

[channelId] => UCboMX_UNgaPBsUOIgasn3-Q

[title] => LOST IN SPACE - Astronaut Simulator Gameplay

$items[0]['snippet']['title'];

$items = $data['items'];

From user notes of PHP doc on print_r:

“I add this function to the global scope on just about
every project I do, it makes reading the output of
print_r() in a browser infinitely easier.”

<?php

function print_r2($val){

echo '<pre>';

print_r($val);

echo '</pre>';

}

?>

For ch05_gs: Product in PHP
Array

(

[productID] => 5

[categoryID] => 1

[productCode] => washburn

[productName] => Washburn D10S

[listPrice] => 299.00

)

Generated by a line added to a view file of ch05_gs_client:

echo '<pre>' . print_r($product, true) . '</pre>';

Product in JSON

• JSON is the encoding we’ll use in our web services to
transport data across the network

• PHP makes it easy to convert data to JSON:

echo json_encode($product);

See product representation (JSON) in flight across
network:

{"productID":"4","categoryID":"1","productCode":"fg700s","prod
uctName":"Yamaha FG700S","listPrice":"489.99"}

Products ($products) in JSON

[{"productID":"7","categoryID":"2","productCode":"precision",
"productName":"Fender Precision","listPrice":"799.99“}

{"productID":"8","categoryID":"2","productCode":"hofner",

"productName":"Hofner Icon","listPrice":"499.99"}]

Generated by a line added to a view file:

echo echo $productsJson;

Products ($products) in PHP
Array

(

[0] => Array

(

[productID] => 7

[categoryID] => 2

[productCode] => precision

[productName] => Fender Precision

[listPrice] => 799.99

)

[1] => Array

(

[productID] => 8

[categoryID] => 2

[productCode] => hofner

[productName] => Hofner Icon

[listPrice] => 499.99

)

)

Generated by a line added to a

view file:
echo '<pre>' .

print_r($products, true)

. '</pre>';

JSON Essentials

The following is from

• http://www.w3schools.com/json/json_syntax.asp

• http://www.tutorialspoint.com/json/json_schema.htm

JSON Syntax Rules

JSON syntax is derived from JavaScript object notation
syntax:

• Values are numbers, strings, objects, arrays, true,
false, or null

• Strings are in double-quotes and encoded in UTF-8

• Curly braces hold objects, with name/value pairs for
properties

• Square brackets hold arrays of values

• Syntax diagrams

http://www.json.org/fatfree.html

JSON Values

JSON values can be:

• A number (integer or floating point)

• A string (in double quotes, in UTF-8)

• A Boolean true or false

• An array (in square brackets)

• An object (in curly braces)

• null

JSON Example

{

"customerID": 1,

"orderID": 3,

"delivered": true,

"items": [

{

"productID": 11,

"quantity": 40

},

{

"productID": 12,

"quantity": 60

}

]

}

Here, see
• Numbers, Boolean true
• Many strings
• 1 array
• 3 objects, 2 nested
• 6 name/value pairs with integer values
• 1 name/value pair with Boolean value
• 1 name/value pair with array value

JSON Objects (also simple JS objects)

• JSON objects are written inside curly braces.
• JSON objects can contain zero, one or multiple

name/value pairs, for example
{"firstName":"John", lastName":"Doe"}

• This is set containment. The following is considered
the same object
{"lastName":"Doe", "firstName":"John"}

• This is a big difference from XML, but generally
helpful in applications

• The names must be strings and should be different
from each other.

JSON Arrays (also JS arrays)

• JSON arrays are written inside square brackets, and are
ordered.

• A JSON array can contain zero or more objects, or other
values:

• Example array of objects
[

{"firstName":"John", "lastName":"Doe"},

{"firstName":"Anna", "lastName":"Smith"},

{"firstName":"Peter","lastName":"Jones"}

]

More JSON array examples

• Array of numbers

• [1, 2, 3]

• Array of numbers and another array

• [1, 2, [2, 3]]

• Array of strings

• ["apple", "banana"]

• Array of strings and numbers (not a great idea)

• ["apple", 3, 20.5]

FYI: JSON Schema

• For a long time (‘99-’10+), JSON was considered inferior to
XML because it had no schemas

• A schema is a way to specify format

• JSON Schema is an Internet Draft, currently version 8
(officially Draft 2019-09), September, 2019.
– Version 0 is dated in 2010

– Version 5 is still in serious use, for example in Swagger, an important
tool/description method for REST APIs using JSON.

• Schemas allow a server to specify needed formats of received
data, and also the sent data.

• For more info, see

http://spacetelescope.github.io/understanding-json-schema/

http://spacetelescope.github.io/understanding-json-schema/

JSON schema for a product
{

"$schema": "http://json-schema.org/draft-04/schema#",

"title": "Product",

"description": "A product from Acme's catalog",

"type": "object",

"properties": {

"id": {

"description": "The unique identifier for a product",

"type": "integer"

},

"name": {

"description": "Name of the product",

"type": "string"

},

"price": {

"type": "number",

"minimum": 0,

"exclusiveMinimum": true

}

},

"required": ["id", "name", "price"]

}

Valid object:

{

"id": 2,

"name": “CD",

"price": 12.50,

}

PHP JSON Functions

• json_encode Returns the JSON

representation of a PHP value

• json_decode Decodes a JSON string to PHP

• json_last_error Returns the last error

json_encode

string json_encode($value [, $options = 0])

PARAMETERS:
 value: The value being encoded. This function only works with UTF-

8 encoded data (this includes ASCII).

 In the event of a failure to encode, json_last_error() can be used to
determine the exact nature of the error.

 options: This optional value is a bitmask consisting of
JSON_HEX_QUOT, JSON_HEX_TAG, JSON_HEX_AMP,
JSON_HEX_APOS,
JSON_NUMERIC_CHECK,JSON_PRETTY_PRINT,
JSON_UNESCAPED_SLASHES, JSON_FORCE_OBJECT

--We shouldn’t need any of these options except
JSON_PRETTY_PRINT

http://php.net/manual/en/function.json-last-error.php

Decoding JSON in PHP (json_decode)

PHP json_decode() function is used for decoding JSON in PHP. This function
returns the value decoded from json to appropriate PHP type.

SYNTAX:
json_decode ($json [,$assoc = false

[, $depth = 512 [, $options = 0]]])

PARAMETERS:
• json_string: It is encoded string which must be UTF-8 encoded data
• assoc: It is a boolean type parameter, when set to TRUE, returned objects

will be converted into associative arrays (default is Standard Object). We
need to use this, but not the following two arguments:

• depth: It is an integer type parameter which specifies recursion depth
• options: It is an integer type bitmask of JSON decode,

JSON_BIGINT_AS_STRING is supported.

Json_decode Example

<?php

$json = '{"a":1,"b":2,"c":3,"d":4,"e":5}';

var_dump(json_decode($json));

var_dump(json_decode($json, true));

?>

The stdClass is a

built-in class used for

typecasting to object, etc.
• We’ll use the second form

object(stdClass)#1 (5) {

["a"] => int(1)

["b"] => int(2)

["c"] => int(3)

["d"] => int(4)

["e"] => int(5)

}

array(5)

{ ["a"] => int(1)

["b"] => int(2)

["c"] => int(3)

["d"] => int(4)

["e"] => int(5)

}

Use of json_decode in ch05_gs_client
In rest_get_product(…) of model/web_services.php:

$product = json_decode($productJson, true);

Here $productJson =

{"productID":"4","categoryID":"1","productCode":"fg700s“,

"productName":"Yamaha FG700S","listPrice":"489.99"}

With the second-arg = true, we get a PHP associative array, instead of a “standard

object”: So $product is the PHP associative array as follows:

Array

(

[productID] => 4

[categoryID] => 1

[productCode] => fg700s

[productName] => Yamaha FG700S

[listPrice] => 489.99

)

Client and Server

• Server: ch05_gs_server, using Slim
• Client: ch05_gs_client, fixed-up ch05_guitar_shop, same

UI
• These two projects are meant to be siblings in your

cs637/username directory on pe07 or XAMPP.
 /cs637/username/ch05_gs_client : client side
 /cs637/username/ch05_gs_server: server side

• Kludge warning: ch05_gs_client finds its CSS from
/book_apps/ch05_guitar_shop/main.css
– So assumes the /book_apps is available on this system.
– It’s not easy to make PHP projects position-independent, i.e.,

able to run anywhere on the web server file system
– So if the HTML looks crummy, fix the CSS link or /book_apps

Web service code

• PHP code in api/index.php of ch05_gs_server
o Web server code needs to avoid sending error text in response:

will mess up other end’s interpretation
o i.e., don’t “echo” debugging info: use error_log()
o error_log() in web service code outputs to same file as the client

side, so label output “client” or “server”, or use error_log only
from the server side.

o See slides 27-32 of Chapter 6 (6pp) for enabling and using
error_log()

• Also api/.htaccess is important—will discuss
o As “dot file”, not listed by ls command in Linux/Mac
o Need to use ls –a to see it
o You don’t need to change this file, just be sure it’s there!

https://www.cs.umb.edu/cs637/slides/Chapter06.pdf
https://www.cs.umb.edu/cs637/slides/Chapter06_6pp.pdf

Testing web services

• Web services (even old-style SOAP services)
are “stateless”

• This means each service request contains all
needed data for the server to do its job

• REST web services are just HTTP commands

• Therefore we can just fire HTTP commands at
the server to test its services

• We can use command-line curl: we’ll cover
this next time.

